Acetonitrile as tops solvent for liquid chromatography and extraction
Vol 5, Issue 1, 2022
VIEWS - 3658 (Abstract)
Abstract
This article deals with acetonitrile physico-chemical properties and its mixtures with water. It covers the information about isotherms of such parameters of the acetonitrile-water binary system as density, viscosity, permeation coefficient, refraction index, optic density, a boiling point isobar. Authors suggest a generalized criterion of acetonitrile polarity. The article also discusses means of polarity assessment and eluotropic strength of mobile phases on the basis of acetonitrile mixtures with water with application of generalized criteria. Special attention is paid to the options of acetonitrile application in various extraction methods of chromatographic sample preparation. The article also reveals advantages and problems of acetonitrile application as a mobile phase modifying agent in the HPLC reversed-phase and as a hydrophilic extra-agent in liquid-liquid extraction.
Keywords
Full Text:
PDFReferences
1. Schoenmakers PJ. Optimization of chromatographic selectivity. A guide to method development. (Journal of Chromatography Library Vol. 35). Amsterdam, Oxford, New York, Tokyo: Elsevier, 1986.
2. Rudakov OB, Vostrov IA, Fedorov SV, et al. Sputnik khromatografista. Metody zhidkostnoi khromatografii (Methods of Liquid Chromatography. Handbook). Voronezh: Vodoley, 2004. (in Russian)
3. Rudakov OB. Rastvoritel' kak sredstvo upravleniya protsessom v zhidkostnoy khromatografii (Solvent as a means of controlling the process in liquid chromatography). Voronezh: VGU, 2003.(in Russian)
4. Sadek PC. The HPLC solvent guide (2nd ed.). John Wiley and Sons, Inc., 2002.
5. Khorokhordina EA, Podolina EA, Rudakov OB. Zhidkostnaya ekstraktsiya smeshannymi rastvoritelyami. Primeneniye v khimicheskom analize fenolov (Liquid extraction with mixed solvents. Application in the chemical analysis of phenols). Saarbrücken. LAP Lambert Academic Publishing, 2012. (in Russian)
6. McConvey IF, Woods D, Lewis M, et al. The importance of acetonitrile in the pharmaceutical industry and opportunities for its recovery from waste. Org. Process Res. Dev. 2012; 16(4): 612-624. DOI: 10.1021/op2003503
7. Pence DN, Tingyue Gu. Liquid-liquid equilibrium of the acetonitrile – water system for protein purification. Separations Technology 1996; 6(4): 261–264. DOI: 10.1016/S0956-9618(96)00161-0
8. Rudakov OB, Khorokhordina EA, Preobrazhenskii MA. Interfacial tension in cooled heterogeneous liquid acetonitrile–ethyl acetate–isopropanol–water–phenol systems. Russian Journal of Physical Chemistry A. 2017; 91(4): 754-757. DOI: 10.1134/S0036024417040240
9. Rudakov OB, Khorokhordina EA, Preobrazhenskii MA, et al. Low-temperature liquid–liquid extraction of phenols from aqueous solutions with hydrophilic mixtures of extractants. Russian Journal of Physical Chemistry A. 2016; 90(8): 1665-1668. DOI: 10.1134/S0036024416080264
10. Podolina EA, Rudakov OB, Thin FV, et al. Low-temperature liquid extraction as a method of the pretreatment of phenol samples for reversed-phase HPLС. Journal of Analytical Chemistry. 201; 65(2): 117-119. DOI: 10.1134/S1061934810020036
11. Zarzycki PK, Zarzycka MB, Ślączka MM. Acetonitrile, the polarity chameleon. Analytical and Bioanalytical Chemistry 2010; 397(3): 905-908. DOI: 10.1007/s00216-010-3677-9
12. Zhang Hongyi, Zhao Jieyu, Wu Zhibin, et al.. A Conversion of Sample Medium from Water to Acetonitrile by Subzero Temperature Liquid-Liquid Extraction for Acetonitrile-Salt Stacking in Capillary Electrophoresis. International Conference on Agricultural and Natural Resources Engineering (ICANRE). Singapore: IERI Procedia, 2013; 5: 277-283. DOI: 10.1016/j.ieri.2013.11.104
13. Rudakova LV, Rudakov OB. Informatsionnyye tekhnologii v analiticheskom kontrole biologicheski aktivnykh veshchestv (Information technology in the analytical control of biologically active substances). St. Petersburg: Lan', 2015. (in Russian)
14. Tingue Gu, Yesong Gu, Yizhou Zheng. Phase separation of acetonitrile – water mixture in protein purification. Separations Technology 1994; 4(4): 258–260. DOI: 10.1016/0956-9618(94)80031-6
15. Rudakov OB, Sokolov MI, Rudakova LV. Density of binary mobile phases used in high-performance liquid chromatography. Russian Journal of Physical Chemistry A 1999; 73(7): 1165-1168.
16. Rudakova LV, Rudakov OB, Barsukova LG, et al. Plotnost' binarnykh podvizhnykh faz dlya obrashchenno-fazovoy zhidkostnoy khromatografii (Density of binary mobile phases for reversed-phase liquid chromatography). Sorbtsionnyye i khromatograficheskiye protsessy (Sorption and chromatographic processes 2012; 12(4); 547-553 (in Russian)
17. Rudakov OB, Sokolov MI, Selemenev VF. Viscosity of binary mobile phases for high-performance liquid chromatography. Russian Journal of Physical Chemistry A 1999; 73(9): 1473-1476.
18. Preobrazhensky MA, Rudakov OB, Krivneva GG, et al. Invariantnoye opisaniye eksperimental'nykh izoterm vyazkosti binarnykh zhidkikh sistem, primenyayemykh v khromatografii (Invariant description of the experimental viscosity isotherms of binary liquid systems used in chromatography). Sorbtsionnyye i khromatograficheskiye protsessy (Sorption and chromatographic processes 2013; 13(3): 298-306 (in Russian)
19. Rudakov OB, Rudakova LV, Podolina EA, et al. Penetration Isotherms of Binary Mobile Phases for Liquid Chromatography. Russian Journal of Physical Chemistry A. 2009; 83(11): 1972-1975. DOI: 10.1134/S0036024409110272
20. Rudakov OB, Selemenev VF. Refractive index of binary mobile phases for high-performance liquid chromatography. Russian Journal of Physical Chemistry A. 1999; 73(12): 2019-2022.
21. Openhaim G, Grushka E. Temperature-dependent refractive index issues using a UV-visible detector in high-performance liquid chromatography. Journal of Chromatography A. 2002; 942(1-2): 63-71. DOI: 10.1016/ S0021-9673(01)01355-3
22. Rudakov OB, Khripushin VV, Bocharova ON, et al. Optical properties of binary mobile phases as constituent objective functions in optimizing the conditions for high-performance liquid chromatography of hydrophobic phenol-like compounds. Journal of analytical chemistry 2001; 56(1): 36-42. DOI: 10.1023/A:1026763327616
23. Preobrazhensky MA, Rudakov OB, Rudakova LV, et al. Izotermy opticheskoy plotnosti vodno-organicheskikh binarnykh zhidkikh sistem. Invariantnyy podkhod k opisaniyu (Isotherms of optical density of water-organic binary liquid systems. An invariant approach to the description). Nauchnyy Vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Fiziko-khimicheskiye problemy i vysokiye tekhnologii stroitel'nogo materialovedeniya. (Scientific Bulletin of Voronezh State Architectural and Construction University. Series: Physicochemical problems and high technologies of building materials science) 2015; 11: 80-89 (in Russian)
24. Rowlen KL, Harris JM. Raman spectroscopic study of solvation structure in acetonitrile / water mixtures. Anal. Chem. 1991; 63(10): 964–969. DOI: 10.1021/ac00010a006
25. Rudakov OB, Bocharova ON. Boiling temperature of binary mobile phases for high-performance liquid chromatography. Russian Journal of Physical Chemistry A. 2000; 74(6): 974-979.
26. Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry (4th, upd. and enlarg. ed.) Wiley-VCH, 2011.
27. Rudakov OB, Sedishev IP. Generalized criterion of solvent polarity as a tool for control of chromatographic process. Russian Chemical Bulletin 2003; 52(1): 55-62. DOI: 10.1023/A:1022475710649
28. Rudakov OB, Rudakova LV. Obobshchennyye kriterii elyuiruyushchey sposobnosti rastvoriteley v vysokoeffektivnoy zhidkostnoy khromatografii (Generalized criteria of the elulating solvency of solvents in high--performance liquid chromatography). Sorbtsionnyye i khromatograficheskiye protsessy. (Sorption and chromatographic processes) 2012; 12(2): 231-239. (in Russian)
29. Yesong Gu, Po-Huhg Shih. Salt-induced phase separation can effectively remove the acetonitrile from the protein sample after the preparative RP-HPLC. Enzyme and Microbial Technology 2004; 35(6–7): 592–597. DOI: 10.1016/j.enzmictec.2004.08.011
30. Roach A, Dunlap J, Harte F. Association of Triclosan to Casein Proteins through Solvent-Mediated High-Pressure Homogenization. Journal of Food Science 2009; 74(2): 23-29. DOI: 10.1111/j.1750-3841.2009.01048.x
31. Georgescu B, Georgescu CE. Bisphenol A levels in commercial milk, infant formula and dairy products. Animal Biology & Animal Husbandry International Journal of the Bioflux Society 2013; 5(2): 171-174.
32. Podolina EA, Rudakov OB, Khorokhordina EA, et al. Determination of ionol in oils in the presence of low-molecular-weight phenols using reversed-phase HPLC. Journal of Analytical Chemistry 2008; 63(6): 548-550. DOI: 10.1134/S1061934808060063
33. Rudakov OB, Khorokhordina EA, Podolina EA, et al. Effect of binary solvent composition on phenol extraction from aqueous solutions. Russian Journal of Physical Chemistry A. 2007; 81(12): 2053-2058. DOI: 10.1134/S0036024407120242
34. Sudipta S, Ashok KS, Amit KK, et al. Modern Extraction Techniques for Drugs and Medicinal Agents. Ingredients extraction by physicochemical methods in food. Handbook of Food Bioengineering 2017; 4: 65-106. DOI: 10.1016/B978-0-12-811521-3.00002-8
35. Bekhterev VN. Trends in the behavior of dissolved organic substances under the conditions of freeze extraction. Journal of Analytical Chemistry 2011; 66(6): 591-595. DOI: 10.1134/S1061934811060025.
36. de Pinho GP, Neves AA, de Queiroz MELR, et al. Pesticide determination in tomatoes by solid-liquid extraction with purification at low temperature and gas chromatography. Food chemistry 2010; 121(1): 251-256. DOI: 10.1016/j.foodchem.2009.11.080
37. de Pinho GP, Neves AA, de Queiroz MELR, et al. Optimization of the liquid-liquid extraction method and low temperature purification (LLE-LTP) for pesticide residue analysis in honey samples by gas chromatography. Food control 2010; 21(10): 1307-1311. DOI 10.1016/j.foodcont.2010.03.006.
38. Goulart SM, de Queiroz, MELR., et al. Low-temperature clean-up method for the determination of pyrethroids in milk using gas chromatography with electron capture detection. Talanta 2008; 75(5): 1320-1323. DOI: 10.1016/j.talanta.2008.01.058
39. Rahman MM, Abd El-Aty, AM, Kim, S.-W. et al. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review. Journal of separation science 2017; 40(1) 203-212 DOI: 10.1002/jssc.201600889
40. Wang B, Ezejias T, Hao Feng, et al. Sugaring-out: A novel phase separation and extraction system. Chemical Engineering Science 2008; 63(9): 2595-2600 DOI :10.1016/j.ces.2008.02.004
41. Nugbienyo L. Malinina Y, Garmonov S., et al. Automated sugaring-out liquid-liquid extraction based on flow system coupled with HPLC-UV for the determination of procainamide in urine. Talanta. 2017; 167: 709-713. DOI: 10.1016/j.talanta.2017.02.051
42. Anastassiades M, Scherbaum E, Bertsch D. Validation of a simple and rapid multiresidue method (QuEChERS) and its implementation in routine pesticide analysis. MGPR Symposium: Aix en Provence, France, 2003. 7.
43. Amelin VG, Lavrukhina OI. Food safety assurance using methods of chemical analysis. Journal of analytical chemistry 2017; 72(1): 1-46. DOI: 10.1134/S1061934817010038
DOI: https://doi.org/10.24294/jacs.v1i2.883
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.