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Article 

Enhancing breast cancer detection in thermographic images using deep 
hybrid networks 

Rezazadeh Hanieh, Saniei Elham*, Salehi Barough Mehdi 

Department of Nuclear Engineering, Central Tehran Branch, Islamic Azad University, Tehran 14174, Iran 
* Corresponding author: Saniei Elham, el.saniei@iau.ac.ir, elhsaniei@gmail.com

Abstract: Breast cancer was a prevalent form of cancer worldwide. Thermography, a method 

for diagnosing breast cancer, involves recording the thermal patterns of the breast. This article 

explores the use of a convolutional neural network (CNN) algorithm to extract features from a 

dataset of thermographic images. Initially, the CNN network was used to extract a feature 

vector from the images. Subsequently, machine learning techniques can be used for image 

classification. This study utilizes four classification methods, namely Fully connected neural 

network (FCnet), support vector machine (SVM), classification linear model (CLINEAR), and 

KNN, to classify breast cancer from thermographic images. The accuracy rates achieved by 

the FCnet, SVM, CLINEAR, and k-nearest neighbors (KNN) algorithms were 94.2%, 95.0%, 

95.0%, and 94.1%, respectively. Furthermore, the reliability parameters for these classifiers 

were computed as 92.1%, 97.5%, 96.5%, and 91.2%, while their respective sensitivities were 

calculated as 95.5%, 94.1%, 90.4%, and 93.2%. These findings can assist experts in developing 

an expert system for breast cancer diagnosis. 

Keywords: breast cancer detection; deep learning; hybrid network; thermography images; 

convolutional neural network 

1. Introduction

Breast cancer was one of the most prevalent forms of cancer worldwide. Early
detection plays a crucial role in successful treatment. Thermography was a method for 
imaging breast cancer. It employs an infrared camera to capture temperature patterns 
in the target area. This technique was both safe and cost-effective compared to other 
imaging methods. However, it had limitations such as a relatively high rate of false 
positives and false negatives (around 10%), making accurate determination of affected 
areas challenging [1]. Recent advancements in this field include the detection of areas 
with high temperature gradients, automated identification of desired areas within each 
breast, and analysis of asymmetry [2]. 

Several deep learning techniques had been proposed for accurate breast cancer 
diagnosis, including multi-layer perceptron neural networks, convolutional neural 
networks, and fuzzy neural network expert systems [3]. These techniques had been 
evaluated using diverse datasets and features, such as histopathological images, 
mammography images, and thermograms. Moreover, researchers had explored the 
integration of artificial intelligence-based tools in clinical practice to enhance the 
accuracy and efficiency of breast cancer screening and grading. Desai and Shah 
introduced a novel approach for breast cancer diagnosis that employs deep learning 
techniques [4]. Their study used the efficacy of multi-layer perceptron (MLP) and 
convolutional neural network (CNN) models in classifying mammography into benign 
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and malignant classes. The findings revealed that CNN outperformed MLP in terms 
of accuracy for cancer detection. Algehine and colleagues introduced a fuzzy neural 
network expert system for early detection of breast cancer in mammography [5]. Their 
approach combined fuzzy logic, neural networks, and machine learning algorithms to 
achieve high accuracy in diagnosing early-stage breast cancer. In summary, these 
studies highlight the potential of deep learning techniques, such as MLP, CNN, and 
fuzzy neural network expert systems, for accurate breast cancer diagnosis. The 
integration of artificial intelligence-based tools in clinical practice had showed 
promise, but further investigation was required to ensure safe and effective 
implementation. 

Convolutional neural networks (CNNs) had played a crucial role in establishing 
non-linear mappings between input and output, autonomously learning local and high-
level features through multilayer network architectures, as well as predefined feature 
sets. In a study [6], a deep learning-based approach utilizing CNNs was proposed for 
early breast cancer detection, achieving a remarkable classification accuracy in 
distinguishing between benign and malignant classes. Riggio et al. explored the 
current understanding of metastatic breast cancer and addressed unresolved challenges 
that need to be tackled to improve patient outcomes. Despite the complexity and 
computational slowness caused by simultaneous use of different algorithms, their 
study achieved an accuracy of 98% in accurately differentiating cancerous parts from 
healthy breast tissue [7]. 

Gonçalves and others used pretrained convolutional neural networks such as 
VGG16, Densenet201, and ResNet50 to classify thermography images. The DenseNet 
model did the best, with an accuracy of 91.67%, sensitivity of 100%, and specificity 
of 83.3%. This study showed that using deep learning models was effective for 
detecting breast cancer. They used 38 pictures for each category [8]. Shahnaz et al. 
reviewed naive bayes, SVM, logistic regression, KNN, random forest neural networks, 
MLP and CNN classifiers for the detection of breast cancer [9]. The CNN had the 
highest accuracy at 98.06%, while the accuracy of MPL was 97.891 at five layers. This 
showed that CNN was better than other methods. Desai et al. used MLP and CNN for 
mammography image classification, achieving an accuracy of 93.6%, with CNN 
outperforming MLP [4]. In order to increase diagnostic accuracy, research 
incorporated machine learning and deep learning algorithms. They used the 
effectiveness of their approach in diagnosing metastasis using various features 
extracted from histopathological images, including color, texture, and morphology. 
The results exhibited high diagnostic accuracy (96.8%), highlighting the potential 
benefits of hybrid approaches. 

Dey et al. made a model called DenseNet121 and added two detectors (Prewitt 
and Roberts) to convert input from thermal images. It does really well with 98.8% 
accuracy on the DMR-IR dataset, doing better than other ways people had tried [10]. 
In a study introduced a new computer Aided System that used deep learning to find 
breast cancer [10]. It used all breast thermogram views and patient information. In this 
research, they used AlexNet to analyze thermograms, and a classic neural network for 
clinical data. The findings showed that using more than one input did better than using 
just one input, and the overall accuracy was 90.48%, with a sensitivity of 93.33%. The 
approach to doing something had changed compared to past references. While recent 
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models [10] show better accuracy, it may not be suitable for devices with limited 
memory due to its numerous parameters. Also, these models were time consuming on 
a high-dimensional data set that includes many predictor variables. Our 
recommendation for resolving these issues was to employ the deep hybrid network. 
To identify important features, we designed a CNN and then used some machine 
learning (ML) techniques to categorize the patterns into separate groups. The use of 
the CNN allows for the extraction of significant features by producing detailed 
features that can be used in combination with ML classifiers and undergo thorough 
testing. The essential aspect of ML classifiers was that they were fast. This paper had 
made important contributions. 

A simple CNN model was made with limited parameters, instead of pre-trained 
network that can be used on a mobile device. 

Four deep learning-based identification method of breast cancer from thermal 
images was proposed by combining CNN and different ML classifiers: Fully 
connected neural network (FCnet), support vector machine (SVM), classification 
linear model (CLINEAR), k-nearest neighbor (KNN) 

A comparison was made between the proposed models and other related works. 

2. Methodology

This research proposed a hybrid strategy to recognize breast cancer from
thermographic Images. The recommended procedure was illustrated in Figure 1. Deep 
learning was a type of machine learning that takes inspiration from the way the brain 
works. Convolutional neural networks (CNN) were the most essential types of deep 
neural networks designed to process and predict various features simultaneously. They 
had used remarkable capabilities in extracting meaningful features from images. we 
proposed the utilization of CNNs for feature extraction from thermographic images. 
Then the features were classified using four different ML classifiers for choosing the 
best hybrid method. The suggested methodology was divided into five steps were 
talked about further down. 

Figure 1. The illustration of the proposed method. 
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2.1. Pre-processing 

Preparing the images before using it in machine learning was important, and 
preprocessing was the first step in this process. Several preprocessing methods were 
used in this study, which were mentioned below. 
 Grayscaling: Images data can be simplified and computational requirements

reduced by converting color images to grayscale. The images from the dataset
were colored. Therefore, they were converted to gray images at first in Figure
2b.

 Contrast enhancement: After grayscaling, the contrast of the images was adjusted
using histogram equalization as shown in Figure 2c.

 Noise reduction: Median filter was applied to remove unwanted noise from the
images. It analyzes the image pixel by pixel, and replaces each pixel with the
median of neighboring entries. The smoothed image was shown in Figure 2d.

 Data augmentation: In machine learning, “imbalanced classes” was a familiar
problem particularly occurring in classification. Ideally, all classes would had an
equal number of observations. However, the classes in data set were imbalanced
(2800 cancer images, 4500 normal images) and if not handled correctly, this
imbalance can be detrimental to the learning process because the learning was
biased in favor of the dominant classes. To handle this issue, data augmentation
technique was employed. Data augmentation was a way to increase the number
of training images by manipulating the original image. In this study, this involved
scaling up the original image size by 50%, applying random rotations of up to 20
degrees in any direction, and introducing random translations of up to a maximum
of 3 pixels. This was applied on the images from the cancer classes.

(a) (b) (c) (d) 

Figure 2. A example of pre-processing steps: (a) original image; (b) gray image; (c) contrast adjusted image; (d) 
median filtered image. 

2.2. CNN proposed architecture for feature extraction 

CNNs had used remarkable capabilities in extracting meaningful features from 
images. They were one of the most essential types of deep neural networks designed 
to process and predict various features simultaneously. In this research, a CNN 
architecture with four convolutional layers was employed. It consists of the 
normalization, pooling and two fully connected layers. Figure 3 provides an overview 
of the network layout. It will be described as follows: 
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Figure 3. The diagram of the proposed convolutional neural network. 

1) The first convolutional layer incorporates 8 filters with a kernel size of 77 pixels.
Additionally, we used the padding option, which expands the border pixels before
the convolution operation.

2) Stacked convolutional layers were accompanied by a batch normalization
operation. After each convolutional layer, a modified linear unit operation was
applied. The network also includes a max-pooling layer with a kernel size of 22
pixels and a stride of 2.

3) The subsequent stacked convolutional layers and the batch normalization layer
follow the same pattern as the first layer. However, the convolution kernel sizes
were set to 55, 33, and 33, respectively. The filter size and number for each
convolutional layer was given in Table 1.
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Table 1. The layers of the proposed CNN and their parameters. 

Name Type Activation shape Learnable parameters 

Image input Image Input 480 × 640 × 3 - 

conv1 Convolution 480 × 640 × 8 Weights 7 × 7 × 3 × 8 Bias 1 × 1 × 8 

batchnorm_1 Batch Normalization 480 × 640 × 8 Offset 1 × 1 × 8 Scale 1 × 1 × 8 

relu_1 ReLU 480 × 640 × 8 - 

maxpool_1 Max Pooling 240 × 320 × 8 - 

conv2 Convolution 240 × 320 × 8 Weights 7 × 7 × 8 × 8 Bias 1 × 1 × 8 

batchnorm_2 Batch Normalization 240 × 320 × 8 Offset 1 × 1 × 8 Scale 1 × 1 × 8 

relu_2 ReLU 240 × 320 × 8 - 

maxpool_2 Max Pooling 120 × 160 × 8 - 

conv3 Convolution 120 × 160 × 8 Weights 7 × 7 × 8 × 8 Bias 1 × 1 × 8 

batchnorm_3 Batch Normalization 120 × 160 × 8 Offset 1 × 1 × 8 Scale 1 × 1 × 8 

relu_3 ReLU 120 × 160 × 8 - 

conv4 Convolution 120 × 160 × 8 Weights 7 × 7 × 8 × 8 Bias 1 × 1 × 8 

batchnorm_4 Batch Normalization 120 × 160 × 8 Offset 1 × 1 × 8 Scale 1 × 1 × 8 

relu_4 ReLU 120 × 160 × 8 - 

fc_1 Fully Connected 1 × 1 × 16 Weights 16 × 1153600 Bias 1 × 1 × 16 

fc_2 Fully Connected 1 × 1 × 2 Weights 2 × 16 Bias 1 × 1 × 2 

SoftMax SoftMax 1 × 1 × 2 - 

Class output Classification Output - - 

Training hyperparameters: 
The CNN network was trained for 100 epochs. In order to stabilize the network 

during the initial training phase, a low learning rate (0.01) was used initially, gradually 
increasing over time. The ‘adam’ optimizer was selected over the ‘sgdm’ optimizer 
because it’s a combination of two different optimizers, rmsprop and adagrad. To train 
and test the CNN network, an 80:20 split was employed, with 80% of the dataset 
allocated for training and 20% for testing. This ratio was commonly used in machine 
learning programs. Additionally, to mitigate the risk of overfitting, a cross-fold 
validation method with a ratio of 5 was employed. There was a list of hyperparameters 
in Table 2. 

Table 2. Training hyper parameters. 

Hyper parameters Specifications 

Epoch 100 

Initial learning rate 0.01 

MiniBatchSize 64 

Optimizer Adaptive moment estimation (Adam) 

Validation frequency 10 
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2.3. Classifiers 

After applying the CNN on each image, the corresponding feature vector was 
obtained. In this research, to compare the accuracy and speed of different classifiers, 
four machine learning methods were employed: fully connected neural network 
(FCnet), support vector machine (SVM), classification linear model (CLINEAR), k-
nearest neighbor (KNN). Typically, at the end of the CNN, a fully connected neural 
network (FCnet) was used to classify the images. This approach balances speed and 
accuracy, aligning with the characteristics of the convolutional network. The first fully 
connected layer consists of 16 neurons and the second fully connected layer contains 
2 neurons. The output layer employs a SoftMax activation function, with output values 
representing the probabilities of belonging to each group (0 or 1) which effectively 
segregate the images into normal and cancer groups. 

Support vector machine (SVM) was a supervised learning method commonly 
used for classification. It had used superior performance compared to older 
classification methods in recent years. The SVM classifier operates based on linear 
classification of data. Various kernel functions, such as exponential, polynomial, and 
sigmoid kernels, can be used to generate these boundaries, thereby increasing the 
complexity and accuracy of the SVM method. 

The k-nearest neighbor (KNN) algorithm was a non-parametric statistical method 
commonly used for statistical classification and regression. This algorithm selects k 
closest training examples in the data space, and its output varies depending on the type 
used for classification or regression. In the classification mode, given a specified value 
for k, it calculates the distance between the point we want to label and its closest 
neighbors. Based on the maximum number of votes from these neighboring points, the 
algorithm makes a decision regarding the label of the point. Euclidean distance was 
typically used to calculate this distance. 

A classification linear classifier (CLINEAR) was a model that categorizes a set 
of data points into discrete classes based on a linear combination of their variables. 
This method minimizes the objective function using techniques that reduce 
computation time, such as stochastic gradient descent. Table 3 provides information 
on the number of features associated with each classifier. 

Table 3. Classifier parameters in the proposed method. 

Features dimension Function Classifier 

2 × 4344 SoftMax Layer FCnet 

2 × 4344 fitcSVM SVM 

2 × 4344 fitclinear CLINEAR 

2 × 4344 fitcknn KNN 

Overall, these different classifiers provide varying approaches to image 
classification, each with its advantages and considerations. By comparing their 
performance, we can gain insights into their accuracy and speed for the given task. 
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3. Results analysis

(1) Dataset
The study was based on the DMR-IR database [11], which was obtained from

volunteers in Brazil by the Federal University of Fluminense. For research purposes, 
the dataset was publicly available and its collection was ethically approved. These 
images originated from diverse sources, such as hospitals, clinics, and research 
institutes, and encompassed a wide range of age and gender groups. Patient-related 
information, including age and gender, was available for most images, which provides 
valuable data for the development of breast cancer detection algorithms. The dataset 
provided by this group was widely recognized for its accuracy and reliability, making 
it a valuable resource for academic and professional research. The thermographic 
images in the database were captured using a FLIR SC-620 camera with a resolution 
of 480 × 640 and a thermal sensitivity of 40 mK. During the image processing stage, 
all images were converted to grayscale. For each individual, images were taken from 
angles of 45°, 90° to the right, and 90° to the left, resulting in a total of five 
thermographic images per person (Figure 4). The dataset used in this study comprised 
thermography images of 4500 healthy individuals and 2800 individuals diagnosed 
with cancer. 

(a) (b) (c) (d) (e) 

Figure 4. Example of thermographic images utilized: (a) front view; (b) right 45-degree angle; (c) right 90-degree 
angle; (d) left 45-degree angle; (e) left 90-degree angle. 

(2) Performance evaluation
The research algorithms were implemented using MATLAB 2021 programming

language. Figure 5 illustrates the accuracy and error graphs at each stage of training. 
It was evident that increasing the training steps leads to a reduction in losses and higher 
accuracy. Additionally, Table 4 presents a comparison of the speed and accuracy of 
the results for each classifier. The results indicate that the KNN classifier was 
approximately twice as fast as the concrete CNN. The experimental setup used a 
Windows system with 8 GB RAM, an Intel(R) Core i5-4430 CPU@3.00GHz x64-
based processor. Despite the CNN network demonstrating good accuracy, it exhibits 
slower speed compared to other methods. 
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Figure 5. Training progress graph of the proposed CNN. 

Table 4. Comparison of learning speed in cancer diagnosis using different 
classification methods. 

Speed (second) Classifier 

336.1 FCnet 

205.7 SVM 

165.5 CLINEAR 

162.7 KNN 

The performance of all classifiers was evaluated using ROC curves and confusion 
matrices (Figure 6). The SVM and CLINEAR methods yielded nearly identical results, 
with a total of 118 misclassified individuals. However, the KNN classifier resulted in 
a higher misclassification rate, with 140 misclassified individuals. Table 5 provides 
further insights into the accuracy of the testing process. It shows that the SVM and 
CLINEAR classifiers exhibited higher training accuracy compared to other classifiers. 
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(a) 

(b) 

(c) 

Figure 6. (Continued). 
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(d) 

Figure 6. ROC curve and confusion matrix for image classification using. (a) SVM; (b) CLINEAR; (c) KNN; and (d) 
FC-Net. 

Table 5. Performance comparison of different hybrid methods. 

Specificity Sensitivity Accuracy Hybrid method 

91.2% 93.2% 94.2% CNN-FCnet 

96.5% 90.4% 95.0% CNN-SVM 

97.5% 94.1% 95.0% CNN-CLINEAR 

92.1% 95.5% 94.1% CNN-KNN 

4. Conclusion

Several papers [4,5,10,12,13] experimented on the thermal images to detect
breast cancer. Table 6 compares the current methods of deep learning for breast cancer 
detection. Tsietso et al. [12] use a variety of deep learning techniques for cancer 
detection from thermographic images. Transfer learning was used by Dey et al. [10] 
and feature extraction was done by pretrained VGG16, VGG19. Pre-trained models in 
transfer learning were complicated and had lots of parameters. The suggested method 
in some studies [1–6] been shown to be more accurate but cannot be used with memory 
constrained devices due to its high number of parameters. In contrast to a previously 
trained network, the proposed method is uncomplicated. Creating a smaller network 
is good because it can help to use algorithms on mobile devices. It is possible to use 
an automated algorithm such as CNN for the extraction of features, since it is capable 
of producing deep learning features that can be used for the evaluation of ML 
classifiers and a comprehensive evaluation. The essential aspect of ML classifiers is 
that they are fast. 
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Table 6. Comparison of the proposed hybrid methods with existing methods. 

Study Year Methodology Dataset 
Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Abdel-Nasser M 
[13] 

2019 
CAD (Computer-Aided 
Diagnostic), ML 

DMR-IR Dataset 95.8 94.6 

Algehyne EA et al. 
[5] 

2022 Fuzzy NN Expert System 
Wisconsin breast cancer 
database 

95.5 93.8 94.9 

Dey S et al. [10] 2022 DenseNet121+, VGG16, VGG19 DMR-IR 98.8 98 

Tsietso D et al. [12] 2023 CADx, DNN, AlexNet DMR-IR Dataset 90.48 93.33 

Desai M and Shah 
M [4] 

2023 MLP, CNN Kaggle data set (BC) 93.6 92.1 95.4 

Awotunde JB et al. 
[14] 

2023 Hybrid ML & DL Histopathological images 96.8 94.5 96.0 

Gonçalves CB et al. 
[15] 

2022 
VGG-16, Densenet 201, and 
Resnet 502 

Thermography 91.67 100 83.3 

Our propose method 2024 
CNN + (SVM, CLINEAR, 
KNN) 

DMR-IR Dataset 94.2–95.0 90.4–95.5 91.2–97.5 

The proposed algorithms employed a CNN with 4th layers to detect relevant 
features from input images. The extracted features were then fed into the four ML 
classifier for the purpose of breast cancer detection. The results indicate that both SVM 
and CLINEAR classifiers yield similar outcomes, with a total of 118 misdiagnosed 
individuals. On the other hand, the KNN method results in 140 misdiagnosed cases. It 
is worth noting that the training accuracy of SVM and CLINEAR algorithms surpasses 
that of other networks. Nevertheless, the FCnet classifier also exhibits high accuracy, 
outperforming the KNN method by a margin of 0.1%. This improved accuracy can be 
attributed to the object detection kernel used in the convolutional algorithm, which 
proves particularly effective for high-resolution images. Additionally, it is important 
to highlight that the network executed the image only once, contributing to the speed 
of the CNN, especially when running on parallel processing cards, enabling real-time 
processing. Furthermore, the findings reveal that the KNN method demonstrates 
higher sensitivity compared to the other methods, whereas the SVM method exhibits 
the lowest sensitivity. In terms of false positive rates, the FCnet method performs 
better than all other methods, while the CLINEAR method yields higher rates than the 
remaining approaches. 

The differences in the effects of the various classification methods used in this 
study can be attributed to their unique algorithmic structures and operational 
mechanisms. FCnet demonstrates superior accuracy in classifying thermographic 
images due to their ability to extract hierarchical and meaningful features from raw 
data through multiple convolutional layers. This capability allows CNNs to capture 
intricate patterns and variations within the images, making them particularly effective 
for complex data sets. In contrast, SVM and CLINEAR classifiers operate by 
identifying optimal hyperplanes that maximize the margin between different classes. 
This approach was robust for high-dimensional feature spaces and provides reliable 
performance, although it may not be as adept as FCnet in handling non-linear and 
highly complex data patterns. KNN, a non-parametric method, classifies data points 
based on the majority vote of their nearest neighbors, making it simple and effective 
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for smaller datasets. However, KNN’s performance can degrade with larger datasets 
due to the increased computational cost during the prediction phase. Comparatively, 
traditional methods like SVM and KNN exhibit strengths in specific scenarios but may 
fall short in versatility and accuracy when compared to complicated approaches like 
FCnet. This comparative analysis underscores the importance of selecting the 
appropriate classifier based on the dataset characteristics and the specific requirements 
of the diagnostic application. 

This comparative summary highlights the competitive performance of our 
proposed method and the potential of integrating newer deep learning architectures 
and hybrid models to further enhance breast cancer detection using thermographic 
images. Future research should focus on leveraging these advancements and validating 
the approach on larger, more diverse datasets to ensure robust and reliable 
performance in clinical settings. Additionally, incorporating other classification 
methods such as genetic algorithms in conjunction with convolutional networks was 
suggested as a potential avenue for investigation. 

Author contributions: Conceptualization, RH and SE; methodology, RH; software, 
RH; validation, RH, SE and SBM; formal analysis, RH; investigation, RH; resources, 
SE; data curation, SE; writing—original draft preparation, RH; writing—review and 
editing, RH; visualization, RH; supervision, SE; project administration, SE; funding 
acquisition, RH. All authors have read and agreed to the published version of the 
manuscript. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Mousavi H, Bagherian R. Health literacy and breast cancer. Health Psychology. 2019; 8(31): 91-102.

2. Mohamed AA, Berg WA, Peng H, et al. A deep learning method for classifying mammographic breast density categories.

Medical Physics. 2018; 45(1): 314-321. doi: 10.1002/mp.12683

3. Clady X, Negri P, Milgram M, Poulenard R. Multi-class vehicle type recognition system. In: Proceedings of the Artificial

Neural Networks in Pattern Recognition: Third IAPR Workshop, ANNPR 2008; 2-4 July 2008; Paris, France. pp. 228-239. 

4. Desai M, Shah M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural

network (MLP) and Convolutional neural network (CNN). Clinical eHealth. 2021; 4: 1-11. doi: 10.1016/j.ceh.2020.11.002

5. Algehyne EA, Jibril ML, Algehainy NA, et al. Fuzzy Neural Network Expert System with an Improved Gini Index Random

Forest-Based Feature Importance Measure Algorithm for Early Diagnosis of Breast Cancer in Saudi Arabia. Big Data and

Cognitive Computing. 2022; 6(1): 13. doi: 10.3390/bdcc6010013

6. Aidossov N, Zarikas V, Mashekova A, et al. Evaluation of Integrated CNN, Transfer Learning, and BN with Thermography

for Breast Cancer Detection. Applied Sciences. 2023; 13(1): 600. doi: 10.3390/app13010600

7. Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. British Journal of

Cancer. 2020; 124(1): 13-26. doi: 10.1038/s41416-020-01161-4

8. Gonçalves CB, Souza JR, Fernandes H. Classification of static infrared images using pre-trained CNN for breast cancer

detection. In: Proceedings of the 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS); 7 

June 2021. pp. 101-106. 

9. Shahnaz C, Hossain J, Fattah SA, et al. Efficient approaches for accuracy improvement of breast cancer classification using

wisconsin database. In: Proceedings of the 2017 IEEE region 10 humanitarian technology conference (R10-HTC); 21

Decemebr 2017. pp. 792-797.

13



Imaging and Radiation Research 2024, 7(1), 6195. 

10. Dey S, Roychoudhury R, Malakar S, et al. Screening of breast cancer from thermogram images by edge detection aided deep

transfer learning model. Multimedia Tools and Applications. 2022; 81(7): 9331-9349. doi: 10.1007/s11042-021-11477-9

11. DMI: Visual Computing Group. Available online: https://visual.ic.uff.br (accessed on 28 April 2024).

12. Tsietso D, Yahya A, Samikannu R, et al. Multi-Input Deep Learning Approach for Breast Cancer Screening Using Thermal

Infrared Imaging and Clinical Data. IEEE Access. 2023; 11: 52101-52116. doi: 10.1109/access.2023.3280422

13. Abdel-Nasser M, Moreno A, Puig D. Breast Cancer Detection in Thermal Infrared Images Using Representation Learning

and Texture Analysis Methods. Electronics. 2019; 8(1): 100. doi: 10.3390/electronics8010100

14. Awotunde JB, Panigrahi R, Khandelwal B, et al. Breast cancer diagnosis based on hybrid rule-based feature selection with

deep learning algorithm. Research on Biomedical Engineering. 2023; 39(1): 115-127. doi: 10.1007/s42600-022-00255-7

15. Gonçalves CB, Souza JR, Fernandes H. CNN architecture optimization using bio-inspired algorithms for breast cancer

detection in infrared images. Computers in Biology and Medicine. 2022; 142: 105205. doi:

10.1016/j.compbiomed.2021.105205

14



Imaging and Radiation Research 2024, 7(1), 5700. 

https://doi.org/10.24294/irr5700 

Article 

Collaborative intelligent decision systems for safe and reliable AI-assisted 

medical image diagnostics 

Serge Dolgikh 

National Aviation University, 25005 Kropyvnytskyi, Ukraine; serged.7@gmail.com 

Abstract: The cost of diagnostic errors has been high in the developed world economics 

according to a number of recent studies and continues to rise. Up till now, a common process 

of performing image diagnostics for a growing number of conditions has been examination by 

a single human specialist (i.e., single-channel recognition and classification decision system). 

Such a system has natural limitations of unmitigated error that can be detected only much later 

in the treatment cycle, as well as resource intensity and poor ability to scale to the rising demand. 

At the same time Machine Intelligence (ML, AI) systems, specifically those including deep 

neural network and large visual domain models have made significant progress in the field of 

general image recognition, in many instances achieving the level of an average human and in 

a growing number of cases, a human specialist in the effectiveness of image recognition tasks. 

The objectives of the AI in Medicine (AIM) program were set to leverage the opportunities and 

advantages of the rapidly evolving Artificial Intelligence technology to achieve real and 

measurable gains in public healthcare, in quality, access, public confidence and cost efficiency. 

The proposal for a collaborative AI-human image diagnostics system falls directly into the 

scope of this program. 

Keywords: image diagnostics; machine learning; transfer learning; collaborative Human-AI 

systems; intelligent decision systems; AIM 

1. Introduction

The cost of diagnostic errors has been high in the developed world economics

according to a number of recent studies and continues to rise [1]. Up till now, a 

common process of performing image diagnostics for a growing number of conditions 

has been examination by a single human specialist (i.e., single-channel recognition 

and classification decision system). Such a system has natural limitations of 

unmitigated error that can be detected only much later in the treatment cycle, as well 

as resource intensity and poor ability to scale to the rising demand [2]. At the same 

time Machine Intelligence (ML, AI) systems, specifically those including deep neural 

network and large visual domain models have made significant progress in the field 

of classification and recognition of complex data, in many instances achieving the 

level of an average human and in a growing number of cases, a human specialist in the 

effectiveness of image recognition tasks [3,4].  

Machine Intelligence models and systems (ML, AI) have a number of essential 

strengths, such as: stability and resilience with respect to the environmental factors 

and influences; superior operating performance in both time and volume; shorter 

training time and time to operation; accuracy in execution of intelligent tasks 

approaching and in a growing number of applications surpassing that of a human 

specialist; cost efficiency in operation. In a number of applications, ML/AI systems 
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demonstrated the ability to identify characteristic types or “concepts” in complex 

realistic data [5,6] that can be instrumental in the analysis and description of its 

information structure.  

On the other hand, integration of machine intelligence models in essential and 

critical public interest applications which include public health care is less than 

straightforward and can be impeded by insufficient understanding of the processes that 

lead to their decisions (explainability and trust challenges [7,8]), preparedness of the 

public and general public trust, dependence on large bodies of trusted data describing 

the domain in sufficient detail and others.  

A promising avenue in harnessing the power and the potential of machine 

intelligence in public interest applications has been developed over the years in the 

area of collaborative intelligent systems [9,10]. An inherent promise of this approach 

is the potential to use the machine and human intelligences in a collaborative process 

that used the respective strengths of each type while mitigating their downsides. It was 

shown that by designing decision systems in such a way that both human and machine 

components could contribute to the success of the resulting decision, a synergetic 

effect can be achieved with significant improvement in the accuracy, and as a 

consequence, a noticeable reduction in the diagnostic error and the associated with it 

cost [11].  

The objectives of the AI in Medicine (AIM) program [12] were set to leverage 

the opportunities and advantages of the rapidly evolving Artificial Intelligence 

technology to achieve real and measurable gains in public healthcare, in quality, access, 

public confidence and cost efficiency. The proposal falls directly into the scope of this 

program.  

2. Drivers of AI integration in public health care

The justification for the research in collaborative AI-human decision systems, as

was briefly mentioned previously, is based on four drivers creating an opportunity for 

a successful integration of Machine Intelligence technology in the tasks of image 

diagnostics in the public healthcare system, with the potential to improve, measurably 

and significantly, the accuracy and productivity of the diagnostics tasks and processes. 

Cost and Resources: rising cost of diagnostic errors and constraints on available 

resources in public healthcare systems.  

Technology: recent advances in Machine Intelligence technology, bringing the 

level of image recognition success to that of a human.  

Complementarity: complementary, mutually contributing and complementing 

nature of human and machine intelligences creates an opportunity for cooperative and 

collaborative work process with improved outcomes in the targeted tasks.  

Trust and safety: the solution has to have uncompromised safety and full human 

control over the resulting decision.  

The drivers and opportunities associated with them set the foundation for a 

collaborative, joint decision framework of human and machine intelligences that can 

use the strengths of either while mutually compensating for the limitations and 

shortcomings, to improve the outcome of the collective decision in image diagnostic 

tasks. The potential and the window of opportunity for the development and 
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integration of collaborative AI-human intelligent decision systems is illustrated in 

Figure 1.  

Figure 1. Drivers for the advent of synergetic collaborative AI-human decision systems. 

The drivers described above lay the ground and provide the incentive for research 

into intelligent systems that could harness the strong sides of either type of intelligence 

to produce superior outcome, within the framework of expectations and requirements, 

to the use of either system on its own.  

3. Complementarity and synergetic potential of collaborative

intelligent systems 

A collaborative intelligent decision system outlined in this article is based on the 

observation that due to the complementary nature of the human and machine 

intelligences they may not be expected to make “many” mistakes in the same situations 

and cases; and as a consequence, an opportunity emerges for the creation of synergetic 

intelligent systems where human and machine channels would be able to complement 

and correct each other.  

For example, a human practitioner can be tired, stressed or temporarily distracted 

[13] whereas the Machine Intelligence component of the system would not be affected

by these factors. On the other hand, a machine system can make spurious classification 

mistakes, “hallucinations” [14] that are easily detected by a human specialist.  

These and other constituent parts of the complementarity of the human and 

machine intelligences are based on the fact that, while being capable of achieving high 

degree of accuracy in recognition tasks, humans and machine systems learn differently, 

with different data, in quite different ways and processes, and so on, as described in 

the Figure 2 below.  
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Figure 2. Essential differences between human and machine intelligences. 

Based on the observations discussed above, obtaining the decision inputs of both 

human practitioner and a machine intelligence system (Automated Recognition 

System) and combining them in producing the diagnostic decision can help in 

detecting possible errors of the either component, and improve, to a significant extent 

according to the published research [11], the outcome of the collaborative decision.  

To this end, in the proposed approach, a collaborative AI-human intelligent 

system with parallel decision channels is envisioned, that is expected to take full 

advantage of the strengths of the human and machine intelligences while mitigating 

the chance of error in a combined effort to achieve the best diagnostic outcome. This 

is achieved by a multi-channel concurrent intelligent decision process that mitigates 

the probability of a decision error to the second power of the probability of error in a 

conventional diagnostic workflow.  

This solution is illustrated in a possible architecture of a collaborative decision 

system with parallel human and machine channels that make independent decisions 

on the provided inputs, for an example in our case, diagnostic images. Considering the 

diagram of the high-level architecture of such a system illustrated in Figure 3, one can 

observe that the following scenarios are possible in the first, concurrent phase of the 

collaborative system: 

Figure 3. Collaborative AI-human intelligent decision system with concurrent channels. 
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A. Both human specialist and the machine system produce an erroneous decision.

It could be a complex or rare case, where could struggle and err simultaneously or a 

random coincidence of errors of the components (channels). In that case, one can 

expect that due to complementary nature of human and machine intelligences 

discussed above, this possibility would be suppressed as roughly the multiple of the 

failure (i.e., error) rates of the components. This case would produce a wrong 

diagnostic decision, and a diagnostic error.  

B. The channels agree on a correct decision. The decision is accepted in as the

final one with no need for second opinion or verification. 

C. This scenario can transpire if the initial decisions of the channels “disagree”;

then the final decision is referred to a human expert in the diagnostic area. This case 

can produce an erroneous result only if the expert and one of the channels err 

simultaneously (i.e., on the same case, input); then, the error of the final decision will 

be strongly suppressed in this case as well.  

As can be concluded, in this case an error of the final diagnostic decision will be 

suppressed at least to the second power of the characteristic error of an individual 

channel. The benefit of the collaborative process comes afore most in the case of 

mixed decisions, whereby erroneous decisions by individual channels are “caught” by 

the concurrent channel and referred to an expert arbiter in the area/condition (Figure 

4).  

Figure 4. Reducing diagnostic error via intelligent collaboration of concurrent decision channels. 

The analysis above demonstrates that integration of a concurrent machine 

intelligence system can indeed improve the outcome of essential and critical decision 

via a mechanism of suppression of routine errors and reinforcement of correct 

decisions.  

In contrast, in the conventional “single link” diagnostic workflow, the possibility 

of an erroneous diagnostic decision is not suppressed by any mechanism and it may 

not be detected until much later in the treatment cycle [15].  

The proposed system would have a potential to eliminate many or most of routine 

errors that can account for majority of diagnostic errors and can have the following 

advantages, compared to conventional “single chain” diagnostics workflows.  

⚫ Quality: significant improvement in overall accuracy of diagnostics decisions and

associated reduction in the follow up spending in the system, improved patient

care and overall quality.
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⚫ Performance: improves throughput of the diagnostic tasks through the system;

balanced and scalable operational model, fully compatible with distributed, high

performance and outstanding quality operational models of public service

delivery.

⚫ Stimulate optimal use of the expert resources only in those cases that require their

attention and expertise.

⚫ Safety and trust: retained full human control over the diagnostic decision.

⚫ Cost efficiency: small cost of development, deployment and operation compared

to massive cost saving in the health system to due reduced error and improved

outcomes.

⚫ Flexibility: the solution is adaptable to different conditions and types of input

data and can be transferred to different areas of integration of Machine

Intelligence in medical applications, as well as collaborative decision systems in

other areas of application.

The potential for improvement described above can be attributed to the emerging

opportunity to combine the strengths and advantages of human and machine 

intelligences for a significant improvement in the quality of diagnostic decisions over 

the current practice, while retaining complete and uncompromised human control over 

the process of diagnostics and treatment.  

Moreover, another important advantage of the proposed collaborative system is 

the potential for continuous improvement. Indeed, cases that resulted in eventual 

diagnostic errors of all discussed types can be reviewed by the experts in the diagnostic 

area/condition and integrated into the training processes for human specialists and 

machine systems. For example, expanding training sets with new samples, drawing 

attention to certain cases in instruction of practitioners) to attain further gain of quality 

in each new iteration of the system.  

Thus, not only the proposed system can be expected to achieve a substantial 

improvement in quality at the time of release; but it can be integrated naturally into a 

lasting process of continuous iterative quality improvement over the lifecycle of the 

solution.  

A combination of high-performance diagnostic AI models with intelligent multi-

channel decision system incorporating human in the loop for maximum safety in the 

operational practice can produce, according to the published results [11] a significant 

improvement in the accuracy of image diagnostic, and correspondingly significantly 

reduce the negative impacts and cost of misdiagnosis in the evaluated conditions and 

areas of public healthcare.  

4. Further opportunities for integration of AI in image diagnostic

A practical approach to planning of large-scale integration of collaborative AI-

assisted decision systems and models in the practice of diagnostics can include a 

blueprint proposal for a regional or multi-national anonymous database of diagnostic 

images that can be used in the research, including development of descriptive core 

image generative and domain models that can be adapted to specific diagnostic 

conditions and requirements with minimal effort and lead time. One of many such 

opportunities can be based on the well-researched practice of transfer learning in the 
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area of image recognition. Based on availability of dataset(s) of representative samples 

and the verified methods in transfer learning, effective diagnostic systems for a broad 

range of conditions can be developed in in a short time, based on established and 

verified general framework.  

Another promising approach being widely developed these days is the 

development of specific large domain models in diagnostic imaging. Due to 

limitations of the format, these research directions and approaches will be discussed 

in more detail elsewhere.  

5. Practical implementation of collaborative decision systems

Projects in practical development of collaborative intelligent decision systems

can comprise the following key phases and activities. 

⚫ A comprehensive review of the current state of the art in image processing,

classification and recognition including in the domain of medical image

diagnostics and specific medical conditions.

⚫ Research, review, collection, compilation and acquisition of sufficient, by size,

representativity, etc., datasets of diagnostic images.

⚫ Research and development of image recognition models, generative and large

domain models, preprocessing and other methods for the AI-based component of

collaborative models.

⚫ Prototype implementation of the collaborative decision system with realistic

operational characteristics.

⚫ Verification, corrections, adjustment and optimization of the collaborative

decision system.

⚫ Reviews, information exchanges, presentations, demonstrations and discussions

with the practitioner and expert specialists in the field.

⚫ Test deployments, collection of feedback, further improvements, tuning and

optimizations for mass-scale integration.

⚫ Integration of the tracking information processes and continuous improvement

processes, procedures and policies.

6. Conclusions

To tackle the actual and increasingly pressing challenge of the volume, cost and

quality of diagnostic decisions in modern public health systems, integration of 

Machine Intelligence appears to be an obvious direction to the solution. As we 

discussed in this work, the perception of simplicity in this program can be misguided 

and lead to unexpected and unwanted consequences.  

To avoid them, we first formulated essential expectations and requirements for 

intelligent systems with integrated AI components, in both technical and social 

domains, including, importantly, critical matters of explainability and trust.  

An approach to development of collaborative human-AI intelligent decision 

systems discussed here proposes a framework for collaborative decision process that 

taps into the strong side of each type of intelligence while mitigating their respective 

downsides and weaknesses. As a result, a noticeable improvement in the outcome, 

measured by the overall diagnostic error can be expected in the domains and 
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conditions where effective integration of machine intelligence is possible and 

warranted. An additional positive effect of the discussed framework and architecture 

is the complete traceability of the process that allows effective and straightforward 

initiation of continuous improvement feedback loops.  

The authors expect that the findings and the discussion presented in this work 

will be of benefit to the research and general community and will contribute to the 

program of development of performant, accurate, transparent and responsible 

collaborative intelligent systems for the ultimate benefit of the society.  

Conflict of interest: The author declares no conflict of interest. 
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Abstract: In view of the fact that the convolution neural network segmentation method lacks 

to capture the global dependency of infected areas in COVID-19 images, which is not 

conducive to the complete segmentation of scattered lesion areas, this paper proposes a 

COVID-19 lesion segmentation method UniUNet based on UniFormer with its strong ability 

to capture global dependency. Firstly, a U-shaped encoder-decoder structure based on 

UniFormer is designed, which can enhance the cooperation ability of local and global relations. 

Secondly, Swin spatial pyramid pooling module is introduced to compensate the influence of 

spatial resolution reduction in the encoder process and generate multi-scale representation. 

Multi-scale attention gate is introduced at the skip connection to suppress redundant features 

and enhance important features. Experiment results show that, compared with the other four 

methods, the proposed model achieves better results in Dice, loU and Recall on COVID-19-

CT-Seg and CC-CCIII dataset, and achieves a more complete segmentation of the lesion area. 

Keywords: convolutional neural network; COVID-19 lesion image segmentation; self-

attention mechanism; multiscale attention gate; spatial pyramid pooling 

1. Introduction

Since the end of 2019, the COVID-19 pandemic has affected all aspects of human

life. COVID-19 causes multiple issues, including dry cough, fever, headache, myalgia 

and chest troubles [1]. The diagnostic methods for COVID-19 using medical imaging 

technology mainly include computed tomography (CT) [2], magnetic resonance 

imaging (MRI) [3], and X-ray [4]. Compared with X-ray scanning, CT images has 

higher resolution and higher contrast and are better than X-ray images in displaying 

soft tissues and small lesions [5]. COVID-19 image segmentation can be introduced 

to accurately diagnose diseases and provide important information for doctors [6]. 

However, COVID-19 image segmentation requires experienced radiologists to 

complete. When faced with a large number of COVID-19 CT images, the manual 

lesions segmentation consumes a lot of time and is labor-intensive. At the same time, 

the results of lesions segmentation are easily affected by the radiologist’s experience. 

These subjective and objective factors may lead to large deviations in COVID-19 CT 

images segmentation [7–9]. Therefore, it is necessary to design robust and accurate 

COVID-19 CT image segmentation method. 

In COVID-19 lung image segmentation, UNet is a commonly used lung region 

and lesion segmentation. Milletari et al. [9] proposed V-Net in which residual blocks 

are used as basic convolutional blocks. On this basis, due to the infected area with low 

contrast in COVID-19 images and the large differences in the infected areas of 

different patients, accurate segmentation of the infected area is very challenging. In 

response to the slight differences among healthy tissues. infected tissues and noise, 
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Wang et al. [10] proposed COPLE-NET for segmenting COVID-19 infected lesions, 

which introduced maximum pooling and average pooling together in the encoding 

stage. 

Compared with UNet, UNet++ [11] has the advantage of capturing different 

levels of features. Wang et al. [12] proposed a two-stage method for separating lesions 

from the lung COVID-19 CT images based on UNet++. In order to segment out more 

complete structures and more accurate detail information, Cong et al. [13] proposed 

an end-to-end COVID-19 infection segmentation network  

Although the importance of boundary feauture is taken into account in BSNet, it 

is difficult to segment infected areas because the lesions on the chest CT images are 

scattered and it is difficult to obtain global semantic information for CNN-based 

methods. Ibtehaz et al. [14] modified skip connections and the convolution blocks in 

the ordinary UNet to strengthen the ability of long-range dependencies and multi-level 

feature combination. 

In summary, although CNN-based method above has extraordinary feature 

representation capabilities, its limited receptive field limiting the accuracy of COVID-

19 CT image segmentation. Zhou et al. [15] used the encoder of U-Net to obtain feature 

representation, input the feature representation of each layer into the attention 

mechanism, reweighted along the channel direction and spatial direction to obtain the 

most informative representation, and finally obtain the segmentation result through the 

decoder. Li et al. [16] aimed at the shortcomings of COVID-19 image segmentation 

method, such as low contrast between ground-glass opacity and background, blurred 

boundaries, and difficulty in accurate segmentation. A reverse attention module [13] 

was added to the skip connection of Unet as a fine marker to identify infected areas in 

the cleaning strategy. This method can learn the details of the complementary areas 

and focus on the segmentation of the boundary areas. Xiao et al. [17] proposed a new 

improved UNet++ model, in which squeeze and excitation attention blocks are 

adopted to adjust channel of the feature map. The the weights of task-related pixels 

are strengthened and the background and noise are suppressed. Zhao et al. proposed a 

Unet++ variant architecture SCOATNet [18] where a new spatial and channel attention 

module are proposed. The attention mechanism helps to enhance the weight of the 

infected area in the COVID-19 image and suppress interference in non-lesion areas, 

thereby raising the accuracy of COVID-19 image segmentation. However, the 

attention mechanism model fails to capture global dependency because of its smaller 

receptive field [19]. Therefore, the lesion area in the COVID-19 image cannot be 

perceived in the global scope, making the effect of the COVID-19 image segmentation 

poor. To overcome these difficulties, this paper designs a new image segmentation 

method UniUNet based on UniFormer which has better capabilities of capturing global 

information. The main contributions of this paper are list as following: 

(1) A U-shaped network structure based on UniFormer is proposed, which can

effectively remove local redundant information of adjacent slices, and build 

dependencies on distant lesion areas to improve the accuracy of lesion areas 

segmentation. 

(2) Aimed to capture information of different scales, the Swin spatial pyramid

pooling module is introduced into the bottom of the encoder. The module captures the 

global and local features of lesions through windows with different scales, forming a 
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multi-scale feature representation, which is helpful to strengthen the ability to capture 

COVID-19 lesions features. 

(3) Multi-scale attention gate is introduced into each skip connection. The module

selects features adaptively through convolution of three different receptive fields, and 

selects valuable features through point convolution voting to further improve the 

segmentation effect. 

2. UniUNet network structure

The proposed UniUNet in this paper is shown in Figure 1, which uses the

UniFormer blocks instead of the traditional convolution blocks to form a symmetric 

encoder-decoder structure with skip connection. Firstly, the COVID-19 lesion images 

are divided into image blocks which are input into the encoder. In the encoder, 

UniFormer blocks are introduced to carry out local to global self-attention processing 

on the feature maps. Swin spatial pyramid pooling module is added at the bottom of 

the encoder to capture features of different scales. The decoder uses the extension layer 

of the image block for up-sampling, and fuses the multi-scale features from the 

encoder through the skip connection structure with multi-scale attention gate to 

enhance the valuable features. Finally, the width and height of the feature maps is 

restored by linear mapping, and the pixel-level COVID-19 image segmentation is 

realized. 
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Figure 1. UniUNet model structure. 

Patch Merging layer is used reduce resolution of feature maps with down 

sampling, adjusting the number of channels, and saving computation while 

maintaining information integrity. Unlike traditional pooling operations, Patch 
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Merging achieves down sampling by concatenating adjacent patches, ultimately 

reducing the number of channels through linear layers. In contrast to patch merging, a 

Patch Expanding layer is adopted to enlarge the resolution of feature maps to twice b 

up-sampling operation. The implementation process of Patch Merging and Patch 

Expanding can refer to reference [20]. 

2.1. UniFormer 

To address the issue of local redundancy and global dependence in video, Li et 

al. [21] proposed UniFormer, which seamlessly integrated the advantages of spatio-

temporal self-attention and three-dimensional convolution, A good balance between 

computational complexity and accuracy has been achieved. The aggregator learns 

local relations in the shallow layer through a small learnable parameter matrix, and 

learns global relations in the deep layer through similarity comparison, which 

effectively balances the computation cost and accuracy. Although UniFormer was 

originally designed for video processing, this study applied it to two-dimension 

COVID-19 CT image segmentation to solve the local similarity and the global 

dependence between infected areas, thus improving the segmentation accuracy. 

Specifically, the UniFormer module is composed of; three key parts: Multi-Head 

Relation Aggregator (MHRA), Dynamic Position Embedding (DPE) and Feed-

Forward Network (FFN). The UniFormer module formula is as follows: 

𝑋 = 𝐷𝑃𝐸(𝑋𝑖𝑛) + 𝑋𝑖𝑛 (1) 

𝑌 = 𝑀𝐻𝑅𝐴(𝑁𝑜𝑟𝑚(𝑋)) + 𝑋 (2) 

𝑍 = 𝐹𝐹𝑁(𝑁𝑜𝑟𝑚(𝑌)) + 𝑌 (3) 

2.2. Swin spatial pyramid pool module 

The encoder of UniUNet model includes UniFormer block and patch merging 

layer, but this will lead to the decrease of spatial resolution. Research [22] suggests 

that multiscale strucute is particularly effective for extracting high-level feature. In 

order to strengthen the spatial representation and the multi-scale representation, the 

Swin spatial pyramid pooling [23] module (SSPP) is inserted at the bottom of the 

encoder, as shown in Figure 2, which captures the global and local features of COVID-

19 images with different windows to form the multi-scale representation. Then, these 

features are sent to the Cross Contextual Attention module for nonlinear fusion to 

capture a more comprehensive image representation. 
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Figure 2. Swin spatial pyramid pooling module. 

2.3. Multi-scale attention gate 

In the original UNet network structure, not every layer of encoder features can 

output useful features after skip connection to help the network segment the lesion 

area. For different datasets and different parameter settings, some redundant 

information and noise may be generated, which may lead to incorrect segmentation on 

the infected area of the COVID-19 image, thus affecting the segmentation results of 

the network model. In order to suppress unimportant and redundant information and 

enhance valuable features during the skip connection process, this paper introduces 

the Multi-Scale Attention Gate (MSAG) module [24] in the skip connection part of the 

structure, as shown in Figure 3. In order to adaptively select features with different 

resolutions, Pointwise convolution, Standard convolution, and dilated convolution 

combine are combined to extract features with different receptive fields. Each 

convolution has a batch normalization layer. The feature maps generated by the three 

kinds of convolutions are of the same size. Before ReLU activation function, the 

feature maps are connected. Another point convolution is used to capture the important 

features. 
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Figure 3. Multi-scale attention gate module. 

3. Experimental setting and evaluation metrics

3.1. Dataset 

To verify the effect of the proposed UniUNet, we used two publicly\COVID-19 
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datasets, namely the CC-CCII dataset [25] and the COVID-19-CT-Seg [26] dataset. 

The COVID-19-CT-Seg dataset is made up of 20 labeled COVID-19 CT sequences 

captured from 20 patients. The leision areas were labeled by two radiologists and 

verified by radiologists. The CT resolution is 512 × 512 and 680 × 680. There are 3320 

slices in this dataset and 1843 slices exits lesion. We randomly selected 1394 slices 

from 14 patients for training and testing. The 70% slices are used as training sets and 

the other is set as test sets. All images were resized to 224 × 224, and all slices of each 

patient are only used as training or test. In CC-CCII segmentation dataset, there are 

750 slices from 150 COVID-19 patients. The background, lung area, ground-glass 

opacity, and consolidation are manually labled in all of slices. It is worth noting that 

only consolidation areas and ground-glass opacity are included. There are 540 images 

with infected areas in CC-CCII dataset. All of images in CC-CCII dataset are randomly 

separated into training sets and test sets according to the ratio 7:3.  

3.2. Experiment settings 

 All of the resolution is adjusted to 224 × 224. NVIDIA GeForce GTX 1660 

SUPER GPU is used for training. The RMSProp optimizer is used. The weight decay 

and momentum are set to 1e-8 and 0.9, respectively. The two different datasets are 

trained for 100 and 300 epochs, respectively, the batchsize and initial learning rate 

were set to 6 and 0.000125, respectively. In addition, the early stopping strategy is 

used to train the proposed UniUnet. The training will be terminated if the metrics did 

not increase within 30 epoches. During the process of training, the binary cross entropy 

loss (BCE Loss) has the advantages of low calculation cost, and fast convergence 

speed, and is good at the task of binary classification. However, the BCE Loss is 

limited in effectiveness in dealing with class imbalance issue. The Dice Loss function 

has strong ability to unbalanced task, but it may be instable to segment small lesion 

areas in the image. In most COVID-19 images, the lesion are usually scattered and 

small, which is the issue of small object segmentation. Hybird Loss of Dice Loss [27] 

and BCE Loss [28] can effectively avoid these disadvantages and focus on detail 

information more stably. Therefore, the Dice loss function work together with the 

binary cross entropy to train the proposed UniUnet model. The hybrid loss is expressed 

as: 

𝐿𝑜𝑠𝑠 = 𝛼𝐿𝑏𝑐𝑒 + 𝐿𝑑𝑖𝑐𝑒 (4) 

𝐿𝑏𝑐𝑒 = −
1

𝑁
∑[(1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝑝𝑖) + 𝑦𝑖 𝑙𝑜𝑔 𝑝𝑖]

𝑁

𝑖=1

(5) 

𝐿𝑑𝑖𝑐𝑒 = 1 −
∑ 𝑦𝑖𝑝𝑖 + 𝜀𝑡
𝑖=1

∑ 𝑦𝑖 + 𝑝𝑖 + 𝜀𝑡
𝑖=1

(6) 

3.3. Evaluation metrics 

Six metrics are used to quantitatively, evaluate the effect of different 

methods. They are Dice, IoU, Accuracy, Precision, Recall, and Specificity 

[29,30]. The definitions of the above important indicators are as follows: 
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(1) IoU is Intersection-over-Union ratio: also known as the Jaccard index which

is one of the most commonly used indicators in medical image segmentation. It is the 

ratio of the overlapping area between the Ground truth and the segmentation result to 

the union area between them. 

IoU =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(7) 

Dice is same expression formula as 𝐹1 − 𝑆𝑐𝑜𝑟𝑒  is used to evaluate the 

similarity between the Ground truth and the segmentation result. The larger the value 

of Dice, the closer the algorithm segmentation result is to the Ground truth, and the 

better the segmentation effect. 

Dice =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(8) 

(2) Recall is used to indicate the ratio of the number of pixels in the lesion area

correctly classified by the network structure to the total number of pixels in the lesion 

area. 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9) 

(3) Precision is used to indicate the ratio of the pixels of the lesion correctly

classified by the network model to the total pixels of the lesion in the prediction result. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(10) 

(4) Accuracy is used to indicate the ratio of the pixels in the infected area and the

pixels in the non-infected area accurately classified by the model to the all of pixels in 

the image. The higher the accuracy, the better the performance of the segmentation 

algorithm. 

Accuracy =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(11) 

Specificity indicates the ratio of the pixels in non-infected area correctly 

classified by the model to all of pixels in non-lesion area. The higher the Specificity is 

the better the network can distinguish between lesion areas and non-lesion areas. 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(12) 

where TP represents True Positive which represents that the actual sample is positive 

and the predicted result is positive. FP represents False Positive which represents that 

the actual sample is negative, but the predicted result is positive. TN represents True 

Negative which means that actual sample is negative ads the predicted result is 

negative. FN represents False Negative which means that the actual sample is positive, 

but the predicted result is negative. 

4. Experiment results and analysis

4.1. Ablation experiment 
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To verify the effectiveness of the SSPP module in the model in capturing multi-

scale representation and the MSAG module in suppressing unimportant information, 

this section completes the ablation experiment of each module on the CC-CCII dataset. 

As can be seen from Table 1, this section uses the network structure without the SSPP 

module and the MASG module as the backbone network. With the SSPP module, the 

Dice index is improved by 3.72%, indicating that adding multi-scale representation to 

the network is effective, and multi-scale context extraction is conducive to capturing 

the global information of each lesion block in the image and the details on each lesion 

edge; after adding the MASG module, except for some decreases in accuracy, 

precision and specificity, other indicators have increased to varying degrees, among 

which the Dice value, IoU value and Recall value increased by 1.44%, 1.78% and 

6.31%, respectively, which further proves that adding MSAG to the skip connection 

can suppress noise and enhance valuable features, so that the network retains more 

valuable global and small lesion areas during decoding. The ablation experiment 

results show that both SSPP and MSAG blocks can effectively increase the COVID-

19 CT image segmentation performance. 

In addition, FLOPsand parameter after embedding SSPP and MASG. 1 MASG, 

2 MSAG, 3 MSAG, and 4 MSAG represent the with different number of MSAG 

moudles from bottom to top in the skip connection shown in Figure 1. For example, 

Backbone+SSPP+1 MSAG represents one MSAG module is embedded in the bottom 

skip connection in Figure 2. Backbone + SSPP + 2 MSAG represents that the other 

MSAG module is inserted tin the second skip connection from bottom to top in Figure 

2 based on Backbone + SSPP + 1 MSAG. From Table 2, it can be seen that the SSPP 

module has significantly increased FLops and Parmeters. Only one MSAG module 

resulted in a slight increase in FLops. However, adding four MSAG modules 

significantly increases the parameter count and FLOPS compared to only SSPP 

modules. 

Table 1. Ablation experiment on CC-CCII dataset (%). 

Methods Dice Recall IoU Precision Specificity Accuracy 

Backbone 76.22 73.52 62.12 79.96 99.68 99.25 

Backbone + SSPP 79.94 76.71 66.88 83.98 99.75 99.37 

Backbone + SSPP + MSAG (UniUNet) 81.38 83.02 68.75 80.17 99.63 99.36 

Table 2. FLOPs and Params with MSAG or not. 

Methods FLOPs(G) Params(M) 

Backbone 55.74 9.75 

Backbone + SSPP 82.92 33.56 

Backbone + SSPP + 1 MSAG 89.78 33.65 

Backbone + SSPP + 2 MSAG 96.60 34.01 

Backbone + SSPP + 3 MSAG 103.40 35.46 

Backbone + SSPP + 4 MSAG 110.19 41.23 

4.2. Comparison with other methods 

Aim to prove the effectiveness of the proposed UniUNet, two COVID-19 image 
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segmentation methods and two medical image segmentation methods are compared. 

Infnet [31] is a COVID-19 image segmentation method and has been widely used as 

the baseline for COVID-19 image segmentation. BSNet [13] is based on modeling 

semantic relationship and guidance of boundary detail to segment lesion area more 

completely. TFCNs [32] is a state-of-the-art medical image segmentation method 

constructed using ResLinear Transformer and convolutional neural networks. Swin-

Unet [20] is an effective medical image segmentation method using transformer 

technology to construct a U-shaped structure similar to the proposed UniUNet. Swin-

Unet was widely thought as the baseline for medical image segmentation. 

(1) Comparison on COVID-19-CT-seg dataset.

As can be seen from Table 3, on COVID-19-CT-Seg dataset, UniUNet is superior 

to Swin-Unet in all evaluation indexes, indicating that it has better training effect on 

small datasets and can capture the global dependence of lesion areas more effectively. 

Swin Unet has the lowest Dice, IoU and Precision among these five methods. The 

Dice, IOU, Recall and Precision of InfNet and BSNet method are relatively closer and 

better than Swin-Unet. But they are all lower than the proposed UniUNet in this work. 

Compared with the classic InfNet, UniUNet has improved Dice, Recall and IoU by 

3.68%, 5.72% and 4.39% respectively, achieving better results. 

In order to analyze the segmentation results of each method in a visual way, 

Figure 4 demonstrates the comparison on predicted lesion area with different model. 

Figure 4 illustrates that the InfNet cannot efficaciously obtain the edge details of the 

lesions which is an important basis for doctors to diagnose COVID-19. For the second 

column and the third column, UniUNet was able to accurately locate several lesion 

areas in the images, indicating that the proposed UniUNet can better establish the 

global relationship in the lesion areas. For the upper left lesion area in the fifth column, 

InfNet and BSNet did not segment the whole lesion area, while TFCNs segmented 

only part of lesion and showed obvious over segmentation. Compared with other 

methods, UniUNet is closest to Ground truth in segmentation accuracy, which proves 

the advantages of the method based on Transformer in COVID-19 lesion segmentation. 

Table 3. Quantitative comparison on COVID-19-CT-Seg dataset (%). 

Methods Dice IoU Recall Precision FLOPs(G) Params(M) 

InfNet 74.01 60.22 78.83 74.14 31.52 30.91 

TFCNs 73.22 58.91 74.73 76.02 168.40 105.79 

BSNet 74.97 61.94 79.11 76.20 210.39 43.99 

Swin-Unet 69.39 54.63 76.11 67.26 35.46 27.14 

UniUNet 77.69 64.61 84.55 74.37 110.19 41.23 

In addition, Table 3 also provides a comparison of FLOPs and parameters for 

different methods. In comparison with the TFCNs, the FLOPs and parameters of the 

UniUNet method are remarkablely decreased. Compared with BSNet, the FLOPs of 

the UniUNet method are significantly reduced. The FLOPs and parameters of the 

UniUNet method are significantly higher than those of InfNet and Swin Unet. 

However, compared to these four methods, it can be seen from Figure 4 and Table 3 

that UniUNet significantly improves segmentation accuracy. 
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(a) (b) (c) (d) (e) (f)

Figure 4. Comparison of segmentation results in COVID-19-CT-Seg dataset. 

(2) Comparison on CC-CCII datasets.

In order to verify the effectiveness of the UniUNet model on CC-CCII dataset, 

another comparative experiment is carried out on the CC-CCII dataset, and six 

indicators of different methods are list in Table 4. The results in Table 4 verify that 

UniUNet outperforms other methods in key indicators such as Dice, IoU and Recall, 

which are 81.38%, 68.75% and 83.02% respectively. In addition, the second or third 

best results have been achieved on the indicators of Precision, Accuracy and 

Specificity. Comprehensive analysis of these indicators shows that UniUNet has 

excellent segmentation performance in COVID-19 image segmentation task, which 

proves that it is good at COVID-19 lesion segmentation. 

Table 4. Metrics Comparison on CC-CCII dataset (%). 

Methods Dice IoU Recall Precision Accuracy Specificity 

InfNet 77.28 63.12 75.03 80.55 99.27 99.68 

TFCNs 76.09 61.73 78.09 74.64 99.18 99.53 

BSNet 81.07 68.33 79.73 83.10 99.39 99.72 

Swin-Unet 65.68 49.34 70.15 62.77 98.81 99.29 

UniUNet 81.38 68.75 83.02 80.17 99.36 99.63 

In addition, a comparison of the segmentation results of each method on the CC-

CCII dataset is illustrated in Figure 5. Figure 5 demonstrates that segmented results 

by the other methods have missing segmentation or over-segmentation. For example, 

the image in the first row, the InfNet, TFCNs and BSNet methods have obvious 
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missing segmentation on the lesion area at the lower right, and they have not divided 

it into connected lesion areas. The Swin-Unet method not only presents zigzag 

phenomenon in the segmentation result, but also has serious over-segmentation. These 

phenomenon of missing segmentation or over-segmentation indicates that these 

methods cannot effectively model the global dependency of the lesion. Only UniUNet 

can completely and accurately segment the larger lesion area. It shows that the 

proposed method can more accurately locate each part of the region and effectively 

remove the noise, which is because the multi-scale attention gate module is added 

between the skip connection to suppress the noise and enhance the valuable features. 

However, UniUNet is not sensitive enough to small lesions in the image, resulting in 

the problem of wrong segmentation. 

(a) (b) (c) (d)

Figure 5. Predicted results with different methods in CC-CCII dataset. 

5. Conclusions

Aiming at the problem that the segmentation network based on convolution

neural network lacks the global dependence of modeling infected areas in COVID-19 

images, which is not conducive to the complete segmentation of scattered lesion areas, 

a U-shaped COVID-19 image segmentation method based on UniFormer is proposed. 

UniFormer can establish a good correlation with the global lesion area. SSPP module 

can obtain multi-scale representation. The MSAG module is used to enhance valuable 

features in the network. The experiments illustrate that the method UniUnet in this 

work achieves ideal results on two COVID-19 image datasets, and a more complete 
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segmentation result is obtained. This method is suitable for training small datasets such 

as COVID-19 images, and meanwhile, it enhances the dependence of global lesion 

areas. However, there are still some missing and wrong segmentation phenomena in 

this method for some small and blurred lesion areas, because Transformer’s method 

pays more attention to global dependence and ignores local details in the image. 

Therefore, it is particularly important to explore segmentation methods that can 

effectively retain global and local information. 
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Abstract: Objective: To investigate the value of differential diagnosis of hepatocellular 

carcinoma (HCC) and cirrhotic nodules via radiomics models based on magnetic resonance 

images. Background: This study is to distinguish hepatocellular carcinoma and cirrhotic 

nodules using MR-radiomics features extracted from four different phases of MRI images, 

concluded T1WI, T2WI, T2 SPIR and delay phase of contrast MRI. Methods: In this study, 

the four kind of magnetic resonance images of 23 patients with hepatocellular carcinoma 

(HCC) were collected. Among them, 12 patients with liver cirrhosis were used to obtain 

cirrhotic nodules (CN). The dataset was used to extract MR-radiomics features from regions 

of interest (ROI). The statistical methods of MRradiomics features could distinguish HCC and 

CN. And the ability of radiomics features between HCC and CN was estimated by receiver 

operating characteristic curve (ROC). Results: A total of 424 radiomics features were extracted 

from four kind of magnetic resonance images. 86 features in delay phase of contrast MRI，86 

features in spir phase of T2WI，86 features in T1WI and 88 features in T2WI showed 

statistical difference (p < 0.05). Among them, the area under the curves (AUC) of these features 

larger than 0.85 were 58 features in delay phase of contrast MRI, 54 features in spir phase of 

T2WI, 62 features in T1WI and 57 features in T2WI. Conclusions: Radiomics features 

extracted from MRI images have the potential to distinguish HCC and CN. 

Keywords: radiomics features; hepatocellular carcinoma; MRI; cirrhotic 

1. Introduction

The differential diagnosis of liver masses is still the current focus. As The

primary liver cancer is one of the most common malignant tumors in the clinic, with 

more than 840,000 new cases per year and above 780,000 death cases per year, which 

incidence and mortality rate rank seventh and third in all cancers,respectively [1]. In 

more than 90% of the cases. The subtype of primary liver cancer is hepatocellular 

carcinoma (HCC) [2],which complicates liver cirrhosis caused by hepatitis C virus 

(HCV) and hepatitis B virus (HBV) infection [3]. The evolution of HCC is from 

cirrhotic nodule(CN) to dysplastic nodule(DN) and then to small hepatocellular 

carcinoma (SHCC), finally to progressed HCC [4]. SHCC also knowen as early 

hepatocellular carcinoma (eHCC) or subclinical hepatocellular carcinoma,without 

clearly imaging characterizations and clincial symptoms.The main reason of high 

mortality rate of HCC is detected so lately that treatment cannot work out effectively 

[5]. Thus, the sole approach to achieve long-term survival is to detect the tumor at an 

early stage. 
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Although biopsy is the gold standard for identifying focal hepatic lesions, it has 

limitations: a) Biopsy is an invasive examination, which have difficulity in acceptance 

of patients and repeatability of sample; b) The particularity of liver anatomy makes 

sampling difficult, appearing false-negative and false-positive results [5,6]; c) When 

the needle is withdrawn, it have risks to cause bleeding or implant transfer, which 

affects the subsequent treatment [6]. Fortunately, many researchers have discovered 

that the imaging features of SHCC and CN have great research value for differential 

diagnosis. Huang et al. [7] conclude that contrastenhanced ultrasound (CEUS) could 

be helpful in the differential diagnosis of hepatic malignant and benign lesions ,but 

dysplastic nodule may manifest with a similar enhancing pattern as that in 

welldifferentiated small HCC.Also,US images are easily affected by the operator's 

technical level and gastrointestinal gas. Chen et al. [8] concluded that 64-slice spiral 

CT can provide more sufficient imaging evidence for the clinical diagnosis of HCC 

and FNH and effectively identify benign and malignant tumors compared with 

conventional US examination, which also has high sensitivity in the diagnosis of tiny 

lesions.Furthmore, Ronot M and other researches [5] have shown that arterial phase 

hyperenhancement followed by washout on CT or MRI is highly specific. 

However, whether CEUS, enhanced CT, it only distinguish CN from SHCC 

anatomically. With the continuous deepening of research, many researchers have now 

adviced that MRI functional imaging is useful for distinguishing diagnosis,which has 

great potential to research.For example, According to a study [9] of hepatocellular 

carcinoma based on US ,CTand MR images by some people, the sensitivity of MR 

images in the hepatobiliary stage is the highest. Moreover, the study on the quantitative 

evaluation of focal hepatic lesions by DWMRI used 4 b values to obtain different ADC 

images [10]. The results of the study suggest that ADC values can distinguish 

cavernous hemangioma and liver cysts. The ratio of the ADC value of leision/liver can 

distinguish HCC and hepatic metastasis, and can provide information to help diagnose 

focal hepatic lesions with a diameter less than 3 cm. However, these studies still cannot 

clearly distinguish SHCC from DN.Radiomics is an emerging technology that has 

developed in recent years. It uses software to extract the texture features of the region 

of interest(ROI) by delineating it in the image, and performs computer operations to 

obtain small image parameters that cannot be observed by the human eyes. This 

research will use the combination of radiomics and magnetic resonance technology to 

differentiate between DN and HCC. 

2. Methods

2.1. Radiomics workflow 

The raidomics flow of this study included: (1) images acquisition; (2) feature 

extraction; (3) data analysis (Figure 1). 
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Figure 1.The workflow of the study. 

2.2. Patients 

The protocol for this study was approved by the Institutional Review Committee 

of the Shandong First Medical University Affiliated Cancer Hospital Ethics 

Committee. The ethics filing number is SDTHEC2020010008. Case entry criteria: (1) 

Complete clinical imaging data; (2) No surgery, radiotherapy, chemotherapy, or 

interventional treatment before imaging examination; (3) Pathologically confirmed 

hepatocellular carcinoma.Search for 23 patients with hepatocellular carcinoma in 

Shandong Cancer Hospital who met the enrollment criteria from April 2019 to January 

2020, a total of 24 lesions, and they were recorded as 1 group, including 21 males and 

2 females, aged 42–83 years old , An average of 56.08 years old. Among the above-

mentioned patients, 12 had a history of liver cirrhosis and hepatitis B, and 12 had cir-

rhotic nodules, which were recorded as two groups, including 10 males and 2 females. 

2.3. Patient images acquisition 

Use GE HDe1.5TMR scanner.The scanning sequence and parameters are as 

follows: Axial breathing trigger FSETWI + FS,TR/TE2-3 breathing cycle/(80 ± 10) 

ms,layer thickness 6 mm, layer spacing 1.5 mm, field of view (FOV) 40 cm × 36 cm, 

matrix 320 × 224, number of excitations 2; SE. EPIDWI, TR 5000 ms, TE 75.40 ms, 

layer thickness 6 mm, layer spacing 1.5 mm, FOV 40 cm × 40 cm, matrix 128 × 128, 

number of excitations 8; FSPGR TWI inverse phase imaging, TR 120–250 ms, TE 

2.25–4.5 ms, layer thickness 6 mm, layer spacing 1.5 mm, FOV 40cm×36 cm, matrix 

256 × 170, excitation times 1; Liver Volume Rapid Acquisition (IAVA) three-

dimensional dynamic enhancement scan, TR 5.14 ms, TE 2.30 ms,The layer thickness 

is 5 mm, the layer spacing is 2.50 mm, the FOV is 40 cm × 36 cm, and the matrix is 

288 × 192. Using a double-barreled high-pressure syringe, inject Ou Naiying 0.1 

mol/kg body weight through the cubital vein at a flow rate of 3 ml/s, and scan the 

arterial phase, portal vein phase, and equilibrium phase at 18–22 s, 60 s, and 180 s 

after the contrast agent injection. The size of the liver is about 15–18s to complete a 

single-phase whole liver scan. 

2.4. Region of interests (ROI) segmentation 

The images are divided into four categories: T1WI, T2WI, T2 SPIR, and 

enhanced scan delay period. Two imaging physicians with more than 5 years of work 
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experience observe all the images separately, and those who have different results 

discuss and reach an agreement together. Use the imaging omics analysis software 3D 

slicer 4.8 to delineate the area of interest and obtain 106 children with seven parent 

features The characteristic data table, the area of interest (ROI)  

Of the lesion includes the largest extent of the lesion entity as much as possible, 

and avoids the blood vessel, hemorrhage, necrosis, and cystic area.Divide the data into 

four categories:T1WI, T2WI, T2 SPIR, and enhanced scan delay period, and then 

divide each category into seven groups: Shape, Gldm, Glcm, Firstorder, Glrlm, Glszm, 

and Ngtdm, and analyze them separately. 

3. Statistical analysis

Enter the values of all parameters into html to obtain a heat map representing

these data.(Figure 2) The statistical analysis software SPSS 22.0 was used to process 

and analyze the data. Mann-Whitney U test was selected for the imaging omics 

characteristic parameter data obtained from the MR images of each phase of the cancer 

and sclerosing nodules to screen  

for statistically significant difference parameters between the two lesions. Thus 

obtained radiological characteristics that can distinguish hepatocellular carcinoma 

from sclerosing nodules. Then use the ROC curve drawing function in spss to 

determine the diagnostic performance of the above-mentioned characteristic 

parameters. The characteristic parameters whose area under the curve is less than 0.85 

are eliminated. Thus, imaging characteristics parameters that can efficiently 

distinguish hepatocellular carcinoma from sclerosing nodules can be obtained. 

Figure 2. Distribution of all parameters. 

3.1. Patient characteristics 

In this study, a total of 23 hepatocellularcarcinoma patients were included, 

including 21 men and 2 women (maximum age 83 years, minimum age 42 years, 

median age 53 years). Then there are 12 patients with a history of liver cirrhosis among 

these 23 patients, of which 10 are males and 2 are females (maximum age 66 years, 

minimum age 42 years, median age 56 years). See Table 1. 
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Table 1. Clinical information of enrolled patients. 

Number Age Sex Size (cm) T1WI T2WI T2 SPIR DELAY Cirrhosis Hepatitis 

1 62 M 3.0 × 3.0 -- -- √ √ -- -- 

2 64 M 5.8 × 6.6 -- √ √ √ -- -- 

3 42 M 2.0 × 1.5 -- √ √ -- positive HBV 

4 63 M 4.6 × 7.0 -- √ √ √ -- HBV 

5 49 M 10.2 × 7.6 √ √ √ -- positive HBV 

6 83 M 0.9 × 1.6 √ √ √ -- -- -- 

7 44 M 4.8 × 6.2 -- √ √ √ positive HBV 

8 56 M 3.3 × 2.5 -- √ √ √ -- HBV 

9 58 M 9.3 × 9.0 -- √ √ √ positive HBV 

10 58 M 1.4 × 0.9 -- √ √ -- positive HBV 

11 53 M 2.6 × 2.4 √ √ √ -- positive HBV 

12 62 M 6.9 × 5.0 √ √ √ -- -- HBV 

13 49 M 3.2 × 2.9 -- √ √ √ Positive HBV 

14 66 F 2.8 × 2.8 -- √ √ √ Positive HBV 

15 58 F 4.4 × 3.5 √ √ √ -- Positive HBV 

16 48 M 8.0 × 5.1 √ √ √ -- Positive HBV 

17 50 M 2.7 × .3 -- √ √ √ Positive HBV 

18 46 M 14.1 × 9.8 -- √ √ √ - HBV 

19 50 M 8.2 × 8.4 -- √ √ √ Positive Positive 

20 42 M 9.9 × 7.2 √ √ √ -- Positive positive 

21 67 M 7.2 × 6.6 √ √ √ -- - HBV 

22 60 M 10.9 ×8.5 -- √ √ √ Positive HBV 

23 60 M 11.0 × 10.5 √ √ √ -- Positive HBV 

4. Feature results

In this study, a total of 106 imaging radi-omics features of 24 hepatocellular car-

cinomalesions and 12 sclerosing nod-ules lesions were extracted. According to the 

imaging omics, these 106 features can be divided into 7 catgories. Be more 

detailed,shape 13 features, gldm 14 features,glcm 24 fetures, firstorder 18 

features,glrlm 15 features,glszm 16 fea-tures, ngtdm 5 features.  

4.1. Statistical results 

All data have been tested by the Mann-Whitney U test, and the p-values obtained 

are shown in Table 2. As shown in Table 2, among all four imaging methods, there 

are 70 types of statistically significant differences in imaging features between 

hepatocellular carcinoma and cirrhotic nodules. They were 86 features in T1WI and 

88 features in T2WI, 86 features in delay phase of con-trast MRI and 86 features in 

spir phase of T2W. 
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Table 2. Feature parameters and differentiating between cirrhotic nodules and hepatocellular carcinoma. 

Category Feature T1wI P value DELAY TIWI T2WI ROCSPIR DELAY 

Maximum3DDiameter 0.001 T2WI 0.044 1 1 SPIR 0.792 

Maximum2DDiameterSlice 0.001 0 0.011 1 1 0.958 0.857 

MinorAxis 0.001 0 0 1 1 0.955 1 

Volume 0.001 0 0 1 1 1 1 

shape MajorAxis 0.001 0 0.104 1 1 1 0.74 

SurfaceArea 0.001 0 0 1 1 0.955 1 

Flatness 0.003 0 0 0.96 0.992 1 1 

LeastAxis 0.001 0 0 1 0.996 1 1 

Maximum2DDiameterColumn 0.001 0 0 1 1 1 1 

Maximum2DDiameterRow 0.001 0 0 1 1 1 1 

GrayLevelVariance 0.003 0 0.011 0.96 0.995 1 0.857 

gldm HighGrayLevelEmphasis 0.001 0 0.004 1 1 0.966 0.896 

DependenceEntropy 0.001 0 0 1 1 0.992 1 

DependenceNonUniformity 0.001 0 0 1 1 1 1 

GrayLevelNonUniformity 0.001 0 0 1 0.963 1 1 

SmallDependenceHighGrayLevelEmphasis 0.594 0.203 0.006 0.6 0.889 0.992 0.883 

LargeDependenceEmphasis 0.008 0 0.002 0.92 0.829 0.777 0.922 

DependenceVariance 0.008 0.001 0 0.92 0.945 0.818 0.974 

LargeDependenceHighGrayLevelEmphasis 0.001 0 0.002 1 1 0.958 0.922 

JointAverage 0.001 0 0.002 1 1 1 0.922 

glcm SumAverage 0.001 0 0.002 1 1 0.996 0.922 

JointEntropy 0.003 0 0 0.96 0.997 0.996 1 

Idmn 0.594 0 0.011 0.4 0.655 0.977 0.857 

Contrast 0.04 0.072 0 0.84 0.934 0.939 0.961 

DifferenceEntropy 0.005 0 0 0.94 0.966 0.886 1 

DifferenceVariance 0.005 0 0 0.94 0.966 0.958 1 

Idn 0.594 0 0.011 0.4 0.582 0.951 0.857 

Correlation 0.594 0.35 0 0.4 0.655 0.773 1 

Autocorrelation 0.001 0.062 0.004 1 1 0.97 0.896 

SumEntropy 0.001 0 0 0.98 1 0.996 1 

firstorder SumSquares 0.003 0 0.006 0.96 0.982 1 0.883 

ClusterProminence 0.001 0 0.008 1 1 0.947 0.87 

Imc2 0.001 0 0.375 0.98 0.645 0.977 0.636 

DifferenceAverage 0.055 0.076 0.002 0.82 0.889 0.61 0.922 

ClusterTendency 0.001 0 0.006 1 0.997 0.833 0.883 

InterquartileRange 0.001 0 0.011 1 0.963 0.966 0.857 

Energy 0.001 0 0 1 1 0.909 1 

RobustMeanAbsoluteDeviation 0.001 0 0.011 1 0.966 0.992 0.857 

MeanAbsoluteDeviation 0.001 0 0.011 1 0.984 0.928 0.857 

TotalEnergy 0.001 0 0 1 1 0.962 1 

Maximum 0.001 0 0 0.88 0.958 0.992 1 

41



Imaging and Radiation Research 2024, 7(1), 4546. 

Table 2. (Continued). 

Category Feature T1wI P value DELAY TIWI T2WI ROCSPIR DELAY 

90Percentile 0.055 0 0.003 0.44 0.842 0.788 0.909 

Entropy 0.001 0.001 0 0.96 1 0.648 1 

Range 0.003 0 0.002 1 1 0.985 0.922 

glszm Variance 0.001 0 0.011 1 0.995 0.996 0.857 

Kurtosis 0.001 0 0.104 0.94 0.897 0.966 0.74 

GrayLevelVariance 0.001 0 0.011 1 0.995 0.837 0.857 

GrayLevelNonUniformityNormalized RunVariance 0.001 0 0 1 0 0.966 0 

LongRunEmphasis 0.001 SPIR 0.211 1 0.653 0.011 0.688 

ngtdm ShortRunHighGrayLevelEmphasis 0.008 0 1 0.92 1 0.659 0.494 

RunLengthNonUniformity 0.001 0 0.004 0.98 0.503 0.534 0.896 

LongRunHighGrayLevelEmphasis 0.001 0 0 1 1 0.981 1 

RunEntropy 0.001 0 0.008 1 1 1 0.87 

HighGrayLevelRunEmphasis 0.001 0 0 1 1 1 1 

GrayLevelVariance 0.001 0 0.006 1 1 1 0.883 

ZoneVariance 0.001 0 0.011 1 0.997 0.992 0.857 

SizeZoneNonUniformity 0.001 0 0 1 0.971 1 1 

GrayLevelNonUniformity 0.001 0 0 1 0.992 0.966 1 

LargeAreaEmphasis 0.001 0 0 1 1 0.962 1 

SmallAreaHighGrayLevelEmphasis 0.005 0 0 0.94 0.916 1 0.974 

LargeAreaLowGrayLevelEmphasis 0.001 0 0.002 1 0.989 0.939 0.922 

LargeAreaHighGrayLevelEmphasis 0.008 0 0.479 0.92 0.663 0.939 0.61 

HighGrayLevelZoneEmphasis 0.001 0 0 1 1 0.583 0.961 

SmallAreaEmphasis 0.001 0 0.008 1 1 1 0.87 

ZoneEntropy 0.001 0.002 0.659 1 0.561 0.989 0.429 

Complexity 0.001 0.002 0 1 1 0.485 1 

Busyness 0.001 0 0 0.98 0.989 1 1 

0.003 0 0.246 0.96 0.947 0.989 0.675 

0 0.807 

0 

0 

0 

0 

0 

0 

0.009 

0 

0 

0 

0 

0 

0.316 
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Table 2. (Continued). 

Category Feature T1wI P value DELAY TIWI T2WI ROCSPIR DELAY 

0.001 

0 

0 

0 

0 

0 

0 

0.006 

0.174 

0 

0 

0 

0.001 

0 

0 

0.142 

0.766 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.451 

0 

0 

0.903 

0 

0 

0.003 

A ROC curve of 105 features was performed to evaluate the ability of the features 

to distinguish hepatocellular carci noma from sclerosing nodules. This curve (AUC < 

0.85) was abandoned in this study due to its limited discriminative ability. In the end, 

this study obtained a total of 68 characteristic ROC curves (Figures 3–6). 
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Figure 3.The ROC curves of T1WI. 

Figure 4.The ROC curves of T2WI. 
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Figure 5.The ROC curves of SPIR. 

Figure 6.The ROC curves of DELAY. 

5. Discussion

The results of this study show that there is a statistical difference between thera-

diographic features extracted from hepa-tocellular carcinoma lesions and thera-

diographic features extracted from cir-rhotic nodules. This maybe related to their 

different pathological tissue morphology. Carcinogenesis is a process in which non-
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malignant liver cells gradually transform into liver cancer, which is a complex and 

multi-step process. For clinical practicability and research, this process is divided into 

several independ-ent steps: Cirrhotic nodules, dyplastic nodules, early liver cancer, 

and pro-gressed liver cancer [11]. This study selects the stage of cirrhotic nodules. 

Cirrhosis nodules,also called regenerative nodules related to liver cirrhosis,are 

countless clear circular areas of hard-enedparenchyma with scar tissue around them, 

with a diameter of 1–15 mm [11]. Cirrhotic nodules are generally considered benign 

because of its lacking histological features and normal phenotype [12]. But from a 

molecular perspective, many cirrhotic nodules are the clonal expansion of abnormal 

genomic cells, causing the macrophages in the cirrhotic nodules to develop abnormal 

proliferation characteristics [13]. So it will cause hyperplasia and nodules. A large 

number of previous studies have shown that the molecular changes of liver cells 

caused by abnormalities such as cell sig-nal transduction caused by chronic in-

flammation begin in the early stage of tumor formation [14–16]. That is, several years 

or even decades before the onsetof liver cirrhosis, and with the development of fibrosis 

and cirrhosis Parallel development [17,18]. Studies have shown that the earliest 

molecular change in liver cancer is morphological silence, suggesting that chronically 

ill liver may contain cells with abnormal molecular but normal phenotypes, which will 

eventually develop into liver cancer [13,18,19]. Pathologically, early HCC is 

composed of small, well-differentiated neoplastic cells arranged in irregular but 

thintra-beculae or pseudogland [20], microscopically similar to highly hyperplastic 

nodules [21]. The tissues of advanced liver cancer lesions have the characteristics of 

mosaic structure, that is, there are multi-ple tumor nodules inside, and these nodules 

are separated by fibers, and there are areas of hemorrhage, necrosis, and occasional 

steatosis [22]. The subtle differences in histology between hepatocellu-lar carcinoma 

and cirrhotic nodules can be distinguished on MR. 

The radiomics technology that has emerged in recent years refers to the high-

throughput extraction of a large number of image features describing tumor 

characteristics, and the application of a large number of automated data retention 

methods to convert the image data of the region of interest into high-resolution 

imaging data. Feature space data sent [23,24]. Data analysis is a digital quantitative 

high-throughput analysis of a large amount of image data to obtain high-fidelity target 

information to comprehensively evaluate various phenotypes of tumors, including 

tissue morphology, cell molecular, genetic inher-itance and other levels. The core 

theo-retical basis is the radiomic model,which contains the biological or medical data 

information of the lesion, which can provide valuable information for the diagnosis, 

prognosis and prediction of the disease [25,26]. There is genetic heterogeneity among 

tumors of different patients, different tumor tissues of the same patient, or within the 

same tumor, and their genetic status will also vary from time to time. Based on the 

above advantages,some researchers have combined radiomics with medical images 

and applied them to tumor prediction, identification and prognosis. Imageomics has 

shown excellent performance in the diagnosis of lung cancer [27], stomach cacer [28], 

prostate cancer [29], and breast cancer [27]. Tsai et al. [30] reported that Texture 

features can be used to distinguish nasopharyngeal carcinoma from normal 

nasopharyngeal tissue, and the statistical difference in texture features between 

nasopharyngeal carcinoma and normal nasopharyngeal tissue maybe related to the loss 
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of stripe structure in normal nasopharyngeal tissue. and this finding had been 

confirmed on MRI images. Thawani et al. proposed that radiomics has played an 

important role in the diagnosis of lung cancer in recent years and will further provide 

more important information for monitoring and prognosis, and realize individualized 

treatment [31,32]. 

6. Conclusions

The results of this study show that MR is of great significance for the diagnosis

of liver cancer, and imaging omics is of great value in the differentiation between 

benign and malignant lesions.However, the research method in this ar-ticle has 

limitations: (1) This article uses a single-center study with a small number of samples; 

(2) Lack of differentiation from patients without liver cancer; (3) Not combined with

patient pathologi-cal smears; (4) Only one kind of imaging is used Methods, failed to 

compare the sensitivity and specificity of different imaging techniques to lesions. Our 

later research will try multi-center research to obtain a large number of samples based 

on more imaging methods to improve the accuracy of the results. 
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Abbreviations 

CT Computed Tomography 

MRI Magnetic Resonance Imaging 

DWI Diffusion Weighted Imaging 

T2WI T2-Weighted Imaging 

ROI Region of Interest; 

VOI Volume of Interest; 

ROC Receiver Operating Characteristic; 

AUC Area Under the Curve 

GLRLM Gray Level Run Length Matrix; 

GLCM Gray Level Co-occurrence Matrix 

GLSZM Gray Level Size Zone Matrix 

NGTDM Neighborhood Gray-Tone Difference Matrix 

GLD Gray Level Dependence Matrix 

CEUS Contrast-enhanced Ultrasound 

TR Repetition Time 

TE Echo Time 
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Abstract: Inflammation of the lungs, called pneumonia, is a disease characterized by 

inflammation of the air sacs that interfere with the exchange of oxygen and carbon dioxide. It 

is caused by a variety of infectious organisms, including viruses, bacteria, fungus, and 

parasites. Pneumonia is more common in people who have pre-existing lung diseases or 

compromised immune systems, and it primarily affects small children and the elderly. 

Diagnosis of pneumonia can be difficult, especially when relying on medical imaging, because 

symptoms may not be immediately apparent. Convolutional neural networks (CNNs) have 

recently shown potential in medical imaging applications. A CNN-based deep learning model 

is being built as part of ongoing research to aid in the detection of pneumonia using chest X-

ray images. The dataset used for training and evaluation includes images of people with normal 

lung conditions as well as photos of people with pneumonia. Various preprocessing procedures, 

such as data augmentation, normalization, and scaling, were used to improve the accuracy of 

pneumonia diagnosis and extract significant features. In this study, a framework for deep 

learning with four pre-trained CNN models—InceptionNet, ResNet, VGG16, and DenseNet—

was used. To take use of its key advantages, transfer learning utilizing DenseNet was used. 

During training, the loss function was minimized using the Adam optimizer. The suggested 

approach seeks to improve early diagnosis and enable fast intervention for pneumonia cases by 

leveraging the advantages of several CNN models. The outcomes show that CNN-based deep 

learning models may successfully diagnose pneumonia in chest X-ray pictures. 

Keywords: convolutional neural networks; image classification; image processing; medical 

imaging; artificial intelligence 

1. Introduction

Pneumonia is an infection-related inflammation of the lungs’ air sacs (alveoli).

Alveoli is found at the ends of the respiratory bronchioles, allowing the exchange of 

oxygen and carbon dioxide gas. It may be referred to as bronchopneumonia if the 

airways are also affected. Pneumonia occurs when these air sacs are filled with fluid 

or pus, hindering the gas exchange process, resulting in difficulty breathing and a 

cough reflex. It can affect the lung in one or more sites (sometimes known as “double” 

or “multilobar” pneumonia). pneumonia can be caused by a variety of factors, the 

majority of which are infectious [1]. 

Pneumonia is typically caused by virus or bacterial infection from the 

environment or from another person. Infection can be spread from person to person by 

direct touch (typically through the hands) or through inhaling droplets in the 

atmosphere from coughing or sneezing. Secondary infection from bacteria like 

Staphylococcus aureus can occasionally occur in a person who has a viral illness, such 

as the influenza virus, while they are ill. Pneumonia can also be caused by a parasite, 

CITATION 

Naser A, Şafak SB, Utkutağ E, et al. 

Classification of X-ray images and 

model evaluation. Imaging and 

Radiation Research. 2024; 7(1): 

6257. 

https://doi.org/10.24294/irr6257 

ARTICLE INFO 

Received: 7 May 2024 

Accepted: 13 June 2024 

Available online: 21 November 2024 

COPYRIGHT 

Copyright © 2024 by author(s). 

Imaging and Radiation Research is 

published by EnPress Publisher, 

LLC. This work is licensed under the 

Creative Commons Attribution (CC 

BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 

50



Imaging and Radiation Research 2024, 7(1), 6257. 

fungus, or yeast. Aspiration pneumonia is brought on by a foreign substance entering 

the lungs through the throat. Typically, this material is food or vomit, which causes 

irritation to the airways and lung tissue and raises the risk of bacterial infection [1]. 

Pneumonia can occur at any age. However, it seems to affect small children and 

the elderly more frequently. Pneumonia can be more serious for some people due to 

pre-existing lung conditions, poor nutrition, swallowing issues, other chronic health 

issues, or immune system issues. Pneumonia is more likely to occur among smokers 

and those who are around tobacco smoke. People who have not had the annual 

influenza vaccination or the pneumococcal vaccines Prevnar13® and/or 

Pneumovax®23 are also at a higher risk of developing lung infections [2]. 

People who have pneumonia frequently experience coughs, fever or chills, respiratory 

problems, low energy, and poor appetite. Chest pain, nausea, and/or diarrhea can all 

occur frequently. Without a cough or fever, pneumonia is possible. Symptoms may 

appear suddenly or develop gradually over time. An individual who has a viral upper 

respiratory illness (cold) may occasionally experience a new fever and deterioration, 

which indicates the beginning of the secondary bacterial infection [2]. 

The medical professional will take the symptoms into account and do a physical 

assessment. Pneumonia can cause the noises in the lung to be diminished or irregular. 

Blood tests may be performed to check the white blood count and other measurements 

that may be off related to a disease. A chest x-ray is frequently taken in order to 

identify the site or regions affected by pneumonia. Sometimes a CT scan—often 

referred to as a “cat” scan—is performed for more precise computerized x-rays [3]. 

Sputum, also known as phlegm or mucus, is excreted during coughing, and may be 

tested and cultured to determine the presence of any germs or viruses. More frequently, 

tests are performed on patients who are ill enough to be hospitalized for the most likely 

viruses and bacteria. A procedure known as flexible bronchoscopy may be used to 

extract a sample of mucus from the lung through the airways if a patient is not 

improving, has a serious infection, or is at a high risk of developing a rare infection 

[3]. It can be difficult to determine what type of infection (for example, which 

bacterium) is causing pneumonia. This could be a result of the tests being 

insufficiently precise or because you might have undergone treatment prior to the 

testing. However, the healthcare provider will work with the patient to choose a course 

of action based on the most likely cause determined by the patient’s information, the 

types of infections that are prevalent in the patient’s community, and the types of 

infections that the patient may be more susceptible to if they already have a health 

issue [3]. The prognosis for pneumonia and the seriousness of the patient’s condition 

both influence treatment. Antibiotics that are efficient against the most likely 

microorganisms causing the infection are typically given. The patient may require 

medications to address more resistant germs if the pneumonia occurred while they 

were a patient in a hospital or another healthcare facility such as a nursing home [3]. 

Because the symptoms of the illness are not readily apparent on CT or X-ray scans, 

pneumonia objectively and automatically detecting poses a significant issue in medical 

imaging. Chest X-rays (CXR) or computed tomography (CT) scans are frequently 

used to detect pneumonia; the former is the most used method because it is more 

affordable and widely available worldwide. Due to its great speed and objective, 

reproducible judgment, the computer can assist the human expert in making the 
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diagnosis of pneumonia because the symptoms of pneumonia in X-ray images are not 

always obvious or readable to the human eye [4]. For the purposes of computer vision, 

researchers have suggested various CNN-based deep networks for image 

classification, picture segmentation, object recognition, and localization. CNNs have 

proven to be extremely effective and successful at resolving medical issues as well, 

including the diagnosis of Alzheimer’s disease, the classification of skin lesions, the 

identification of breast cancer, and the segmentation of brain tumors [5]. 

Machine learning and deep learning methods have recently been developed in 

numerical computing for medical picture analysis. Since they offer great accuracy and 

amazing outcomes when compared to other models, convolutional neural networks 

(CNNs) are the most favored and well-liked deep learning models with superior 

accomplishments in the medical imaging sector. On the basis of the CNNs, numerous 

research using various methods to perform chest X-rays was undertaken to identify 

pneumonia. A CNN model, for instance, was proposed by Stephen et al. and trained 

to categorize pneumonia using chest X-rays. The proposed model’s accuracy, 

according to the authors, is 95.31% [6]. Convolutional neural networks (CNNs) were 

used in picture classification tasks, and their use of Deep Learning (DL) models proved 

their potential for doing so. This feature-extraction approach necessitates transfer 

learning techniques, in which pre-trained CNN models first learn the generic features 

on massive datasets like ImageNet, then transfer those features to the desired job. The 

process of important feature extraction is greatly facilitated by the availability of pre-

trained CNN models like AlexNet, VGGNet, Xception, ResNet, and DenseNet. 

Additionally, the classification of photos when using highly-rich extracted features 

performs better. The datasets used, which include 112,120 anterior chest X-ray 

pictures from 30,085 patients, are also freely accessible on the Kaggle platform [7]. 

Since deep CNN models like ResNet, Xception, or DenseNet have millions of 

trainable parameters, training them from the start takes a large amount of data because 

the model wouldn’t be sufficiently generalized with a small dataset. A TL approach 

can be used to reuse these models with their pre-trained weights. A pre-trained CNN 

model is reused in TL, a helpful machine learning technique, to use its weights as 

initialization for a new CNN model that will be used for a different task. The two main 

approaches to use the TL from a model are to either reuse the model to do Fine-Tuning 

(FT) or to reuse the model as a feature extractor and use an entirely new classifier. FT 

is a strategy that modifies the new Fully Connected (FC) layers of the classifier as well 

as particular layers of the CNN, such as convolutional layers, somewhat [8]. 

2. Materials and method

2.1. Dataset 

A dataset of chest X-ray images labeled as Pneumonia and normal was used for 

detection with CNNs (Figure 1 and 2). The “Chest X-Ray Images (Pneumonia)” 

dataset was utilized in the code. The dataset consists of a series of chest X-ray images 

divided into 4273 “PNEUMONIA” images and 1583 “NORMAL” images categories 

in total. X-ray images of patients with pneumonia are included in the “PNEUMONIA” 

category, whereas images of healthy people without pneumonia are included in the 

“NORMAL” category. 
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Figure 1. Chest X-Ray images of pneumonia patients. 

Figure 2. Chest X-Ray images of normal (non-pneumonia) patients. 

2.1.1. Data pre-processing 

The necessary pre-processing steps were applied on the X-ray images as follows: 

Before training, the images are modified for better training of a convolutional neural 

network. The Keras ImageDataGenerator function was used to prepare X-ray images 

for training a convolutional neural network (CNN). Image data augmentation is a 

method for enhancing the variety and variability of training data for deep learning 

models. The ImageDataGenerator provides random variations to the images during 

training by changing transformation parameters including rotation range, width shift 

range, shear range, and zoom range. Furthermore, the choice of samplewise centering 

and standardization helps in separately normalizing the pixel intensity of each image. 

However, this ImageDataGenerator combines these techniques to generate enhanced 

image batches that may be used to train deep learning models, enhancing 

generalization and robustness by offering a more diverse and variable training set. 
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2.1.2. Data split 

The dataset was divided into three subsets: Train, validation, and test sets (Table 

1). 

Table 1. The number of input images with normal and pneumonia chest X-ray 

images. 

Normal Pneumonia 

Train 1341 3875 

Test 234 390 

Val 8 8 

2.1.3. Data augmentation (normalization and resizing) 

To standardize the input distribution and facilitate model training, the pixel 

values in each set of images were fixed in a range from 0 to 1, and the images were 

resized to a consistent size. This analysis provided valuable information about the 

intensity and spread of pixel values across the dataset, aiding our understanding of the 

data characteristics. 

2.2. Channel conversion 

Our chosen pre-trained neural network requires three-channel input. Hence, we 

utilized the generator to convert the single-channel grayscale X-ray images into a 

three-channel format. This conversion was achieved by replicating the pixel values 

across all three channels. 

2.2.1. Convolutional neural networks (CNNs) model building 

CNNs are deep learning architectures that excel at extracting features from 

images before classifying them. By employing convolution filters with different 

dimensions or values, various features can be extracted from the images. Features are 

detected using ReLu activation at each pixel and enhanced with MaxPool layers. The 

stride parameter determines the distance between each filter, while the padding 

parameter determines whether the mesh should consider boundary pixels. Zero 

padding applied to the neural network to provide information from image borders. The 

outputs from these operations were combined and passed through Dense layers. A 

sigmoid activation function was used to determine the final layer of the network, the 

class to which the image belongs. 

2.2.2. CNNs model training 

Training images were fed to CNN. Used a weighted loss function, such as binary 

cross-entropy, to balance the contribution of several classes to the loss calculation. 

A sequential CNN framework for identifying pneumonia (pna) in clinical images 

is shown in Figure 3. Four pre-trained neural network (CNN) models are included in 

the framework: InceptionNet, ResNet, VGG16, and DenseNet. These pre-trained 

models are effective tools for feature extraction and picture segmentation tasks since 

they have been refined and optimized on huge datasets. The framework can benefit 

from the information and representation acquired from various datasets thanks to the 

use of pre-trained CNN models. The system gains from the capacity to extract useful 
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information from input photos and generate precise predictions based on these 

retrieved features by adding these models. A CNN architecture called InceptionNet 

introduces the idea of inception modules, which successfully capture characteristics at 

various spatial scales. ResNet, on the other hand, makes use of residual connections 

to help deep network training without experiencing vanishing gradient problems. A 

well-liked CNN architecture noted for its ease of use and effectiveness in image 

classification tasks is VGG16. Finally, DenseNet uses densely interconnected blocks 

to enhance information flow across layers, making layer use simpler and lowering the 

possibility of overpopulation. The inclusion of these four pre-trained CNN models in 

Figure 3 shows that the design takes advantage of their unique strengths and different 

design methods to improve the accuracy and reliability of pneumonia diagnosis. By 

combining the capabilities of these models, the design aims to capture a wide range of 

image features and provide powerful predictions for the detection of pneumonia, thus 

facilitating early diagnosis and timely medical intervention. 

Figure 3. The deep learning framework that is suggested for diagnosing pna. 

𝐿𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦
𝑊 (𝑥) =  −(𝑤𝑝𝑦 log(𝑓(𝑥)) + 𝑤𝑛(1 − 𝑦) log(1 − 𝑓(𝑥))) (1) 

Loss function formula explained in Equation (1). Class weights were applied for 

class 0 and class 1, which were applied to tolerate the imbalance condition. Weight for 

class 0: 0.74, weight for class 1: 0.26 were found. The Adam optimizer was used to 

update the model weights and minimize the loss value. Transfer Learning was 

employed using DenseNet, a convolutional neural network architecture. DenseNet is 

characterized by dense connections between layers, where each layer is connected to 

all the subsequent layers in the network. This connectivity pattern facilitates the flow 

of gradients throughout the network, enabling efficient feature propagation. 

2.2.3. Transfer learning models training 

InceptionNet 

Google created the convolutional neural network (CNN) architecture known as 

InceptionNet to outperform earlier CNNs. It is well-known for using inception 

modules, which are layers’ building blocks that learn a mix of local and global features 

from the input data. There are 22 layers in the InceptionNet architecture, including 

fully connected, pooling, and convolutional layers. The use of “Inception modules”, 

parallel convolutional blocks with various filter sizes (1 × 1, 3 × 3, and 5 × 5) and 

pooling operations, is one of its key innovations.  The network can learn spatial and 
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temporal features from the input data using these modules, which are made up of 

smaller convolutional and pooling layers that are combined. Other deep convolutional 

neural networks can take longer to train than InceptionNet because of the way it was 

designed.  It serves as the foundation for well-known neural network architectures like 

Inception-v4 and Inception-ResNet and has been used in image classification, object 

detection, and face recognition. The InceptionNet model has roughly 5 million 

parameters total. But over time, a few variations, and more advanced versions of 

InceptionNet, including InceptionV2, InceptionV3, InceptionV4, and Inception-

ResNet, each with a different number of parameters, were developed. Depending on 

the depth and complexity of the architecture, these variants have anywhere between 

tens of millions and hundreds of millions of parameters. The complexity of the 

computations is typically increased in the deeper versions in exchange for performance 

gains [9]. 

Conventional convolutional neural networks often use convolutional and pooling 

layers to extract features from the input data. This problem is resolved by Inception 

blocks’ modular nature, which allows the network to learn various feature maps at 

varied scales. These feature maps are then concatenated to produce a more 

comprehensive representation of the input data. To help with tasks like picture 

categorization, this enables the network to collect a variety of features, both high-level 

and low-level. Using inception blocks allows the InceptionNet architecture to learn a 

larger range of features from the input data, which improves the network’s 

performance on tasks like picture categorization. The Inception network is made up of 

convolutional design configurations in the form of recurring patterns known as 

Inception modules [10]. 

 Input layer

 1 × 1 convolution layer

 3 × 3 convolution layer

 5 × 5 convolution layer

 Max pooling layer

 Concatenation layer

The Inception modules are a key part of the InceptionNet convolutional neural

network architecture. These built-in blocks, known as layers, are designed to extract a 

combination of local and global properties from the incoming data. By combining 

smaller convolutional and pooling layers from inception modules, the network may 

extract spatial and temporal properties from the input data. The objective of the 

inception module is to learn many feature maps at different scales, then integrate them 

to produce a more comprehensive representation of the input data. The network may 

consequently gather a wide range of low-level and high-level information that can be 

useful for tasks like picture categorization. Depending on the desired level of 

complexity and the volume of input data, inception modules can be added to the 

network at different points. They can also be altered by altering the convolutional and 

pooling layers’ size and number, as well as the nonlinear activation function’s type. 

The necessary TensorFlow libraries and classes are imported. The input shape 

and number of classes for images are specified, including pneumonia and normal. To 

customize the pre-trained InceptionNet model for the classification task, additional 

custom layers are loaded. The model is put together using the Adam optimizer and 
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categorical cross-entropy loss after the pre-trained layers have been filled in. To 

perform real-time data augmentation during training, ImageDataGenerator is set up. 

The heap size and training period count are then set, along with the indexes for the 

train, validation, and test sets of data. Train loads and preprocesses validation and test 

data using flow_from_directory. Tags are categorically encoded, and images are 

resized. The model is trained by passing the train and validation data, the number of 

steps per period, and the validation steps through the fit function. Using the evaluate 

and print test loss and accuracy option, the model is evaluated on the test data after the 

training. 

ResNet 

Using the layer inputs as a guide, the weight layers of a residual neural network 

develop residual functions. Identifier mappings are carried out by skip connections in 

a residual network, which is added to the layer outputs. The strategy behind this 

network is to let the network fit the residual mapping rather than have layers learn the 

underlying mapping [11]. Thus, let the network fit instead of using, say, the initial 

mapping of H(x), 

F(𝑥) = 𝐻(𝑥) − 𝑥 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝐻(𝑥) = 𝐹(𝑥) + 𝑥 

In this section, we’ll go through how to classify images in Keras using ResNet50. 

Import libraries: Import Keras and other necessary libraries. Install ResNet50 and use 

Keras to initialize the ResNet50 model. The intended shape of the input photos is 

specified by the input shape argument. Set include top=False to prevent ResNet50’s 

fully linked layers from being included in the model. For certain classification jobs, 

this enables customization. Use pre-trained weights: To start the model with pre-

trained weights from the ImageNet dataset, set weights = ‘imagenet’. These weights 

offer a place to start for accurate categorization. 

An effective tool for picture categorization in Keras is ResNet50. By loading the 

model, setting it up, and using weights that have already been trained, accurate results 

can be obtained with minimal work. The model must be assembled, and the dataset 

must be ready, for the implementation to be complete. Using the Keras API of 

TensorFlow, additional code constructs a neural network model based on the ResNet 

architecture. The model is made up of numerous fully connected layers that are placed 

on top of a pre-trained ResNet basic model. The model is intended to solve a binary 

classification problem in which one of two classes is to be determined for each input. 

For enhancing model performance and avoiding overfitting, the design contains 

additional layers for feature extraction and editing. Accuracy, precision, and recall are 

just a few of the criteria that have been established to gauge how well the model is 

working. These metrics shed light on several facets of the categorization performance 

of the model. Overall, the code builds a binary classification model based on ResNet, 

compiles it using Adam optimizer and binary cross-entropy loss, and sets evaluation 

metrics to track the model’s performance during training and evaluation. 

VGG16 

The VGG model, commonly known as VGGNet, is referred to as VGG16. It is a 

16-layer convolutional neural network (CNN) model. When using numerous smaller

layers rather than a single large layer, the decision functions are improved, and the 
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network can converge more quickly because there are more non-linear activation 

layers present [12]. In the top five tests, the model performs 92.7% accurately in 

ImageNet, a dataset of over 14 million images divided into 1000 classes [8]. 

VGG16 operating principle is based on the idea that stacking many smaller layers 

increases the network’s decision-making power. The model can capture and learn 

complicated characteristics from input photos by employing multiple convolutional 

layers with non-linear activation functions. The input image for VGG16 is typically 

224 × 224 pixels in size and is processed through several convolutional layers. Each 

convolutional layer extracts various features at various degrees of abstraction from the 

input by applying a set of learnable filters to the input [11]. These filters have been 

trained to recognize forms, edges, and other visual patterns. A non-linear activation 

function, such as the Rectified Linear Unit (ReLU), is used after each convolutional 

layer. By introducing non-linearity, the activation function enables the model to learn 

intricate connections between the retrieved data. The max-pooling layers in VGG16 

also help to decrease the spatial dimensions of the feature maps by choosing the 

maximum value within a constrained area. Using methods like backpropagation and 

gradient descent, VGG16 learns to modify the weights and biases of its layers during 

training. To reduce the discrepancy between the model’s anticipated outputs and the 

ground truth labels provided in the training data, the model is trained. 

DenseNet 

Each layer’s features and gradients are strengthened by DenseNet by using the 

top classifier to oversee the other layers through feature connection. The efficiency of 

features from each hidden layer is less enhanced or verified by the top classifier, which 

is more likely to evaluate the effectiveness of the sum of input features for the final 

layer [13]. 

It uses convolutional layers, pooling, and dense blocks to obtain significant 

representations from input images. The input images’ sizes are specified by the input 

shape option, and the final classification layers are disregarded if include top is set to 

False. In addition, pre-trained weights from the ImageNet dataset are loaded by setting 

weights to “imagenet”, assisting with model initialization. After the convolutional 

layers, the pooling operation is determined by the pooling parameter. The 

base_model.summary() method displays the architecture’s layers and parameter 

counts. The efficacy of DenseNet in many computer vision applications is mostly a 

result of its dense connections and configurable parameters [13]. 

2.3. Performance metrics 

To measure performance, it is necessary to evaluate the trained model using the 

validation dataset. Accuracy, precision, recall, and F1-score are evaluation metrics for 

binary classification issues. The effectiveness of the classification models can be 

assessed in several different ways [14]. To assess the performance for categorizing 

colon polyps, we employed accuracy (Equation (2)), precision (Equation (3)), recall 

(Equation (4)), and f-measure (Equation (5)) measures. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑡𝑝 + 𝑡𝑛)

(𝑡𝑝 +  𝑓𝑝 + 𝑓𝑛 +  𝑡𝑛 )
(2) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

(𝑡𝑝 +  𝑓𝑝)
(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

(𝑡𝑝 +  𝑓𝑛)
(4) 

𝑓 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2

(
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
+

1
𝑅𝑒𝑐𝑎𝑙𝑙

)
(5) 

All measures distinguish the correct classification of labels within different 

classes. Recall is a function of its correctly classified examples and its misclassified 

examples. 

2.4. Model fine-tuning 

Hyperparameters can be tuned, architecture changed, or other techniques such as 

normalization can be used to improve the performance of the model. Architectures 

such as VGG16, ResNet, InceptionNet can be used (Figure 4). 

Figure 4. Model of pneumonia detection using convolutional neural networks from 

chest X-ray images. 
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3. Results and discussion

Table 2 shows a summary of the distribution of X-ray images for the training,

testing, and validation datasets. The table has two categories: “Pneumonia” and 

“normal lung”, which represent the presence or absence of pneumonia on X-ray 

images. 

Table 2. Length of the input files with normal and pneumonia chest X-ray images. 

Normal Pneumonia 

Train 1341 3875 

Test 234 390 

Val 8 8 

Table 3. Breakdown of the numbers in each dataset. 

Train Test Validation (Val) 

Pneumonia 3875 390 8 

Normal Lungs 1341 234 8 

In the training list, there are 3875 X-ray images labeled as pneumonia and 1341 

X-ray images labeled as normal lung. These images may be used to train a machine

learning model to distinguish between pneumonia and normal lung X-ray images. The 

test dataset contains 390 pneumonia X-ray images and 234 normal lung X-ray images 

(Table 3). This dataset is often used to test the performance of a model trained on 

unobserved data. Validation data, with only 8 images for each class, is usually used to 

adjust or validate the model after the training and testing phases. The small size of the 

validation dataset indicates that only a small subset of the data is used for final model 

testing or hyperparameter tuning. These numbers provide an overview of how X-ray 

images are distributed in different datasets for the task of diagnosing pneumonia. 

Figure 5. Pixel distribution and values. 

According to Figure 5, the X-ray images in this study have a resolution of 1128 

pixels and a height of 1336 pixels, with one color channel The pixel density ranges 
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from a minimum value of 0.00000 to a value of a maximum of 255.00000, representing 

the darkest and lightest values of the pixel, respectively. Graph 1 offers a pixel density 

distribution plot, which indicates the frequency of different pixel intensities inside the 

snap shots. The graph offers records for the X-ray pix. The measured pixel density is 

calculated as 73.2978, this means that a mean pixel density. However, the same old 

deviation of 38.1653 shows the distinction in pixel depth of many of the photographs. 

This statistical information is important for know-how the houses of X-ray pix and can 

help to develop picture processing techniques for medical applications. 

3.1. Image preprocessing 

In the context of image processing using the Python programming language, a set 

of parameters is used to add and manipulate images. These parameters include rotation 

range, width_shift_range, shear range, zoom range, and samplewise_center. The 

rotation range parameter allows random rotation of images up to 20 degrees, 

introducing contrast and improving the diversity of the dataset. The width_shift_range 

parameter enables the shift of image pixels by 10% of the image width, to produce a 

small change that simulates a different view or position. The shear range parameter 

introduces shear changes to images, enabling image shapes to be distorted by up to 

10% of the image width. The zoom range parameter allows one to randomly zoom in 

or out of images by up to 10%, providing an additional level of flexibility and scale. 

Finally, the samplewise_center parameter sets the pixel values of each image by 

normalizing the images and subtracting the median value of the dataset. Together these 

parameters contribute to data optimization and manipulation techniques, facilitating 

the training and evaluation of machine learning models by expanding the data and 

improving its diversity. 

3.2. Separate generator for valid and test sets 

The reason why we cannot use a single generator for validation and analysis of 

the training data is because of the general operation performed by the generator. In 

training, the generator normalizes each image using batch statistics. This means that 

the mean and standard deviation used for normalization are calculated based on the 

images in the batch being processed. However, when it comes to validation and 

testing, we want to simulate a real situation where we deal with images individually 

and not in groups. In this case, the model should not have any knowledge about the 

test data beforehand. If we were to use a single generator with “batch normalization” 

for validation and analysis, it would provide information about the test data implicitly 

by allowing it to compute several batches. To avoid this issue, we need to use a 

separate generator for validation and test data. This generator needs to simplify the 

incoming check information and the usage of statistics taken from the training middle. 

Using popular facts used while training, we ensure that the version obtains regular and 

independent information during validation and assessment. This approach helps to 

hold the integrity of the assessment procedure, because the model is tested on random 

statistics without prior know-how or advantage received from the test institution. It 

permits us to accurately look at the version’s performance and determine how properly 

it generalizes to actual-international information. By following this method, we 
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expand a robust and independent evaluation framework for the overall performance of 

our version. 

The photo in Figure 6 is an X-ray image, that is represented in a virtual layout. 

The dimensions of this X-ray picture are precise as 180 pixels in width and 180 pixels 

in top. This method consists of a grid of one hundred eighty pixels horizontally and 

one hundred eighty pixels vertically. Additionally, it is cited that the X-ray picture 

consists of an unmarried color channel. In the context of grayscale pix, inclusive of X-

rays, an unmarried coloration channel represents the depth or brightness values of each 

pixel. This indicates that the photograph is represented in shades of gray instead of 

containing coloration facts. By having these dimensions and a single-color channel, 

the X-ray photo in Figure 7 can be processed and analyzed using numerous laptop 

imaginative and prescient techniques. Understanding the characteristics of the photo, 

which include its size and color channel, is critical for in addition evaluation, 

interpretation, and capability application of photograph processing algorithms or 

device mastering models within the scientific area. The pixel density graph in Figure 

8 shows the distribution of pixel intensity in the X-ray image shown in 6. The graph 

shows the frequency or number of pixels at different intensity levels. The observed 

statistics provide some details of the image, where the maximum and minimum pixel 

values of 2.5969 and −2.4856 respectively indicate the brightest and darkest pixels. 

With a total value of 0.0000, the overall strength appears to be around the neutral level. 

Furthermore, a standard deviation of 1.0000 suggests a wide range of pixel intensities 

throughout the image. These statistical studies contribute to a better understanding of 

image characteristics and can facilitate image processing techniques and medical 

applications. 

Figure 6. Pixel intensity distribution graph. 

Figure 7. Raw chest X-ray image. 
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Figure 8. Pixel intensity graph. 

3.3. Building a CNN Model 

Table 4. Parameter types and numbers. 

Parameter Types Number of Parameters 

Total Params 6,203,681 

Trainable Params 6,202,785 

Non-trainable Params 896 

According to Table 4, the model has a total of 6,203,681 parameters. Of these, 

6,202,785 parameters are trainable, meaning they can be changed and improved during 

the model training process to improve its performance in each task. On the other hand, 

there are 896 untrained parameters that are predicted and remain constant throughout 

the training period. These untrained layers usually include feature sets or pre-trained 

features obtained from previous examples or external sources. By separating trained 

and untrained phases, the model benefits from a balance between flexibility and 

stability. This separation allows the model to learn specific information while using 

pre-existing knowledge or fixed features of the structure. Controlling and 

understanding these parameters is important for effective model training, optimization, 

and obtaining optimal results in various machine learning applications. During version 

schooling, several parameters are frequently defined to govern and optimize the 

mastering procedure. The parameter “epochs” shows that the education process entails 

repeating the complete dataset 10 instances, allowing the model to regularly analyze 

from the facts. The “validation records” parameter shows that a separate validation 

dataset is used to check the model’s performance and examine its typical capacity at 

some point of schooling. The “class weight” parameter suggests the mission of various 

weights to extraordinary instructions, allowing for example to prioritize certain 

instructions or to cope with an unbalanced distribution of lessons. The “steps per epoch” 

parameter determines the number of steps or batches to be processed in each education 

length, which impacts the granularity and performance of the training method. Finally, 

the “validation steps” parameter specifies the range of steps or agencies to be 

processed at some point of the validation step, controlling the frequency of the 
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evaluation and the computational resources used. By cautiously tuning these 

parameters, the version’s education approach may be satisfactory tuned to obtain 

better overall performance, enhance connectivity, and deal with the challenges or 

demands of a given task. 

Figure 9. Loss and accuracy values of CNN Model for test and train input. 

The given statistics represent the performance result of the train model after 

training (Figure 9). The first line means that the loss executed on the check dataset is 

0.4553, which shows how well the model’s predictions healthy the actual values, with 

a decrease value indicating higher overall performance. The accuracy of the 

corresponding look at is 83.49%, which represents the percentage of correctly 

anticipated labels as compared to the total range of samples inside the test dataset. The 

second line refers to the decrease lack of 0.1417 at the education dataset, suggesting a 

development in performance during training. The accuracy of the train is said to be 

95.32%, which shows the share of efficaciously anticipated labels inside the training 

set. These results advocate that the model has carried out excessive accuracy at the 

train information, however there is a mild lower in performance at the check dataset, 

which may additionally suggest the want for similarly improvement to improve the 

capability to generalize the model and enhance its overall performance on unobserved 

information. 

Figure 10. Confusion matrix of CNN model. 

The Confusion Matrix is a commonly used tool in machine learning to evaluate 

the performance and accuracy of feature classification (Figure 10). It provides a 

comprehensive overview of model predictions by comparing them with actual labels. 

The main purpose of using the confusion matrix is to get information about the 

performance of the model in different groups and to identify the sources of errors. By 
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analyzing these figures, we calculated various parameters such as accuracy, precision, 

recall, and F1 scores, which provide a clearer understanding of the model’s 

performance. 

Table 5. Evaluations obtained from the confusion matrix of CNN model. 

0 1 Accuracy Macro Avg. Weighted Avg. 

Precision 0.95 0.81 0.84 0.88 0.86 

Recall 0.62 0.98 0.84 0.8 0.84 

F1-score 0.75 0.89 0.84 0.82 0.83 

Support 234 390 0.84 624 624 

The results of the perturbation analysis of the CNN model show that the model 

performed well in general (Table 5). The accuracy of predicting the “Normal” 

category (0) was excellent, at 0.95, meaning that when the model described an event 

as “Normal”, it was 95% accurate. On the other hand, the recall for the “Normal” 

group was 0.62, suggesting that the model missed many “Normal” events as only 62% 

were correctly identified. The F1-score for the “Normal” group was 0.75, indicating a 

well-balanced performance in terms of precision and recall. The number of incidents 

in the “Normal” group was recorded as 234, which shows the support of that group. 

Further, the accuracy of the category “pneumonia” (1) was 0.81, suggesting that when 

the model predicted the event as “pneumonia”, it was correct 81% of the time. The 

recall for the group “pneumonia” was strong, at 0.98, which means that the model 

correctly identified 98% of cases of “pneumonia”. The “pneumonia” cluster has an 

F1-score of 0.89, indicating a strong combination of precision and recall. The number 

of cases in the “pneumonia” group was reported as 390, indicating support for that 

group. Accuracy measurements provide a comprehensive assessment of the model’s 

performance. Both precision and recall were 0.84, suggesting that the model was 84% 

accurate. The accuracy of the F1-score was also 0.84, indicating that the entire dataset 

performs well in terms of accuracy and recall. Moderate support for all groups is 

indicated by positive support of 0.84. When statistical significance was considered, 

the accuracy was 0.88, suggesting acceptable overall accuracy across groups. The 

model has some problems in treating cases from both groups equally, as seen by the 

average score of 0.80. The average F1-score was 0.82, indicating a good level of 

accuracy and recall for all groups. The average support measured across all groups 

was reported as 624 with a total of major support. Finally, the weighted values provide 

a general assessment that accounts for group imbalance. The mean accuracy was 0.86, 

suggesting that the overall accuracy was satisfactory. The weighted average recall was 

0.84, indicating that the model can capture samples from both groups. The weighted 

average F1-score was 0.83, indicating a balanced performance for all groups when 

precision and recall were considered. All the heavy support in all groups is indicated 

by the heavy support of 624. In general, the model worked well, with excellent 

accuracy and recall for the “pneumonia” group but significant problems collecting 

cases from the “Normal” group. These findings indicate that the model may require 

further development to accurately identify “Normal” cases while maintaining high 

accuracy for “pneumonia” cases. 

65



Imaging and Radiation Research 2024, 7(1), 6257. 

3.3.1. DenseNet 

Table 6. Parameter count of DenseNet. 

Total params: 7,037,504 

Trainable params: 6,953,856 

Non-trainable params: 83,648 

In a traditional CNN, each layer is only connected to the next layer. However, in 

Densenet, every layer is connected to every deep layer in the network. This dense 

connectivity model facilitates reuse and promotes the propagation of gradients, which 

can improve information flow and improve network performance. Dense connectivity 

in Densenet is achieved through a specific structure called a “dense block”. A dense 

domain has many layers, where each layer takes all the previous maps as input. This 

design ensures that information from earlier stages is directly accessible to subsequent 

stages, allowing for the extraction of more efficient features. Additionally, Densenet 

includes a transition layer between dense blocks to control the number of feature maps. 

The transformation layer includes batch normalization, followed by a 1 × 1 

convolutional layer and averaging. This reduces the size of feature maps, which helps 

reduce network complexity. In the results, the total number of parameters of the 

Densenet model is 7,037,504. Of these, 6,953,856 parameters are trainable, meaning 

they are learned during training (Table 6). The remaining 83,648 parameters are not 

configurable, which usually include batch normalization parameters or other fixed 

parameters. Overall, Densenet has shown remarkable performance in various 

computer vision tasks, such as image segmentation, object recognition, and 

segmentation. Its dense network has been shown to improve gradient flow, reduce the 

vanishing gradient problem, and promote segmentation. These characteristics make 

Densenet an efficient framework for deep learning tasks, leading to superior results on 

benchmark datasets. 

Figure 11. Loss and accuracy values of DenseNet for test and train input. 

In the results you provided, the Densenet model achieved an analysis loss of 

1.3588 and a train loss of 0.2226 (Figure 11). The loss value shows how well the 

model works in reducing the difference between the predicted and actual values. Low 

loss rates usually indicate good model performance. A test accuracy of 70.99% means 

that the model predicted the class labels for 70.99% of the test data samples. Similarly, 

the training accuracy of 92.48% indicates that the model has achieved an accuracy of 

92.48% on the training data. Accuracy is a measure of how well the model performs 

overall, with higher values indicating better performance. A confusion matrix is a 

useful tool for analyzing the performance of a cluster model. It shows the number of 

correct and incorrect guesses for each category. In the confusion matrix: 
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Figure 12. Confusion matrix of DenseNet. 

The rows represent the actual groups, while the columns represent the predicted 

groups. The diagonal elements of the matrix represent the correct estimates, where the 

predicted group matches the true group. In this case, the model correctly described 

224 events of the first class and 260 of the second class. The off-diagonal elements 

represent misclassifications. According to the confusion matrix (Figure 12), it can be 

noted that the model did not distinguish 10 times the first group as the second group 

and 130 times the second group as the first group. To comment on the results, it is 

important to have some context about the specific task or dataset of the Densenet 

model that was trained and tested. However, based on the data provided, it seems that 

this model has achieved good accuracy in the training and test groups, although the 

test accuracy is slightly higher. The wrong choices shown in the confusion matrix 

indicate that the model makes some mistakes in distinguishing between the two 

groups. Further research, such as examining poorly structured samples or considering 

other evaluation metrics, will be necessary to understand the nature of these errors and 

improve the performance of the model. 

Table 7. Evaluation metrics of DenseNet. 

0 1 Accuracy Macro Avg. Weighted Avg. 

Precision 0.98 0.69 0.71 0.84 0.8 

Recall 0.24 0.99 0.71 0.62 0.71 

F1-score 0.39 0.81 0.71 0.6 0.66 

Support 234 390 0.71 624 624 

Based on the generated confusion and evaluation measures, the DenseNet model 

(at time 50) shows mixed performance (Table 7). The accuracy of the “Normal” (0) 

category is as high as 0.98, suggesting that when the model predicts an image as 

“Normal”, it is true 98% of the time. The recall for the “Normal” category, on the other 

hand, is very low at 0.24, which means that the model detects only 24% of “Normal” 

events. The accuracy of the category “pneumonia” (1) is 0.69, showing an accuracy of 

69% in predicting cases of pneumonia. The recall for the “pneumonia” category is 

high at 0.99, which means that the model correctly identifies 99% of true pneumonia 

cases. The recall for the category “pneumonia” is strong, at 0.99, indicating that the 

model correctly detects 99% of true cases of pneumonia. The F1-score for the 

“Normal” group is 0.39, while it is 0.81 for the “pneumonia” group, indicating a high 

level of precision and recall. The overall accuracy of the model is 0.71, and the main 

and average metrics show good capability. According to the confusion matrix, the 

model correctly identified 57 cases as “Normal” in fact “Normal”, but incorrectly 

predicted a large number of cases (177) as “Normal” is actually “pneumonia”. Except 
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for one case (389), it was well taken care of “pneumonia”. These findings suggest that 

the DenseNet model has a large false positive rate for “Normal” cases, indicating a 

potential limitation in its ability to correctly detect non-pneumonia images. More work 

may be needed to improve the performance of the model to correctly identify 

“Normal” patients while maintaining its good performance in pneumonia 

discrimination. 

3.3.2. VGG16 

Table 8. Parameter count of VGG16. 

Total params: 14,714,688 

Trainable params: 14,714,688 

Non-trainable params: 0 

Figure 13. Loss and accuracy values of VGG16 for test and train input. 

VGG16 is a convolutional neural network (CNN) architecture that was 

introduced by means of the Visual Geometry Group (VGG) at the University of 

Oxford in 2014 (Table 8). It is known for its simplicity and classical design, which 

consists of many convolutional layers with 3 × 3 small filters, followed by max-

pooling layering. The architecture also includes a dense community with hidden 

layers, every composed of 4096 nodes, and an output layer with 1000 nodes (Kaggle). 

The VGG16 architecture won reputation due to its deep layer structure, which has 

proven progressed overall performance in a whole lot of computer vision obligations, 

which include image processing, item detection, and segmentation. The use of smaller 

filters (3 × 3) allows a deeper community with fewer layers compared to the use of 

larger filters. The VGG16 model achieved a test loss of 0.3491 and a train loss of 

0.2014 (Figure 13). Low loss rates indicate good performance, as model predictions 

are in good agreement with the ground truth value. It is important to note that the loss 

of training is lower than the loss of the test, it suggests a general level where the model 

works well with the training data compared to the unknown test data. The test accuracy 

of 84.78% indicates that the model predicted the class labels for 84.78% of the test 

data samples. Similarly, the training accuracy of 93.08% highlights the model’s 

performance of 93.08% accuracy on the training data. These positive data indicate that 

the model’s performance is good, but there is still room for improvement. To enhance 

the performance of the model, methods such as weight control can be considered to 

reduce excess weight. In addition, data augmentation techniques can be used to 

increase the diversity of the training data, thereby improving the overall ability of the 

model to generalize and predict accurately. 
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Table 9. Evaluation metrics of VGG16. 

0 1 Accuracy Macro Avg. Weighted Avg. 

Precision 0.88 0.85 0.86 0.86 0.86 

Recall 0.72 0.94 0.86 0.83 0.86 

F1-score 0.79 0.89 0.86 0.84 0.85 

Support 234 390 0.86 624 624 

Precision is defined as the proportion of correctly expected cases in relation to 

the total number of correctly expected cases (Table 9). The precision of the “Normal” 

(0) category is 0.88, suggesting that when the model predicts an image as “Normal”,

it is true 88% of the time. The precision of the “pneumonia” category (1) is 0.85, 

showing an accuracy of 85% in predicting cases of pneumonia. The number of 

correctly expected cases out of the total number of positive events is measured by 

recall, also known as sensitivity or true positive rate. The recall for the “Normal” class 

is 0.72, which means that the model correctly detects 72% of “Normal” events. The 

recall for the “pneumonia” category is 0.94, which means that the model correctly 

detects 94% of all pneumonia cases. The F1-score is a balanced evaluation of model 

performance as it is a proportional measure of precision and recall. The F1-score for 

the “Normal” group is 0.79, while the F1-score for the “pneumonia” group is 0.89. An 

increased F1 score means better balance and recall. The number of occurrences of each 

group in the dataset is represented by the support. The “Normal” group has 234 

supporters, while the “pneumonia” group has 390. The accuracy of the model 

predictions across all groups was measured. This VGG model has an accuracy of 0.86, 

suggesting that it predicts correctly 86% of the time. A macro average aggregates 

average performance across groups without considering group imbalances, but a 

weighted average does. The overall precision, recall, and F1 scores are respectively 

0.86, 0.83, and 0.84. The weighted average precision, recall, and F1 scores are 

respectively 0.86, 0.86, and 0.85. A confusion matrix is a table that compares model 

predictions with actual labels. In this situation, the model predicted 169 cases as 

“Normal” actually as “Normal”, and 65 cases as “pneumonia” actually as 

“pneumonia”. It misdiagnosed 24 cases as “pneumonia” when they were actually 

“Normal”, and correctly identified 366 cases as “pneumonia”. In general, the model 

works very well for both groups, with high accuracy and recall, suggesting its ability 

to distinguish between “Normal” and “pneumonia”. The effectiveness of the model is 

also supported by the F1 and precision scores. It is important to emphasize, however, 

that a comprehensive study will require more information about the specific data, the 

problem being addressed, and any specific methods or limitations. 

3.3.3. ResNet 

Table 10. Parameter count of ResNet. 

Total params: 23,587,712 

Trainable params: 23,534,592 

Non-trainable params: 53,120 
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Figure 14. Loss and accuracy values of ResNet for test and train input. 

ResNet, short for Residual Network (Table 10), is a deep convolutional neural 

network architecture proposed by He et al. [11]. Introduced the concept of residual 

connections, which helped solve the problem of vanishing gradients in deep neural 

networks. In traditional deep systems, information flows through a series of layers, 

and each layer learns to extract elements from the input. However, as the network gets 

deeper, the gradients can become very small, making it difficult for the network to 

learn effectively. ResNet solves this problem by introducing skip links, also known as 

shortcut links or data maps. 

In the results we provided for the ResNet model, the test loss of 1.0157 and the 

train loss of 0.4419 show how well the model works to reduce the difference between 

the predicted and actual values (Figure 14). Lower loss valuesare generally desirable, 

suggesting better model performance. A test accuracy of 66.67% means that the model 

correctly predicted the class letters for 66.67% of test data samples. Similarly, the 

training accuracy of 81.19% indicates that the model has achieved an accuracy of 

81.19% on the training data. Higher levels of accuracy indicate better overall 

performance. 

Comparing the accuracy of the train with the accuracy of the test, it seems that 

this model has a certain degree of overfitting. Overfitting occurs when a model 

performs well on the training data but does not fit well on the unobserved test data. 

Regular methods such as dropping out of school or losing weight can be used to reduce 

excess and improve overall. 

Table 11. Evaluation metrics of ResNet. 

0 1 Accuracy Macro Avg. Weighted Avg. 

Precision 1 0.64 0.65 0.82 0.78 

Recall 0.08 1 0.65 0.54 0.65 

F1-score 0.14 0.78 0.65 0.46 0.54 

Support 234 390 0.65 624 624 

The ResNet example (time 50) (Table 11) shows the performance based on the 

given confusion matrix and evaluation metrics. Accuracy for the “Normal” category 

(0) is 1, indicating that when the model predicts an image as “Normal”, it is correct

100% of the time. However, the recall for the “Normal” group is very low at 0.08, 

suggesting that the sample only identifies 8% of “Normal” cases. For the group 

“pneumonia” (1), the accuracy is 0.64, showing an accuracy of 64% in predicting cases 

of pneumonia. The recall for the category “pneumonia” is higher than 1, which means 

that the model correctly identifies all cases of pneumonia. However, the very low 

recall for the “Normal” category raises concerns about the model’s ability to correctly 
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identify “Normal” cases. The F1-score for the “Normal” group is 0.14, which shows 

the imbalance between precision and recall. The overall accuracy of the model is 0.65, 

and the main and limited metrics suggest subpar performance compared to previous 

models. The confusion matrix reveals that the model predicted 18 events as “Normal” 

in fact as “Normal”, but misclassified many events (216) as “Normal” when they were. 

and “pneumonia”. It correctly classified all cases (390) as “pneumonia”. These results 

suggest that the ResNet model struggles to accurately identify “Normal” cases and 

may have a high false positive rate, which may be a cause for concern in clinical 

settings. Further research and fine-tuning may be needed to improve the performance 

of the model. 

3.3.4. InceptionNet 

Figure 15. Loss and accuracy values of InceptionNet for test and train input. 

InceptionNet, also known as GoogLeNet, is a deep neural network architecture 

developed by Szegedy et al. [10]. It was designed to tackle the problems of deep 

network training by introducing the concept of “starting modules” and reducing the 

computational cost of convolutions. A key innovation in InceptionNet is the 

initialization module, which consists of multiple convolutional layers with different 

filter sizes. The purpose of the startup module is to capture information at different 

spatial scales by applying filters of different sizes within the same scale. This allows 

the network to efficiently extract local and global components. 

Regarding the results we provided for the InceptionNet model, the test loss of 

0.3736 and the train loss of 0.2899 show that the model has succeeded in reducing the 

difference between the predicted and actual values (Figure 15). Lower loss values are 

generally desirable as they indicate better performance. A test accuracy of 85.58% 

means that the model correctly predicted the class letters for 85.58% of the test data 

samples. Similarly, a train accuracy of 90.43% indicates that the model has achieved 

an accuracy of 90.43% on the training dataset. These accuracy scores indicate that the 

performance of the model is good but still leaves room for improvement. 

It is vital to be aware that the outcomes we supplied show a big overall 

performance gap between training and test accuracy, which indicates over-

performance. Overfitting occurs when a version learns to carry out properly on training 

data but fails to generalize to unobserved look at records. Standard methods along with 

dropout, weighting, or growing the size of the training dataset can be used to further 

reduce and improve generalization. 
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Table 12. Evaluation metrics of InceptionNet. 

0 1 Accuracy Macro Avg. Weighted Avg. 

Precision 0.83 0.85 0.84 0.84 0.84 

Recall 0.73 0.9 0.84 0.82 0.84 

F1-score 0.77 0.88 0.84 0.82 0.84 

Support 234 390 0.84 624 624 

Based on the specified confusion matrix and evaluation criteria, the InceptionNet 

model (at 50 times) performs very well (Table 12). The accuracy of the “Normal” (0) 

category is 0.83, suggesting that when the model predicts an image as “Normal”， it 

is correct 83% of the time. The recall for the “Normal” class is 0.73, which means that 

the model correctly detects 73% of all “Normal” events. The accuracy of the 

“pneumonia” category (1) is 0.85, which means an accuracy of 85% in predicting cases 

of pneumonia. The recall for the group “pneumonia” is strong, at 0.99, which means 

that the model correctly detects 99% of cases of real pneumonia. Both groups have 

good F1 scores, with 0.77 for “Normal” and 0.88 for “pneumonia”. The overall 

accuracy of the model is 0.84, and large and heavy metrics support this figure. 

According to the confusion matrix, the model predicted 170 cases as “Normal” as 

“Normal”， and 64 cases as “Normal” as “pneumonia”. It misdiagnosed 36 cases as 

“pneumonia” when they were actually “Normal”, and correctly identified 354 cases as 

“pneumonia”. These findings show that the InceptionNet model performs well in 

classifying “pneumonia” cases but outperforms in detecting “Normal” cases compared 

to VGG16. 

Figure 16. Final accuracy and loss evolution after 250 epochs. 

DenseNet’s high accuracy can be attributed to its unique dense connectivity 

method (Figure 16). By connecting each layer to each layer in a feedforward manner, 

DenseNet promotes the use of layers, which can help improve gradient flow and 

reduce the vanishing gradient problem. This dense network allows DenseNet to 

accurately capture and distribute information across the network, leading to powerful 

performance. ResNet, with its new residual networks, has shown great accuracy in 

solving the vanishing edge problem. By learning residual maps instead of generating 

direct maps, ResNet allows deep neural networks to be trained efficiently. These 
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remaining connections enable the gradient to flow smoothly, simplifying the training 

of very deep networks and contributing to high accuracy. The VGG16, although 

relatively simple compared to other models, has achieved competitive accuracy. Its 

parallel architecture, with small convolutional filters (3 × 3) and max-pooling layering, 

allows capturing local features at multiple scales. However, the depth of VGG16 is 

relatively low compared to DenseNet and ResNet, which reduces its ability to learn 

complex representations and contributes to low accuracy. InceptionNet, particularly 

Inception V3, has slightly lower accuracy compared to the others. The Inception 

architecture, with its inception modules, captures information at different spatial scales 

using parallel convolutional filters. While this design enables computational 

efficiency, it introduces increased complexity, leading to challenges in training and 

potentially impacting accuracy. 

4. Conclusion

Through multiple training phases with the same input, the models were able to

achieve increased accuracy. This iterative process allowed the models to learn and 

refine their predictions, resulting in improved performance over time. Despite the 

limitation of limited computing power and server space, the models underwent a 

maximum of 250 training iterations (epochs). This constraint was necessary to balance 

the computational resources available while still achieving notable progress. 

Additionally, it is worth noting that reviews from the literature support the notion that 

these models are robust and generalizable. Therefore, even when tested with different 

X-ray image inputs, the models are expected to exhibit strong performance, indicating

their reliability and effectiveness across various scenarios. 

The difference in accuracy among the models is attributed to the fundamental 

design variations between them. 
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Abstract: Medicare, a major healthcare program under the Centers for Medicare & Medicaid 

Services (CMS) has extended telemedicine services within several states in the US for different 

specialties for which it reimburses in order to establish a qualitative and accessible healthcare 

system. In parallel, it has been seen that teleradiology services by American Board Certified 

radiologists based offshore can significantly supplement healthcare delivery in the US by 

mitigating the shortage of radiologists and enhance outcomes of patient care especially for 

after-hours emergency work. Teleradiology can help workflow by improving workload 

distribution, lowering the cost of reporting, shortening turn-around-time for reports, and 

improving quality of life for staff. The aim of the article is to provide perspective on Medicare 

reimbursement of offshore telereporting services. We submit that due to its value proposition 

and contribution to healthcare, offshore telereporting by American Board Certified 

Radiologists is worthy of Medicare reimbursement and should be re-evaluated for its credits. 

Keywords: Medicare; teleradiology; offshore; reimbursement; healthcare 

1. Introduction

Radiology is a medical specialty that has become a primary contributor to human
healthcare [1]. It involves the acquisition and interpretation of images of the human 
body for the diagnosis of a number of diseases and abnormalities. Technological 
innovation paved the way for teleradiology, which involves the electronic transmission 
of diagnostic imaging studies such as X-rays, CTs, and MRIs to remote sites for 
consultation or interpretation. Teleradiology, a subset of telemedicine, has played a 
significant role in delivering high quality contemporaneous radiologic interpretations, 
particularly in areas or during time periods where there is a shortage of radiologists, 
to facilitate emergency consultations and improve standards of patient care. It has been 
considered as a front-line driver in making digital imaging achieve its deserved 
potential. 

The benefits of teleradiology for patients have been well documented in several 
studies [1–5]. In terms of scale of use, in the United States in 2014, more than 50% of 
all telemedicine services were reported to be performed by teleradiology [6]. The data 
from the American Medical Association’s 2016 Physician Practice Benchmark Survey 
reveals that physicians practicing in radiology (39.5%), psychiatry (27.8%), and 
cardiology (24.1%) frequently use telemedicine to connect with patients. Radiologists 
(25.5 percent) are in the third position among all specialties, to use telemedicine to 
connect with other health care professionals (having a specialty consultation and 
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getting a second opinion) after emergency medicine physicians (38.8 percent) and 
pathologists (30.4 percent) [7]. 

For teleradiology utilization, either the images are transmitted from the hospital 
to the residence of the hospital-based on-call radiologist in the United States after usual 
working hours or transmitted to a commercial teleradiology service provider that 
employs American Board Certified radiologists located in other states within US or 
offshore to carry out preliminary or final interpretations. However, in the latter case, 
the American Board Certified radiologists located offshore i.e., in countries other than 
the United States have been permitted to render only preliminary readings and not final 
radiologic interpretations. In these cases, onsite radiologists overread the images the 
next day and provide a final interpretation. This model has been previously validated 
and described in the literature [2,8,9]. 

The Centers for Medicare & Medicaid Services (CMS), an agency within the US 
Department of Health and Human Services (HHS) governs the nation’s major 
healthcare programs including Medicare, Medicaid, the Children’s Health Insurance 
Program (CHIP), and The State and Federal health insurance marketplaces. It 
evaluates the amassed data and prepares research reports, operates to remove the cases 
of fraud within the healthcare system, and manages the payments for all radiology 
services [10]. It decides reimbursement rates for all medical services and equipment 
covered under Medicare. The services are required to be medically essential, be 
ordered by physicians, and have documentation to support the submitted claims [11]. 
Generally, Medicare is available for people age 65 or older and people with disabilities 
and chronic conditions. Medicare has two parts, Part A (hospital insurance) and Part 
B (Medicare insurance). Medicare Part B helps cover medical services such as doctors’ 
services, outpatient care, and other medical services including teleradiology services 
(discussed in Pub. 100-02, Medicare Benefit Policy Manual, chapter 15, section 30). 
The interpretation of an X-ray, electrocardiogram, electroencephalogram, etc. are 
enlisted examples [12]. The cost of radiology comprises the technical fees related to 
the acquisition of images including the fee for operating the devices and paying the 
radiology technologists as well as the radiologist’s fees for reading and interpreting 
the images. Charges differ depending on the type of modality (e.g., MRI, CT), on 
whether contrast is used or not, on the body part/organ (e.g., breast, head, leg), and 
whether there is an interventional procedure or not [1]. 

1.1. Offshore reporting of radiologic examinations supplementing 
healthcare delivery 

Teleradiology services located within the United States have been working 
proficiently but face difficulty recruiting radiologists for night-time working hours 
[13]. Additionally, from an economic perspective the radiologists working nights are 
inherently unproductive and represents a significant cost burden to the healthcare 
system given that the current standard/expectation is typically ‘one week on one week 
off’ or often ‘one week on and two weeks off’ to allow for physician recovery from 
the unphysiological lifestyle and sequelae of night shift work. Furthermore, nightshift 
work is, for obvious reasons, perceived as being unattractive, rendering recruitment to 
this cohort especially challenging. Offshore teleradiology has demonstrated the 
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potential to address this problem and deliver quality and timely radiological 
interpretations through night-shift teleradiology services delivered by US Board 
certified radiologists when onsite radiologists are unable to provide immediate 
coverage [14,15]. Various ‘nighthawk’ teleradiology groups have evolved by 
leveraging the growing opportunities that teleradiology presents [16,17]. 

A survey was conducted to determine the effects of international teleradiology 
attending radiologist coverage (ITARC) of emergency examinations on radiology 
residents’ perceptions of night call. ITARC is the time gap when a teleradiologist is 
awake and work for normal daytime hours, at the same time covering the night shift 
in the US. Most surprisingly, the survey results revealed that ITARC relieved 
radiology residents’ stress and anxiety related to on-call shifts and promoted accurate 
afterhours readings and availability of attending radiologists for consultation with 
referring clinicians, reduced load on daytime attending radiologists and enhanced their 
educational experience as well. However, ITARC necessitates licensure and 
credentialing of off-shore teleradiologist in US hospitals, a secure network, redundant 
internet connections to banish downtime and an expeditious transmission of images 
for contemporaneous interpretations [18]. 

The benefits of ‘nighthawk’ services were also revealed by Goelman [19]. The 
study reported that ‘nighthawk’ services rendered through teleradiology supported by 
quick and secure internet connections resulted in enhanced night-time radiologist 
productivity, better quality of life, and most significantly, high quality radiology 
interpretations. 

Furthermore, burnout, a global health problem, is also prevalent among US 
physicians including radiologists. Numerous studies have reported that burnout is a 
cluster of symptoms developing from severe work-related stress, apparent as 
emotional fatigue, depersonalization, despondence, and lethargy [20,21]. It can also 
lead to reduction in physician productivity, professional effort, gratification, impaired 
performance and may even result in elevated physician turnover, early retirement 
contributing to worsening physician shortages, and tragically even physician suicide, 
thus eventually leading to increasing health care costs. A study by Canon et al. [22] 
revealed that 54%–72% of diagnostic radiologists and interventional radiologists 
under study reported aforesaid symptoms of burnout. Thus, the utilization of off-shore 
teleradiology services addresses burnout, improves workload distribution, reduces the 
diagnostic error rate, shortens turn-around-time for reports, and enhances the quality 
of life for radiologists. This has been well documented in various published studies of 
teleradiology [2,16,23–30]. 

Unfortunately, despite its manifested value proposition, offshore telereporting 
has still not received the desired credit for its contribution to healthcare. In the United 
States, Medicare and Medicaid laws prohibit radiologists who are located in countries 
other than the United States to qualify for reimbursement for final reads. Broadly, 
Medicare will not pay for health care or supplies that are conducted outside the United 
States (US). The term “outside the US” means anywhere other than the 50 states of 
the US, the District of Columbia, Puerto Rico, the US Virgin Islands, Guam, American 
Samoa, and the Northern Mariana Islands (discussed in Pub. 100-02, chapter 16, 
section 60, for exceptions to the “outside the US” exclusions) [12]. For this reason, 
offshore radiology reports are delivered in the preliminary or wet-read model which 
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necessitates subsequent review by an onshore radiologist (typically at the hospital of 
origin of the images). This results in duplication of effort and further strains a system 
that is already overwhelmed and subject to challenges such as reporting delays, 
reporting errors and radiologist burnout. 

Interestingly, the ACR Task Force on International Teleradiology, in 2005, 
released a white paper with the aim of addressing the legal, regulatory, reimbursement, 
insurance, quality assurance, and other issues related to international teleradiology. 
The task force acknowledged that there is no technological variation between 
intrinsically or offshore generated teleradiology interpretations and reports. In either 
case, quality and competency should be the priority. Worthy of mentioning, the task 
force also strongly opined that ABR certified status is the most trustworthy parameter 
for the quality of an interpreting physician. Moreover, reimbursement for radiologic 
interpretations and ensuing reports that are furnished by international teleradiology is 
predicated upon the expectation that the radiologists must be certified by the American 
Board of Radiology, should have medical licenses in every state and hold privileges, 
credentialed as a member of the medical staff and have professional liability insurance 
coverage at the institution or hospital performing the examination and receiving the 
report [13,31]. 

The confirmation of professional standing by way of medical licensure and 
credentialing of radiologists empaneled by teleradiology service providers, as well as 
stringent quality assurance programs, are pivotal in designing the outcomes of the use 
of teleradiology to offshore radiology services [32]. Moreover, the advent and 
integration of PACS (picture archiving and communication system) and RIS 
(radiology information system) into the teleradiology system, ensued proficient 
transmission of imaging and findings between teleradiologist and referring clinician 
[33]. An article reported that hundreds of US hospitals utilize overseas or offshore 
teleradiology services rendered by the teleradiology service providers such as 
teleradiology solutions, Bangalore, which strictly follow ACR guidelines regarding 
licensure, insurance, and hospital privileges. However, Medicare laws prohibit 
reimbursement to such offshore providers [16]. Besides reading images per se, some 
international teleradiology firms are also performing 3D image reconstruction for US 
hospitals [33]. 

The American College of Radiology [34], together with the American 
Association of Physicists in Medicine and the Society for Imaging Informatics in 
Medicine, issued an upgraded ACR technical standard for the electronic practice of 
medical imaging which clearly described the objectives and adequacy for the 
utilization of digital image data, along with the electronic transmission of patient 
examinations from one location to another for interpretation. In 2013, a White Paper 
of ACR Task Force on International Teleradiology recognized the role of teleradiology 
in patient care, in ameliorating access to radiologic services and subspecialty expertise 
in areas in which it is otherwise unavailable. The white paper also recognized the need 
for designing protocols and software for better connections between physicians, 
technologists and patients, rules for sharing electronic medical record and peer review 
system and thus refined the guidelines and standards for teleradiology practice 
focusing on the specified concerns [35]. 
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In 2019, a survey was carried out by the ACR Commission on Human Resources 
Workforce to determine the constitution of the radiology workforce and understand 
the current job market for radiologists. The results indicated that 8% of the workforce 
is greater than 65 years of age and 22% are between 56 and 65 years [36]. In another 
study, among 20,970 radiologists involved in active patient care, 82% were of age 45 
and over, while 53% were age 55 and over [37]. This indicated that the future 
workforce needs will depend on retirements of these senior radiologists. In a study 
presented at RSNA 2021, Khurana et al reported that the increase in the Medicare 
population surpassed the diagnostic radiology (DR) workforce by about 5% from 2012 
to 2019. Further, the pipeline of the incoming radiologist is not commensurate with 
the need, as from 2010 to 2020, the number of DR trainees entering the workforce 
increased by 2.5% as compared to a 34% rise in the number of adults over 65. The 
study by Khurana et al also projected a 4.2 times rise in the number of radiologists per 
100,000 Medicare enrollees from 2012 to 2019 in US [38,39]. A salve for these current 
workforce problems is teleradiology services provided by off-shore radiologists which 
can add to the capacity of American Board Certified radiologists and help bridge the 
shortfall. 

1.2. Medicare reimbursement 

Medicare has implemented strict guidelines through which it will reimburse 
telemedicine practices. The eligibility for Medicare reimbursement for a telemedicine 
service depends upon the patient’s location. The patient must be in a rural geographical 
location either a health professional shortage area or a county outside of a metropolitan 
statistical area with exceptions for patients getting treatment for end-stage renal 
disease, stroke, and substance use disorder [40]. Medicare makes payments under the 
physician fee schedule (PFS) for the services of more than 10,000 physician services 
and other billing professionals (i.e., payment of assistant at surgery, nurse practitioners, 
nurse midwives, physician assistant, clinical psychologists and social workers, 
registered dietitians or nutrition professionals etc.), since 1992. The Medicare PFS 
pricing amounts are adjusted to display the difference in practice costs from area to 
area. Under the PFS, the payment for the physicians’ services is conferred under a 
variety of settings, including physician offices, hospitals, critical access hospitals, 
skilled nursing facilities and other post-acute care settings, outpatient dialysis facilities, 
clinical laboratories, and beneficiaries’ homes [41]. 

A national private payer reimbursement online survey conducted by the 
American Telemedicine Association interpreted that there was no standard protocol 
for billing for telemedicine services in the hospitals because neither government nor 
private payers were willing to pay for them. Moreover, insurance companies followed 
the guidelines of their individual states. Administrative rules varied for in-person and 
telemedicine care which put impediments to reimbursement. It was postulated that the 
setting up of universal coverage policies by regulatory bodies would remove these 
barriers [42]. This approach is likely to be of greater benefit given that the challenges 
of radiologist shortages are neither local nor regional but rather national. The 
increasing utilization of telemedicine has resulted in raising interest among various 

79



Imaging and Radiation Research 2024, 7(1), 6404. 

payers, be it insurance companies, or certain government-funded programs, to expand 
their policies to accommodate for teleservices. 

In 2018, Medicaid widened the scope of telehealth and telemedicine services in 
several states within the US for which they reimburse, thus lowering impediments to 
their use. Despite support from lawmakers, administrators, and clinicians in favour of 
continued utilization of telehealth after the COVID-19 pandemic, there is ongoing 
debate as to whether telehealth will continue to be reimbursed in parity with in-person 
care [43]. There is however no dearth of legislation related to potentially improving 
healthcare reimbursement practices. For example. CMS had decided on its regulations 
to show required changes in telehealth reimbursements made by the Bipartisan Budget 
Act of 2018, specifically related to end-stage renal disease (ESRD) services and the 
treatment of acute stroke, with effect from January 2019 [44]. According to a report 
by American Society of Radiologic Technologists, on 1 June 2021, the Medicare 
Access to Radiology Care Act [45] was introduced by US Reps. Mike Doyle of 
Pennsylvania and John Curtis of Utah as House Resolution 3657 with companion 
legislation, Senate Bill 2641, introduced on 5 August by Sen. John Boozman and 
cosponsors Sen. Bob Casey of Pennsylvania and Sen. Steven Daines of Montana. 
These bills propose a law that revises Medicare reimbursement policy for radiologist 
assistants to bring it at par with state radiologist assistant licensure laws essentially 
recognizing that innovative approaches are needed to address these critical radiologist 
shortages. Additionally certain coverage restrictions around PET imaging outside of 
oncology were lifted by CMS in July 2021 [46]. However, the 2024 MPFS puts forth 
new difficulties for radiologists through reimbursement reductions and the pause of 
the appropriate-use criteria (AUC program) for advanced diagnostic imaging services 
initiated in 2014 [47–49]. 

In summary, a number of ground-breaking legislations have been passed in recent 
days to support telemedicine reimbursement that will positively impact on healthcare 
budgets and spending. However, off-shore teleradiology still awaits its legitimate 
credit for the value it provides. 

2. Conclusion

Medicare has expanded the reach of telehealth and telemedicine services in
several states within the US for different specialties for which they reimburse, to create 
a qualitatively superior healthcare system that is more accessible, affordable, and 
empowered. Our submission is that despite this, and despite the multiple obvious 
stated benefits of the offshore model, offshore teleradiology delivered by American 
Board Certified Radiologists still does not receive its due credit. We would submit that 
the night-to-day international teleradiology model, two decades on from its inception, 
represents a successful model that deserves commensurate attention from the 
standpoint of reimbursement. Essentially this is an idea whose time has come. 
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3. Take home points

1) The Medicare regulation restricting reimbursement for healthcare services
delivered overseas dates back to a time when it was intended to deter individuals
from travelling overseas for procedures performed by international physicians
and then submitting claims for reimbursement. The regulation did not take into
account telemedicine services, which were not available at the time.

2) Today, given severe radiologist shortages in the US, and resultant radiologist
overwork and burnout, American Board Certified radiologists located offshore
can significantly support and supplement the healthcare delivered by the local
radiologists in the US, especially for after-hours work, which can be more
physiologically performed in a daylight time zone.

3) The virtual pool of radiologists available through teleradiology increases the
doctor-patient ratio compensating for radiologist shortage especially at the time
of emergency situations.

4) Given these benefits, and given than Medicare has been making innovative
changes within the billing framework overall, it seems relevant that the issue of
Medicare reimbursement for radiology reporting services delivered from offshore
by American Board Certified Radiologists should be re-evaluated at this time, as
this has the potential to address the challenges of shortages of radiologists which
are being acutely perceived at this time.
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