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Abstract: Objective: To investigate the value of differential diagnosis of hepatocellular 

carcinoma (HCC) and cirrhotic nodules via radiomics models based on magnetic resonance 

images. Background: This study is to distinguish hepatocellular carcinoma and cirrhotic 

nodules using MR-radiomics features extracted from four different phases of MRI images, 

concluded T1WI, T2WI, T2 SPIR and delay phase of contrast MRI. Methods: In this study, 

the four kind of magnetic resonance images of 23 patients with hepatocellular carcinoma 

(HCC) were collected. Among them, 12 patients with liver cirrhosis were used to obtain 

cirrhotic nodules (CN). The dataset was used to extract MR-radiomics features from regions 

of interest (ROI). The statistical methods of MRradiomics features could distinguish HCC and 

CN. And the ability of radiomics features between HCC and CN was estimated by receiver 

operating characteristic curve (ROC). Results: A total of 424 radiomics features were extracted 

from four kind of magnetic resonance images. 86 features in delay phase of contrast MRI，86 

features in spir phase of T2WI，86 features in T1WI and 88 features in T2WI showed 

statistical difference (p < 0.05). Among them, the area under the curves (AUC) of these features 

larger than 0.85 were 58 features in delay phase of contrast MRI, 54 features in spir phase of 

T2WI, 62 features in T1WI and 57 features in T2WI. Conclusions: Radiomics features 

extracted from MRI images have the potential to distinguish HCC and CN. 

Keywords: radiomics features; hepatocellular carcinoma; MRI; cirrhotic 

1. Introduction 

The differential diagnosis of liver masses is still the current focus. As The 

primary liver cancer is one of the most common malignant tumors in the clinic, with 

more than 840,000 new cases per year and above 780,000 death cases per year, which 

incidence and mortality rate rank seventh and third in all cancers,respectively [1]. In 

more than 90% of the cases. The subtype of primary liver cancer is hepatocellular 

carcinoma (HCC) [2],which complicates liver cirrhosis caused by hepatitis C virus 

(HCV) and hepatitis B virus (HBV) infection [3]. The evolution of HCC is from 

cirrhotic nodule(CN) to dysplastic nodule(DN) and then to small hepatocellular 

carcinoma (SHCC), finally to progressed HCC [4]. SHCC also knowen as early 

hepatocellular carcinoma (eHCC) or subclinical hepatocellular carcinoma,without 

clearly imaging characterizations and clincial symptoms.The main reason of high 

mortality rate of HCC is detected so lately that treatment cannot work out effectively 

[5]. Thus, the sole approach to achieve long-term survival is to detect the tumor at an 

early stage. 
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Although biopsy is the gold standard for identifying focal hepatic lesions, it has 

limitations: a) Biopsy is an invasive examination, which have difficulity in acceptance 

of patients and repeatability of sample; b) The particularity of liver anatomy makes 

sampling difficult, appearing false-negative and false-positive results [5,6]; c) When 

the needle is withdrawn, it have risks to cause bleeding or implant transfer, which 

affects the subsequent treatment [6]. Fortunately, many researchers have discovered 

that the imaging features of SHCC and CN have great research value for differential 

diagnosis. Huang et al. [7] conclude that contrastenhanced ultrasound (CEUS) could 

be helpful in the differential diagnosis of hepatic malignant and benign lesions ,but 

dysplastic nodule may manifest with a similar enhancing pattern as that in 

welldifferentiated small HCC.Also,US images are easily affected by the operator's 

technical level and gastrointestinal gas. Chen et al. [8] concluded that 64-slice spiral 

CT can provide more sufficient imaging evidence for the clinical diagnosis of HCC 

and FNH and effectively identify benign and malignant tumors compared with 

conventional US examination, which also has high sensitivity in the diagnosis of tiny 

lesions.Furthmore, Ronot M and other researches [5] have shown that arterial phase 

hyperenhancement followed by washout on CT or MRI is highly specific. 

However, whether CEUS, enhanced CT, it only distinguish CN from SHCC 

anatomically. With the continuous deepening of research, many researchers have now 

adviced that MRI functional imaging is useful for distinguishing diagnosis,which has 

great potential to research.For example, According to a study [9] of hepatocellular 

carcinoma based on US ,CTand MR images by some people, the sensitivity of MR 

images in the hepatobiliary stage is the highest. Moreover, the study on the quantitative 

evaluation of focal hepatic lesions by DWMRI used 4 b values to obtain different ADC 

images [10]. The results of the study suggest that ADC values can distinguish 

cavernous hemangioma and liver cysts. The ratio of the ADC value of leision/liver can 

distinguish HCC and hepatic metastasis, and can provide information to help diagnose 

focal hepatic lesions with a diameter less than 3 cm. However, these studies still cannot 

clearly distinguish SHCC from DN.Radiomics is an emerging technology that has 

developed in recent years. It uses software to extract the texture features of the region 

of interest(ROI) by delineating it in the image, and performs computer operations to 

obtain small image parameters that cannot be observed by the human eyes. This 

research will use the combination of radiomics and magnetic resonance technology to 

differentiate between DN and HCC. 

2. Methods 

2.1. Radiomics workflow 

The raidomics flow of this study included: (1) images acquisition; (2) feature 

extraction; (3) data analysis (Figure 1). 
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Figure 1.The workflow of the study. 

2.2. Patients 

The protocol for this study was approved by the Institutional Review Committee 

of the Shandong First Medical University Affiliated Cancer Hospital Ethics 

Committee. The ethics filing number is SDTHEC2020010008. Case entry criteria: (1) 

Complete clinical imaging data; (2) No surgery, radiotherapy, chemotherapy, or 

interventional treatment before imaging examination; (3) Pathologically confirmed 

hepatocellular carcinoma.Search for 23 patients with hepatocellular carcinoma in 

Shandong Cancer Hospital who met the enrollment criteria from April 2019 to January 

2020, a total of 24 lesions, and they were recorded as 1 group, including 21 males and 

2 females, aged 42–83 years old , An average of 56.08 years old. Among the above-

mentioned patients, 12 had a history of liver cirrhosis and hepatitis B, and 12 had cir-

rhotic nodules, which were recorded as two groups, including 10 males and 2 females. 

2.3. Patient images acquisition 

Use GE HDe1.5TMR scanner.The scanning sequence and parameters are as 

follows: Axial breathing trigger FSETWI + FS,TR/TE2-3 breathing cycle/(80 ± 10) 

ms,layer thickness 6 mm, layer spacing 1.5 mm, field of view (FOV) 40 cm × 36 cm, 

matrix 320 × 224, number of excitations 2; SE. EPIDWI, TR 5000 ms, TE 75.40 ms, 

layer thickness 6 mm, layer spacing 1.5 mm, FOV 40 cm × 40 cm, matrix 128 × 128, 

number of excitations 8; FSPGR TWI inverse phase imaging, TR 120–250 ms, TE 

2.25–4.5 ms, layer thickness 6 mm, layer spacing 1.5 mm, FOV 40cm×36 cm, matrix 

256 × 170, excitation times 1; Liver Volume Rapid Acquisition (IAVA) three-

dimensional dynamic enhancement scan, TR 5.14 ms, TE 2.30 ms,The layer thickness 

is 5 mm, the layer spacing is 2.50 mm, the FOV is 40 cm × 36 cm, and the matrix is 

288 × 192. Using a double-barreled high-pressure syringe, inject Ou Naiying 0.1 

mol/kg body weight through the cubital vein at a flow rate of 3 ml/s, and scan the 

arterial phase, portal vein phase, and equilibrium phase at 18–22 s, 60 s, and 180 s 

after the contrast agent injection. The size of the liver is about 15–18s to complete a 

single-phase whole liver scan. 

2.4. Region of interests (ROI) segmentation 

The images are divided into four categories: T1WI, T2WI, T2 SPIR, and 

enhanced scan delay period. Two imaging physicians with more than 5 years of work 
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experience observe all the images separately, and those who have different results 

discuss and reach an agreement together. Use the imaging omics analysis software 3D 

slicer 4.8 to delineate the area of interest and obtain 106 children with seven parent 

features The characteristic data table, the area of interest (ROI)  

Of the lesion includes the largest extent of the lesion entity as much as possible, 

and avoids the blood vessel, hemorrhage, necrosis, and cystic area.Divide the data into 

four categories:T1WI, T2WI, T2 SPIR, and enhanced scan delay period, and then 

divide each category into seven groups: Shape, Gldm, Glcm, Firstorder, Glrlm, Glszm, 

and Ngtdm, and analyze them separately. 

3. Statistical analysis 

Enter the values of all parameters into html to obtain a heat map representing 

these data.(Figure 2) The statistical analysis software SPSS 22.0 was used to process 

and analyze the data. Mann-Whitney U test was selected for the imaging omics 

characteristic parameter data obtained from the MR images of each phase of the cancer 

and sclerosing nodules to screen  

for statistically significant difference parameters between the two lesions. Thus 

obtained radiological characteristics that can distinguish hepatocellular carcinoma 

from sclerosing nodules. Then use the ROC curve drawing function in spss to 

determine the diagnostic performance of the above-mentioned characteristic 

parameters. The characteristic parameters whose area under the curve is less than 0.85 

are eliminated. Thus, imaging characteristics parameters that can efficiently 

distinguish hepatocellular carcinoma from sclerosing nodules can be obtained. 

 

Figure 2. Distribution of all parameters. 

3.1. Patient characteristics 

In this study, a total of 23 hepatocellularcarcinoma patients were included, 

including 21 men and 2 women (maximum age 83 years, minimum age 42 years, 

median age 53 years). Then there are 12 patients with a history of liver cirrhosis among 

these 23 patients, of which 10 are males and 2 are females (maximum age 66 years, 

minimum age 42 years, median age 56 years). See Table 1. 
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Table 1. Clinical information of enrolled patients. 

Number Age Sex Size (cm) T1WI T2WI T2 SPIR DELAY Cirrhosis Hepatitis 

1 62 M 3.0 × 3.0 -- -- √ √ -- -- 

2 64 M 5.8 × 6.6 -- √ √ √ -- -- 

3 42 M 2.0 × 1.5 -- √ √ -- positive HBV 

4 63 M 4.6 × 7.0 -- √ √ √ -- HBV 

5 49 M 10.2 × 7.6 √ √ √ -- positive HBV 

6 83 M 0.9 × 1.6 √ √ √ -- -- -- 

7 44 M 4.8 × 6.2 -- √ √ √ positive HBV 

8 56 M 3.3 × 2.5 -- √ √ √ -- HBV 

9 58 M 9.3 × 9.0 -- √ √ √ positive HBV 

10 58 M 1.4 × 0.9 -- √ √ -- positive HBV 

11 53 M 2.6 × 2.4 √ √ √ -- positive HBV 

12 62 M 6.9 × 5.0 √ √ √ -- -- HBV 

13 49 M 3.2 × 2.9 -- √ √ √ Positive HBV 

14 66 F 2.8 × 2.8 -- √ √ √ Positive HBV 

15 58 F 4.4 × 3.5 √ √ √ -- Positive HBV 

16 48 M 8.0 × 5.1 √ √ √ -- Positive HBV 

17 50 M 2.7 × .3 -- √ √ √ Positive HBV 

18 46 M 14.1 × 9.8 -- √ √ √ - HBV 

19 50 M 8.2 × 8.4 -- √ √ √ Positive Positive 

20 42 M 9.9 × 7.2 √ √ √ -- Positive positive 

21 67 M 7.2 × 6.6 √ √ √ -- - HBV 

22 60 M 10.9 ×8.5 -- √ √ √ Positive HBV 

23 60 M 11.0 × 10.5 √ √ √ -- Positive HBV 

4. Feature results 

In this study, a total of 106 imaging radi-omics features of 24 hepatocellular car-

cinomalesions and 12 sclerosing nod-ules lesions were extracted. According to the 

imaging omics, these 106 features can be divided into 7 catgories. Be more 

detailed,shape 13 features, gldm 14 features,glcm 24 fetures, firstorder 18 

features,glrlm 15 features,glszm 16 fea-tures, ngtdm 5 features.  

4.1. Statistical results 

All data have been tested by the Mann-Whitney U test, and the p-values obtained 

are shown in Table 2. As shown in Table 2, among all four imaging methods, there 

are 70 types of statistically significant differences in imaging features between 

hepatocellular carcinoma and cirrhotic nodules. They were 86 features in T1WI and 

88 features in T2WI, 86 features in delay phase of con-trast MRI and 86 features in 

spir phase of T2W. 
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Table 2. Feature parameters and differentiating between cirrhotic nodules and hepatocellular carcinoma. 

Category Feature T1wI P value DELAY TIWI T2WI ROCSPIR DELAY 

 Maximum3DDiameter 0.001 T2WI 0.044 1 1 SPIR 0.792 

 Maximum2DDiameterSlice 0.001 0 0.011 1 1 0.958 0.857 

 MinorAxis 0.001 0 0 1 1 0.955 1 

 Volume 0.001 0 0 1 1 1 1 

shape MajorAxis 0.001 0 0.104 1 1 1 0.74 

 SurfaceArea 0.001 0 0 1 1 0.955 1 

 Flatness 0.003 0 0 0.96 0.992 1 1 

 LeastAxis 0.001 0 0 1 0.996 1 1 

 Maximum2DDiameterColumn 0.001 0 0 1 1 1 1 

 Maximum2DDiameterRow 0.001 0 0 1 1 1 1 

 GrayLevelVariance 0.003 0 0.011 0.96 0.995 1 0.857 

gldm HighGrayLevelEmphasis 0.001 0 0.004 1 1 0.966 0.896 

 DependenceEntropy 0.001 0 0 1 1 0.992 1 

 DependenceNonUniformity 0.001 0 0 1 1 1 1 

 GrayLevelNonUniformity 0.001 0 0 1 0.963 1 1 

 SmallDependenceHighGrayLevelEmphasis 0.594 0.203 0.006 0.6 0.889 0.992 0.883 

 LargeDependenceEmphasis 0.008 0 0.002 0.92 0.829 0.777 0.922 

 DependenceVariance 0.008 0.001 0 0.92 0.945 0.818 0.974 

 LargeDependenceHighGrayLevelEmphasis 0.001 0 0.002 1 1 0.958 0.922 

 JointAverage 0.001 0 0.002 1 1 1 0.922 

glcm SumAverage 0.001 0 0.002 1 1 0.996 0.922 

 JointEntropy 0.003 0 0 0.96 0.997 0.996 1 

 Idmn 0.594 0 0.011 0.4 0.655 0.977 0.857 

 Contrast 0.04 0.072 0 0.84 0.934 0.939 0.961 

 DifferenceEntropy 0.005 0 0 0.94 0.966 0.886 1 

 DifferenceVariance 0.005 0 0 0.94 0.966 0.958 1 

 Idn 0.594 0 0.011 0.4 0.582 0.951 0.857 

 Correlation 0.594 0.35 0 0.4 0.655 0.773 1 

 Autocorrelation 0.001 0.062 0.004 1 1 0.97 0.896 

 SumEntropy 0.001 0 0 0.98 1 0.996 1 

firstorder SumSquares 0.003 0 0.006 0.96 0.982 1 0.883 

 ClusterProminence 0.001 0 0.008 1 1 0.947 0.87 

 Imc2 0.001 0 0.375 0.98 0.645 0.977 0.636 

 DifferenceAverage 0.055 0.076 0.002 0.82 0.889 0.61 0.922 

 ClusterTendency 0.001 0 0.006 1 0.997 0.833 0.883 

 InterquartileRange 0.001 0 0.011 1 0.963 0.966 0.857 

 Energy 0.001 0 0 1 1 0.909 1 

 RobustMeanAbsoluteDeviation 0.001 0 0.011 1 0.966 0.992 0.857 

 MeanAbsoluteDeviation 0.001 0 0.011 1 0.984 0.928 0.857 

 TotalEnergy 0.001 0 0 1 1 0.962 1 

 Maximum 0.001 0 0 0.88 0.958 0.992 1 
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Table 2. (Continued). 

Category Feature T1wI P value DELAY TIWI T2WI ROCSPIR DELAY 

 90Percentile 0.055 0 0.003 0.44 0.842 0.788 0.909 

 Entropy 0.001 0.001 0 0.96 1 0.648 1 

 Range 0.003 0 0.002 1 1 0.985 0.922 

glszm Variance 0.001 0 0.011 1 0.995 0.996 0.857 

 Kurtosis 0.001 0 0.104 0.94 0.897 0.966 0.74 

 GrayLevelVariance 0.001 0 0.011 1 0.995 0.837 0.857 

 GrayLevelNonUniformityNormalized RunVariance 0.001 0 0 1 0 0.966 0 

 LongRunEmphasis 0.001 SPIR 0.211 1 0.653 0.011 0.688 

ngtdm ShortRunHighGrayLevelEmphasis 0.008 0 1 0.92 1 0.659 0.494 

 RunLengthNonUniformity 0.001 0 0.004 0.98 0.503 0.534 0.896 

 LongRunHighGrayLevelEmphasis 0.001 0 0 1 1 0.981 1 

 RunEntropy 0.001 0 0.008 1 1 1 0.87 

 HighGrayLevelRunEmphasis 0.001 0 0 1 1 1 1 

 GrayLevelVariance 0.001 0 0.006 1 1 1 0.883 

 ZoneVariance 0.001 0 0.011 1 0.997 0.992 0.857 

 SizeZoneNonUniformity 0.001 0 0 1 0.971 1 1 

 GrayLevelNonUniformity 0.001 0 0 1 0.992 0.966 1 

 LargeAreaEmphasis 0.001 0 0 1 1 0.962 1 

 SmallAreaHighGrayLevelEmphasis 0.005 0 0 0.94 0.916 1 0.974 

 LargeAreaLowGrayLevelEmphasis 0.001 0 0.002 1 0.989 0.939 0.922 

 LargeAreaHighGrayLevelEmphasis 0.008 0 0.479 0.92 0.663 0.939 0.61 

 HighGrayLevelZoneEmphasis 0.001 0 0 1 1 0.583 0.961 

 SmallAreaEmphasis 0.001 0 0.008 1 1 1 0.87 

 ZoneEntropy 0.001 0.002 0.659 1 0.561 0.989 0.429 

 Complexity 0.001 0.002 0 1 1 0.485 1 

 Busyness 0.001 0 0 0.98 0.989 1 1 

  0.003 0 0.246 0.96 0.947 0.989 0.675 

   0    0.807  

   0      

   0      

   0      

   0      

   0      

   0      

   0.009      

   0      

   0      

   0      

   0      

   0      

   0.316      
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Table 2. (Continued). 

Category Feature T1wI P value DELAY TIWI T2WI ROCSPIR DELAY 

   0.001      

   0      

   0      

   0      

   0      

   0      

   0      

   0.006      

   0.174      

   0      

   0      

   0      

   0.001      

   0      

   0      

   0.142      

   0.766      

   0      

   0      

   0      

   0      

   0      

   0      

   0      

   0      

   0      

   0      

   0      

   0.451      

   0      

   0      

   0.903      

   0      

   0      

   0.003      

A ROC curve of 105 features was performed to evaluate the ability of the features 

to distinguish hepatocellular carci noma from sclerosing nodules. This curve (AUC < 

0.85) was abandoned in this study due to its limited discriminative ability. In the end, 

this study obtained a total of 68 characteristic ROC curves (Figures 3–6). 
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Figure 3.The ROC curves of T1WI. 

 

Figure 4.The ROC curves of T2WI. 
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Figure 5.The ROC curves of SPIR. 

 

Figure 6.The ROC curves of DELAY. 

5. Discussion 

The results of this study show that there is a statistical difference between thera-

diographic features extracted from hepa-tocellular carcinoma lesions and thera-

diographic features extracted from cir-rhotic nodules. This maybe related to their 

different pathological tissue morphology. Carcinogenesis is a process in which non-
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malignant liver cells gradually transform into liver cancer, which is a complex and 

multi-step process. For clinical practicability and research, this process is divided into 

several independ-ent steps: Cirrhotic nodules, dyplastic nodules, early liver cancer, 

and pro-gressed liver cancer [11]. This study selects the stage of cirrhotic nodules. 

Cirrhosis nodules,also called regenerative nodules related to liver cirrhosis,are 

countless clear circular areas of hard-enedparenchyma with scar tissue around them, 

with a diameter of 1–15 mm [11]. Cirrhotic nodules are generally considered benign 

because of its lacking histological features and normal phenotype [12]. But from a 

molecular perspective, many cirrhotic nodules are the clonal expansion of abnormal 

genomic cells, causing the macrophages in the cirrhotic nodules to develop abnormal 

proliferation characteristics [13]. So it will cause hyperplasia and nodules. A large 

number of previous studies have shown that the molecular changes of liver cells 

caused by abnormalities such as cell sig-nal transduction caused by chronic in-

flammation begin in the early stage of tumor formation [14–16]. That is, several years 

or even decades before the onsetof liver cirrhosis, and with the development of fibrosis 

and cirrhosis Parallel development [17,18]. Studies have shown that the earliest 

molecular change in liver cancer is morphological silence, suggesting that chronically 

ill liver may contain cells with abnormal molecular but normal phenotypes, which will 

eventually develop into liver cancer [13,18,19]. Pathologically, early HCC is 

composed of small, well-differentiated neoplastic cells arranged in irregular but 

thintra-beculae or pseudogland [20], microscopically similar to highly hyperplastic 

nodules [21]. The tissues of advanced liver cancer lesions have the characteristics of 

mosaic structure, that is, there are multi-ple tumor nodules inside, and these nodules 

are separated by fibers, and there are areas of hemorrhage, necrosis, and occasional 

steatosis [22]. The subtle differences in histology between hepatocellu-lar carcinoma 

and cirrhotic nodules can be distinguished on MR. 

The radiomics technology that has emerged in recent years refers to the high-

throughput extraction of a large number of image features describing tumor 

characteristics, and the application of a large number of automated data retention 

methods to convert the image data of the region of interest into high-resolution 

imaging data. Feature space data sent [23,24]. Data analysis is a digital quantitative 

high-throughput analysis of a large amount of image data to obtain high-fidelity target 

information to comprehensively evaluate various phenotypes of tumors, including 

tissue morphology, cell molecular, genetic inher-itance and other levels. The core 

theo-retical basis is the radiomic model,which contains the biological or medical data 

information of the lesion, which can provide valuable information for the diagnosis, 

prognosis and prediction of the disease [25,26]. There is genetic heterogeneity among 

tumors of different patients, different tumor tissues of the same patient, or within the 

same tumor, and their genetic status will also vary from time to time. Based on the 

above advantages,some researchers have combined radiomics with medical images 

and applied them to tumor prediction, identification and prognosis. Imageomics has 

shown excellent performance in the diagnosis of lung cancer [27], stomach cacer [28], 

prostate cancer [29], and breast cancer [27]. Tsai et al. [30] reported that Texture 

features can be used to distinguish nasopharyngeal carcinoma from normal 

nasopharyngeal tissue, and the statistical difference in texture features between 

nasopharyngeal carcinoma and normal nasopharyngeal tissue maybe related to the loss 
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of stripe structure in normal nasopharyngeal tissue. and this finding had been 

confirmed on MRI images. Thawani et al. proposed that radiomics has played an 

important role in the diagnosis of lung cancer in recent years and will further provide 

more important information for monitoring and prognosis, and realize individualized 

treatment [31,32]. 

6. Conclusions 

The results of this study show that MR is of great significance for the diagnosis 

of liver cancer, and imaging omics is of great value in the differentiation between 

benign and malignant lesions.However, the research method in this ar-ticle has 

limitations: (1) This article uses a single-center study with a small number of samples; 

(2) Lack of differentiation from patients without liver cancer; (3) Not combined with 

patient pathologi-cal smears; (4) Only one kind of imaging is used Methods, failed to 

compare the sensitivity and specificity of different imaging techniques to lesions. Our 

later research will try multi-center research to obtain a large number of samples based 

on more imaging methods to improve the accuracy of the results. 
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Abbreviations 

CT Computed Tomography 

MRI Magnetic Resonance Imaging 

DWI Diffusion Weighted Imaging 

T2WI T2-Weighted Imaging 

ROI Region of Interest; 

VOI Volume of Interest; 

ROC Receiver Operating Characteristic; 

AUC Area Under the Curve 

GLRLM Gray Level Run Length Matrix; 

GLCM Gray Level Co-occurrence Matrix 

GLSZM Gray Level Size Zone Matrix 

NGTDM Neighborhood Gray-Tone Difference Matrix 

GLD Gray Level Dependence Matrix 

CEUS Contrast-enhanced Ultrasound 

TR Repetition Time 

TE Echo Time 
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