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ABSTRACT 

In recent years, the pathological diagnosis of glomerular diseases typically involves the study of glomerular his-to 

pathology by specialized pathologists, who analyze tissue sections stained with Periodic Acid-Schiff (PAS) to assess 

tissue and cellular abnormalities. In recent years, the rapid development of generative adversarial networks composed of 

generators and discriminators has led to further developments in image colorization tasks. In this paper, we present a 

generative adversarial network by Spectral Normalization colorization designed for color restoration of grayscale images 

depicting glomerular cell tissue elements. The network consists of two structures: the generator and the discriminator. 

The generator incorporates a U-shaped decoder and encoder network to extract feature information from input images, 

extract features from Lab color space images, and predict color distribution. The discriminator network is responsible for 

optimizing the generated colorized images by comparing them with real stained images. On the Human Biomolecular 

Atlas Program (HubMAP)—Hacking the Kidney FTU segmentation challenge dataset, we achieved a peak signal-to-

noise ratio of 29.802 dB, along with high structural similarity results as other colorization methods. This colorization 

method offers an approach to add color to grayscale images of glomerular cell tissue units. It facilitates the observation 

of physiological information in pathological images by doctors and patients, enabling better pathological-assisted 

diagnosis of certain kidney diseases. 
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1. Introduction 

Stained tissue unit: The three-dimensional cellular cluster with 

the glomerular capillaries at its center constitutes the functional tissue 

unit (FTU) of the renal glomerulus. Pathologists have studied FTU 

stained sections to analyze a number of common renal diseases[1]. 

These tissue units are collected and analyzed by pathology experts 

during biopsy, often employing Periodic Acid-Schiff stain (PAS) for 

staining[2]. The PAS-stained whole tissue units are subsequently 

scanned under an electron microscope to generate stained tissue unit 

et al. slice images corresponding to relevant areas. In this process, 

based on the images post-staining, an evaluation of the diffusion 

distance between each cell and other cells within the entire tissue scan 

is conducted to analyze the pathological causes of kidney diseases. 

However, the manual staining of FTU slices is exceedingly intricate, 

necessitating the utilization of chemical reagents by specialized 

staining pathologists to color the tissue cells, This approach is 

characterized by lengthy staining cycles, high costs, and the potential 

irreversible damage to tissue caused by the employed chemical 
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reagents, Moreover, the inconsistency in the depth of staining for pathological slice sections diminishes the 

reusability of the slices, These challenges call for computer image digitization as a solution. Because of the 

deep learning has made amazing advances in the field of computer vision in recent years, the mainstream 

approach to image colorization is no longer traditional machine learning. Instead, it uses the powerful 

parametric learning capabilities of deep neural networks to learn how to select, propagate and predict color 

distributions from large-scale data. 

Iizuka et al.[3] converted the image colorization problem into an image classification task, utilizing a two-

channel network that combines local feature information and global prior knowledge in images to achieve 

automatic colorization of grayscale images of arbitrary sizes. However, this network solely employed 

convolutional neural networks for predicting color distributions, leading to a loss of pixel semantic information, 

resulting in misclassification and unnatural colorization compared to the original images. Zhang et al.[4] 

addressed this limitation by stacking multiple convolutional layers to predict the probabilities of 313 ab color 

channels in the Lab color space, thereby effectively predicting the color distribution of the dataset. Larsson et 

al.[5] integrated a VGG neural network for semantic parsing and localized information extraction into the 

colorization system. This system predicts color histograms for each image location to anticipate color 

distributions for individual pixels. While these methods exhibited further improvements in colorization effects, 

they still struggle to resolve issues such as desaturated generated images, yellowish tones, unnatural 

colorization, and the susceptibility to gradient vanishing during training. 

Over the past few years, with the rapid development of generative adversarial network, the field of 

automatic image colorization as a branch of image restoration has witnessed significant advancements, 

garnering consistent attention from researchers. The literature[6] proposes a method for image colorization by 

using deep convolutional generative adversarial network, This method uses a discriminator to predict the loss 

of the generated image from the real image to predict the color distribution of each pixel. Cao et al.[7] utilized 

an unsupervised colorization network based on cGAN for image colorization, where the generator was 

designed without an encoder-decoder structure. Instead, it incorporated random optimization noise at various 

layers of fully convolutional layers, this approach enhanced realism and diversified image generation, yet the 

increased noise introduction led to uncontrollable randomness and compromised colorization quality. To 

address the instability of Generative Adversarial Networks (GANs), a method was proposed in the study by 

Miyato et al.[8] that replaces the original normalization structure with spectral normalization. This ensures that 

the discriminator D satisfies Lipschitz continuity, restricting the degree of drastic changes in the function. As 

a result, this stabilizes the GAN model and makes it more robust. 

Early studies on traditional medical image colorization relied on transferring false-color information from 

real objects to medical image datasets, highlighting subtle details that were hard to discern. A method proposed 

by Lagachinski et al.[9] employed user annotations and mixed distance transformations for medical image 

colorization, However, this method was based on manual coloring of specified regions, falling short of 

complete automation. In 2016, Khan et al.[10] presented a method to migrate colors from endoscopic images to 

grayscale endoscopic images, This approach generated physical colors based on dictionary-based color 

mapping, which were then applied to preprocessed grayscale images to reproduce colors. However, this 

method utilized shallow handcrafted feature extraction, resulting in less satisfactory colorization, slow 

efficiency, and the risk of information loss. Liang et al.[11] propose a colorization network based on the Cycle 

Generative Adversarial Network (CycleGAN) model, applying style transfer to the coloring of medical images. 

In 2023, Chen[12] propose a self-supervised coloring framework based on Cycle Generative Adversarial 

Network (CycleGAN), treating the coloring of medical images as a cross-modal domain transfer problem in 

the color space. 

Building on the previous discussion regarding the colorization of medical images using Generative 

Adversarial Networks (GANs) and the research on spectral normalization. In this paper, we propose an 
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automatic colorization method based on spectral normalization generative adversarial networks for color 

recovery of gray-scale images of glomerular tissue unit, The network is divided into two structures, the 

generator and the discriminator, the generator is used to extract the feature information of the image, and the 

general feature information of the image is obtained by generative network block, The U-shaped decoder and 

encoder network is introduced in the generator, which extracts the original L-channel grayscale image features 

and predicts the color distribution of the ab channel by skipping connections, The network of discriminators 

is responsible for optimizing the combined chromatic map to obtain the final color image. This method utilizes 

a generative adversarial network to generate new colorized images, enhancing the naturalness, saturation, and 

realism of the resulting images, which closely resemble actual PAS-stained images of glomerular cell tissue 

units. Moreover, the discriminator of the GAN introduces a spectral normalization module to replace the 

original normalization module, enhancing the GAN’s stability by ensuring the discriminator satisfies Lipschitz 

continuity. Finally, an evaluation of colorization structure was performed on both glomerular tissue unit-

stained images and the original PAS-stained images using peak signal-to-noise ratio and structural similarity 

indices. On the Human BioMolecular Atlas Program (HuBMAP)—Hacking the Kidney FTU segmentation 

challenge dataset, we achieved a peak signal-to-noise ratio of 29.802 dB, along with high structural similarity 

results. As the PAS-stained images of glomerular tissue units involve predicting a simplified color category 

distribution, the predicted colorized images closely resemble the actual original PAS-stained tissue images. 

Hence, this method holds significant practical and research value. The colorized images can aid in the 

pathological diagnosis of certain kidney diseases. 

2. Methods 

In this chapter we describe in detail the structure of spectral normalized generative adversarial 

colorization networks. 

2.1. Network structure 

The entire network structure is shown in Figure 1. The spectral normalization generative adversarial 

network model consists of two parts: the generator and the discriminator, At the same time, spectral 

normalization was added to the discriminator to improve the normalization method used before. In this paper, 

the Lab color space is used for color prediction, The grayscale image of the L channel component is 

passed through a generator to predict the a and b chrominance channel components. 𝑋𝑙 → 𝑋𝑎�̃�. The 

generated 𝑋𝑎�̃�component is combined with the original L-channel to form a colorized image, which serves as 

the input image for the discriminator. The discriminator network discriminates and distinguishes between the 

input virtual colorized image and the real color image until it can no longer differentiate them, producing an 

infinitely close approximation of the real colorized image. This can predict the color distribution of the original 

cellular tissue grayscale image. Finally, a PAS-stained image of the glomerular tissue unit that closely 

resembles reality is generated. 
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Figure 1. The spectral normalization generative adversarial network structure. 

2.2. Generative network block 

The generator network employs a U-shaped architecture consisting of an encoder and a decoder, as 

illustrated in Figure 2. The architecture includes downsampling convolutional modules, a bridging module, 

and upsampling convolutional modules[13]. The network takes grayscale images of glomerular tissue units in 

the Lab color space as input, specifically the luminance information from the L channel. The output comprises 

chromatic information (ab) for the PAS-stained images of glomerular tissue units. The left side represents the 

encoder, comprising 7 downsampling modules. Each downsampling module consists of a convolutional layer 

(with a 4 × 4 kernel size), normalization layer, and LeakyReLU layer. The downsampling convolutional 

modules are responsible for extracting feature structures from the images, progressively capturing high-level 

semantic information and color texture details. The right side corresponds to the decoder, composed of 7 

upsampling modules. Each upsampling module includes a deconvolutional layer (with a 4 × 4 kernel size), 

normalization layer, and LeakyReLU layer. The downsampling modules serve to consolidate the encoded 

image information for reconstruction and precision. The output from each block in the encoding area is 

connected to its corresponding block in the decoding area through skip connections. These skip connections 

facilitate the direct transfer of shallow-level information to the same-height deconvolutional layers, resulting 

in images with reasonably consistent overall colorization. 
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Figure 2. Generative network block structure. 

2.3. Discriminator network block 

The discriminator in this paper, as shown in Figure 3, uses a typical discriminator in a conditional 

generative adversarial network, with spectral normalization replacing the normalization module in each layer. 

The discriminator in the conditional generative adversarial network introduces domain information and applies 

constraints to control the content generated by the network, transforming an unsupervised network into a 

supervised model. By introducing a reference image as input condition to the discriminator, the color 

information of the target generated image is supervised to obtain colors that are consistent with the reference 

image. The network structure of the discriminator is shown in Figure 3, which includes four convolutional 

layers with a kernel size of 4 × 4. The first three layers have a convolution stride of 2 to obtain a larger receptive 

field, and the last layer has a stride size of 1[14]. Finally, a fully connected (FC) layer is used to integrate and 

classify feature information. For an input image with a resolution of 256 × 256, the generated color is compared 

with the reference image to produce colors that are more consistent with the reference image. 
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Figure 3. Discriminator network block structure. 

2.4. Spectral normalization 

There are problems with gradient disappearance and pattern collapse in generative adversarial networks, 

which are related to the mechanisms of generative adversarial networks. The generative adversarial network 

suffers from Kullback-Leibler (KL) dispersion asymmetry, which makes the generative adversarial network 

obsessed with the accuracy of the discriminator, thus ignoring the diversity of generator generation patterns. 

resulting in the patterns learned by the generator covering only some of the patterns in the real data, making 

the diversity of the generated samples low and eventually leading to a pattern collapse in the model. 

The spectral normalization structure normalizes the weights of each layer in a neural network based on 

their spectral norms, this is achieved by performing singular value decomposition on the weight matrices and 

then constraining the singular values within a predefined range, thereby calculating and controlling the spectral 

norm of the weight matrix[8]. In contrast to some complex normalization techniques, spectral normalization 

incurs low computational costs, requires no additional hyperparameter tuning, enhances training stability, and 

effectively addresses the aforementioned issues. Spectral normalization is defined as: 

𝑊𝑠(𝑊): =
𝑊

𝜎(𝑊)
 (1) 

W is the parameter matrix that is subjected to normalization to control the spectral norm, 𝑊𝑠  is Spectral 

Normalized Weight Matrix, 𝜎 is Spectral Normalization Singular Value, the spectral normalization makes the 

discriminant network satisfy the lipschitz constraint, where K is the maximum singular value of the matrix W: 

𝜎(𝑊𝑠(𝑊)): = 𝜎 (
𝑊

𝜎(𝑊)
) =

1

𝐾
𝜎(𝑊) = 1 (2) 

It is thus demonstrated that adding spectral normalization to the network can make the discriminator 

network satisfy the condition that the Lipschitz, constant Lipschitz is equal to 1 by strictly constraining the 

spectral norm of the weight matrix of each network layer ,and without destroying the structure of the weight 

matrix, thus enhancing the stability of the deep convolutional generative adversarial network in training and 

improving the generator performance of the deep convolutional generative adversarial network and the 

discriminator performance of the discriminator. 

2.5. Loss function 

In this paper, the design of the loss function is divided into two parts, which are the generator loss function 

and the discriminator loss function. where the loss function L1 of the distance between the generated image 

and the target image is defined using the MAE[15] (mean-absolute error) loss function. The mean absolute error 

loss function calculates the mean absolute error of the images generated by each color channel in the generator 
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with respect to the standard stained slices in the input discriminator network, where the MAE is expressed as 

follows: 

𝑀𝐴𝐸 =
1

𝑀𝑁
∑ ∑|𝑧label(𝑝, 𝑞) − 𝑧output(𝑝, 𝑞)|

𝑁−1

𝑞=0

𝑀−1

𝑝=0

 (3) 

M represents the number of rows in a matrix or the size of the first dimension, N represents the number of 

columns in a matrix or the size of the second dimension, p is a variable used to denote the row index in the 

pixels, q is a variable used to denote the column index in the pixels, 𝑧label is translated as reference color image, 

𝑧output is translated as predicted color image. 

The discriminator loss for the generating adversarial colorization model is described as: 

𝐿𝐷 = 𝐸𝑥 ~ 𝑃𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥, 𝐶, 𝑦)] + 𝐸𝑥 ~ 𝑃𝑑𝑎𝑡𝑎

[log(1 − 𝐷(𝑥, 𝐶, 𝐺(𝑥, 𝐶))] (4) 

Its generator loss is described as: 

𝐿𝐺 = 𝐸𝑥 ~ 𝑃𝑑𝑎𝑡𝑎
[log(1 − 𝐷(𝑥, 𝐶, 𝐺(𝑥, 𝐶))] + 𝐿1 (5) 

where 𝐷(∗) denotes the discriminator, 𝐺(∗) denotes the generator, x denotes the gray target image, C denotes 

the feature condition of the reference image, and y denotes the original color information of the image. 

2.6. Evaluation method 

Due to the uncertainty of the colorization task, the general mainstream evaluation method uses the peak 

signal-to-noise ratio and structural similarity metrics in the image restoration task to evaluate the quality of the 

images generated by the coloring algorithm. peak signal-to-noise ratio (PSNR) is the ratio between the 

maximum possible signal power and the destructive noise power which affects its accuracy. The maximum 

signal-to-noise ratio is often expressed in logarithmic decibels. PSNR was defined as Mean Square Error 

(MSE). For the generated colorization images with standard colorization images, if one is an approximation of 

another’s noise, the PSNR between them is defined as: 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
) (5) 

MAX represents the maximum possible pixel value in the image. 

Structural similarity[16] (SSIM) is often used as an indicator to assess image quality, generally measuring 

the similarity of two images in terms of contrast, brightness and resulting information. In this paper, structural 

similarity is used to compare the similarity between the generated stained images and the real colorization 

images, and the larger the structural similarity value, the closer the two images are, the better the learning 

effect. structural similarity can be defined as: 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑋𝜇𝑌 + 𝑐1)(2𝜎𝑋𝑌 + 𝑐2)

(𝜇𝑋
2 + 𝜇𝑌

2 + 𝑐1)(𝜎𝑋
2 + 𝜎𝑌

2 + 𝑐2)
 (6) 

where 𝜇𝑥 is the mean of X, 𝜇𝑦 is the mean of image Y, 𝜎𝑥
2 is the covariance of X, 𝜎𝑦

2 and similarly is the 

covariance of Y, 𝜎𝑋𝑌 representing the covariance of X and Y, 𝑐1 and𝑐2 are constants that maintain stability. 

3. Experiments 

3.1. Database 

HuBMAP - Hacking the Kidney FTU segmentation challenge dataset[11,17] was used to evaluate our model. 

This dataset, published by the HuBMAP organization, includes 11 fresh frozen and 9 formalin-fixed paraffin 

embedded PAS kidney tissue samples. Each sample includes PAS stained FTU images and annotation labels, 

with 8 training sets and 5 public test sets, consisting of TIFF files. To prepare the data, we sliced out 9580 PAS 

colorization images with FTU annotation labels from the TIFF files. As we only needed the original tinted 

image without annotation labels, we cropped the images to 256 × 256 as the original size was too large and 

would have wasted storage space. 
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Furthermore, we converted the color space from RGB to Lab, and extracted the L luminance channel 

information as the network input image. The information on the luminance channels a and b were used as the 

target image. The data processing steps is shown in Figure 4. 

 
(a) luminance information L 

 
(b) chromaticity information a 

 
(c) chromaticity information b 

Figure 4. Lab color space pre-processing of Kidney FTU segmentation challenge dataset. 

3.2. Implementation details 

All training and testing experiments are performed on workstations. The CPU used is Intel (R) Xeon (R) 

CPU e52630V4@2,20GHz. The GPU uses two NVIDIA forcedx1080ti with 12GB GPU memory, with a total 

memory of 24 G. All network architectures are implemented with pytorch 1.7.1+cu101 framework. We start 

the training with a batch size of 10. The proposed architecture is optimized by the Adam optimizer with the 

learning rate initially set to 0.0001, 𝛽1 = 0.5, 𝛽2 = 0.999, The loss function is used as the combined loss function 

mentioned earlier. 

3.3. Comparisons with other method 

Table 1 shows the PSNR and SSIM assessment results from the table below. It can be seen that the 

generated adversarial network model with spectral normalization has the highest average PSNR score after 

comparing with other coloring networks, which is 1.193 dB higher than the DCGAN model with only 

normalized structure. From Figure 5, it can be seen that the Colorful Image Colorization coloring network 

proposed by Zhang[3] in the ECCV2016 conference has a low distribution of color prediction, and the overall 

coloring effect is purple. The real tissue stained cells are light pink, and the background area that was originally 

white was also predicted to be purple. The subsequently proposed method, Real-Time User-Guided Image 

Colorization with Learned Deep Priors, has improved the metrics of PSNR and SSIM, but there is still a gap 

between the staining effect and the color prediction of real tissue-stained cells. The AutoEncoder coloring 

method is slightly higher than the generative adversarial network in terms of structural similarity values, 

though. However, the color was misclassified in the circle region as in the fourth figure of Figure 5, and the 

original prediction of black classification was colored by the network with mauve, while the latter two groups 

were predicted to be black classification using the generative adversarial network. 

Table 1. Different colorization methods peak signal-to-noise ratio a structural similarity on the Kidney FTU segmentation challenge 

dataset. 

Methods Zhang Real-Time Autoencoder Dcgan Our 

PSNR 25.656 25.689 26.862 28.609 29.802 

SSIM 0.839 0.855 0.867 0.866 0.911 
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Figure 5. Different colorization methods effect on the Kidney FTU segmentation challenge dataset. 

This shows that the generative adversarial network approach can generate sufficiently realistic images to 

deceive the discriminant through the generator, this method can better learn the image color distribution model, 

so that the colorization image is closer to the actual natural colorization. From the last two sets of colorization 

results, it can be seen that deep convolutional generative adversarial network (GANs) perform poorly on 

images in the test dataset that differ significantly from the training distribution. This is evidenced by the 

appearance of blotchy, uncolored blue spots, which lead to a decrease in PSNR. In contrast, the GAN-based 

colorization network with the added spectral normalization structure did not produce these blotchy, uncolored 

spots. Overall, the PSNR table indicates that the improved spectral normalization GAN-based colorization 

model proposed in this study generates images with higher quality and better resemblance to the original 

stained images. This improves the overall level of image colorization and can help standardize it as a routine 

staining practice. 

We also tested the structural similarity loss of DCGAN and SN-DCGAN, the structural similarity loss 

values from the similarity curves in Figure 6 demonstrate that, with the incorporation of spectral normalization, 

the structural similarity values are higher than those of the deep convolutional generative adversarial network 

(DCGAN) model. After 40 epochs of training, structural similarity values continue to increase as the number 

of training batches rises. This observation provides evidence that integrating spectral normalization can 

enhance the color prediction capability of the deep convolutional generative adversarial network model, 

resulting in improved colorization outcomes. 
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Figure 6. Structural similarity for DCGAN, SNDCGAN (Spectral Normalized DCGAN). 

4. Discussion 

This study applies a generative adversarial network by Spectral Normalization colorization method for 

PAS stained images of Glomerular Tissue Unit. improving upon the disorganized blue and uncolored spots 

generated by DCGAN. The enhancements aim to make the final generated color images more closely resemble 

the original stained images. It has been validated that Spectrum Normalization DCGAN (SN-DCGAN) 

achieves improved coloring results. However, there are certain limitations to this study. The experiments are 

confined to pseudo-coloring grayscale images, and despite the good coloring results achieved, there is still a 

gap compared to real stained images. The research also does not delve into how to control implicit features to 

control the diversity of coloring samples. Future research will focus on addressing these limitations through 

model and method improvements. 

5. Conclusion and future works 

In many cases, the diagnosis and treatment of various kidney diseases require assistance from pathological 

staining and slicing. However, the production of pathological staining slides in clinical practice involves a 

complex process. The current PAS staining slide production technique is time-consuming, labor-intensive, and 

may pose challenges in terms of staining. In this paper, we propose an automatic coloring method using a 

spectral normalization Generative Adversarial Network (GAN) to restore color to grayscale images of 

glomerular tissue units. This method has the advantage of generating more natural and saturated coloring 

effects, closely resembling the appearance of real glomerular tissue unit PAS staining images. Additionally, 

the discriminator of the Generative Adversarial Network includes a spectral normalization module, replacing 

the traditional normalization module. This ensures that the discriminator D satisfies Lipschitz continuity, 

thereby restricting the intensity of variations in the Generative Adversarial Network. We tested and trained our 

model on the HuBMAP—Hacking the Kidney glomerular functional tissue unit FTU cGAN segmentation 

challenge dataset. The experiments demonstrate that the color images generated by the Generative Adversarial 

Network are clear, natural, and closely resemble the original glomerular tissue unit staining images. It can be 

used for the diagnosis and analysis of kidney diseases. However, there is still a gap when directly applying this 

algorithm to the large-scale clinical application of staining and slicing PAS unstained images due to differences, 

such as contrast, in the grayscale images and unstained images used for training in this paper. Future research 

should focus on the registration of unstained images and real stained images to address this issue. It is also 

expected to be extended to general monochrome tissue and cell slicing staining methods, contributing to large-

scale and random pathological staining slice clinical studies. 
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