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ABSTRACT 

The human brain has been described as a complex system. Its study by means of neurophysiological signals has 

revealed the presence of linear and nonlinear interactions. In this context, entropy metrics have been used to uncov-

er brain behavior in the presence and absence of neurological disturbances. Entropy mapping is of great interest for the 

study of progressive neurodegenerative diseases such as Alzheimer’s disease. The aim of this study was to characterize 

the dynamics of brain oscillations in such disease by means of entropy and amplitude of low frequency oscillations 

from Bold signals of the default network and the executive control network in Alzheimer’s patients and healthy indi-

viduals, using a database extracted from the Open Access Imaging Studies series. The results revealed higher discrimi-

native power of entropy by permutations compared to low-frequency fluctuation amplitude and fractional amplitude of 

low-frequency fluctuations. Increased entropy by permutations was obtained in regions of the default network and the 

executive control network in patients. The posterior cingulate cortex and the precuneus showed differential characteris-

tics when assessing entropy by permutations in both groups. There were no findings when correlating metrics with clin-

ical scales. The results demonstrated that entropy by permutations allows characterizing brain function in Alzheimer’s 

patients, and also reveals information about nonlinear interactions complementary to the characteristics obtained by 

calculating the amplitude of low frequency oscillations. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common cause of demen-

tia[1]. According to projections made in 2014[2], the number of people 

with AD in Colombia by 2020 is 260,000 with an approximate cost of 

1 billion pesos[3]. AD is characterized by an excessive accumulation of 

extracellular β-amyloid plaques and the presence of intracellular hy-

perphosphorylated tau protein neurofibrillary tangles, resulting in an 

atypical configuration that extends throughout the cerebral cortex[4]. AD 

has been described by three stages: the preclinical stage, in which atyp-

ical accumulation of β-amyloid begins without clinical manifestations; 

mild cognitive impairment (MCI), which can be amnestic and 

non-amnestic; and, finally, the dementia stage, in which memory im-

pairment and lack of independence of the individual to perform tasks of 

daily living are identified. This last stage, in turn, has three phases: mild, 

moderate and severe[5]. 



 

2 

Different imaging modalities have been widely 

used for the study of AD. In particular, functional 

magnetic resonance imaging is considered a tech-

nology that could have clinical relevance due to its 

promising potential for the identification of brain 

alterations caused by the disease[6]. The study 

of brain oscillations by resting functional magnetic 

resonance imaging (rs-fMRI) through blood-oxy- 

genation-level-dependent (BOLD) signal analysis 

has demonstrated alterations in the default network 

(DN) and the executive control network (ECN) in 

AD patients[7-10]. 

The use of connectivity metrics based on graph 

theory and independent component analysis has 

allowed the identification of accelerated deteriora-

tion in AD subjects in specific brain regions, such 

as the areas involved in the default network, while 

in subjects with normal aging, disruptions 

have been identified with non-uniform occurrence 

throughout the brain[11]. On the other hand, the use 

of spectral metrics such as Amplitude of Low Fre-

quency Fluctuations (ALFF) and its fractional ver-

sion (fALFF)[12] have improved the performance of 

machine learning algorithms for the discrimination 

of MCI and AD subjects from cognitively normal 

individuals[13]. 

Although rs-fMRI has yielded information re-

lated to brain dynamics, it is still not a technique 

usually used in clinical settings due to factors such 

as the presence of artifacts in the signals and the 

absence of gold standard metrics for the estimation 

of brain function[6,14]. Therefore, some efforts have 

focused on making methodological innovations that 

allow understanding brain function from the analy-

sis of interactions of a nonlinear nature that charac-

terize neurophysiological signals[15]. The use of 

methods based on information theory allows cap-

turing nonlinear interactions that can be beneficial 

for the understanding of brain function[15], and re-

cent studies highlight that the use of nonlinear ap-

proaches for the study of brain function provides 

relevant information for the study in healthy and 

pathological brains[16]. 

Several approaches have been used to esti-

mate brain complexity by nonlinear metrics, among 

them a variety of approaches for entropy computa-

tion[17]. A less commonly used approach is entro-

py by permutations, a simple, fast and robust 

method for the analysis of chaotic time series[18]. 

This metric has previously been used for BOLD 

signal analysis in Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) subjects with MCI, AD and 

controls where a decrease in entropy was found in 

AD patients compared to subjects with MCI and 

controls. The study reported significant findings of 

correlation between the metric and the Mini Mental 

clinical scales and clinical assessment of dementia. 

The analysis was performed with BOLD signals of 

130 time points and an embedded dimension of 4. 

The parameters used are highlighted by the authors 

as a limitation of the study[19]. To the authors’ 

knowledge, this is the only study performed in AD 

using the permutation entropy metric, evidencing 

that to date there are few studies that have used 

complexity metrics for the analysis of fMRI data in 

AD[20]. 

This study used rs-fMRI data with 164 time 

points from the OASIS-3 open access initiative 

(Open Access Series of Imaging Studies: Longitu-

dinal MRI Data in Non-demented and Demented 

Older Adults[21] from subjects labeled as cognitively 

normal (CN and with AD). Brain function was 

quantified by permutation entropy and compared 

with ALFF and fALFF for the default network and 

the executive control network; additionally, the 

metrics were correlated with clinical scales. The 

above, with the aim of evaluating whether the use 

of entropy by permutations provides additional in-

formation to that obtained with spectral metrics, on 

the dynamics of brain oscillations and provides dif-

ferential characteristics in patients with AD and 

healthy subjects when evaluated in the brain net-

works at rest that are mostly affected in AD. 

2. Methodology 

2.1 Subjects 

Structural MRI and functional MRI data la-

beled as AD and CN were downloaded from the 

OASIS-3 database[21], a longitudinal project where 

several individuals underwent more than one acqui-

sition. Two experts analyzed the clinical infor-

mation available on the platform of subjects labeled 

as AD and CN[21], taking into account information 
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such as: age, personal history, age of symptom on-

set, clinical picture recorded over time, evolution of 

cognitive alterations, scores on neuropsychological 

tests and available functionality scales. From the 

review we excluded subjects labeled as AD who 

during longitudinal follow-up had a subsequent di-

agnosis of CN, mild clinical picture suggesting an 

uncertain dementia syndrome, evolution of symp-

toms that appeared to be dementia due to another 

condition or neurodegenerative disease, presenting 

depressive symptoms that could explain the cogni-

tive complaints, having the MRI prior to the onset 

of symptoms or having a history of a major neuro-

logical disease other than AD that could alter the 

results (such as a history of cerebrovascular disease 

or encephalocranial trauma). 

After performing the clinical review, data from 

117 subjects were preprocessed, of which 23 were 

discarded for excess motion (AD: 12, CN:11) and 1 

subject from the CN group was discarded for hav-

ing outliers in several regions of the default network. 

Finally, data from 93 subjects (AD: 36, CN:57) 

were included for further analyses. Although the 

database does not specifically provide information 

on disease severity, it was determined by the sum 

of boxes of the Clinical Dementia Rating Scale Sum 

of Boxes (CDR-SB) and the Mini-Mental State 

Examination (MMSE). Since individuals in the AD 

group are characterized by a 4.5 < CDR-SB < 9 

they belong to the mild Alzheimer’s category[22]. 

Detailed demographic information can be seen in 

Table 1. 

Table 1. Demographic information of study subjects 

Parameter AD Mean ± Standard deviation CN Mean ± Standard deviation Value 

n 36 57 - 

Sex (female: male) 16:20 24:33 0.48 

Age 74.70 ± 5.89 70.97 ± 6.52 <0.01 

Schooling (years) 15.33 ± 2.77 15.6S ± 2.70 0.72 

MMSE 25.19 ± 3.14 28.91 ± 1.24 <0.01 

CDR-SB 3.33 ± 1.45 0.00 ± 0.00 <0.01 

Source: own elaboration. 

2.2 Image acquisition 

The rs-fMRI images were acquired with a 

SIEMENS 3T scanner (MAGNETOM Trio Tim, 

Siemens, Erlangen, Germany). 164 volumes of 36 

slices each and voxel size 4 × 4 × 4 mm were ac-

quired with the parameters: echo time (TE) = 27 ms, 

repetition time (TR) = 2,200 ms, flip angle (FA) = 

90°, matrix size = 64. Additional information relat-

ed to the acquisition of the images can be found in 

the OASIS[23]. 

2.3 Image processing 

Image preprocessing was performed in the 

CONN toolbox[24]. A visual inspection was made to 

discard low quality images. Subsequently, data rea-

lignment was performed taking the first slice as ref-

erence, temporal correction and registration with 

the corresponding T1 image. The motion correction 

report was then inspected; subjects with head mo-

tion >2° in rotation and >2 mm in translation in any 

direction were excluded. Images of all 117 subjects 

were preprocessed, of which 23 subjects (AD:12, 

CN:11) were discarded for excess motion. 

The images of the remaining 94 subjects were 

normalized to the standard space defined by the 

Montreal Neurological Institute (MNI), preserving 

the 2 × 2 × 2 mm voxel size. Removal of motion 

trends, white matter related signals and cerebrospi-

nal fluid was performed. A band-pass filter was ap-

plied in the frequency range of 0.01 Hz to 0.1 Hz. 

2.4 BOLD signal extraction 

The extraction of the signals was performed 

from the templates proposed by Whitfield-Gabrieli 

et al.[25] for the default network and the executive 

control network (Figure 1). Masks of each region 

with number of voxels greater than 50 were used, 

therefore, 17 BOLD signals were extracted for the 

default network and 11 BOLD signals were ex-

tracted for the executive control network. The pro-

cess of obtaining the signals was performed with 

the DPARSFA tool[26] (DPABI_V4.1_190725). De-

tails of the names of each region involved are given 

in Table 2. 
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Figure 1. Regions of interest of the default network and the executive control network. 

Source: own elaboration. 

Table 2. Name of the regions that make up the networks according to the reference template 

Label Default network Label Executive Control Network 

1 
Medial Prefrontal Cortex, Anterior Cingulate Cortex and 

Frontal Orbitofrontal Cortex (B) 
1 

Middle Frontal Rotation, Upper Frontal Rotation 

(I) 

2 Angular Rotation (I) 2 Frontal Inferior Rotation, Frontal Orbital Rota-

tion (I) 

3 Upper Front Pivot (D) 3 
Superior Parietal Lobe, Inferior Parietal Lobe, 

Precuneus, Angular Gyrus (I) 

4 Posterior Cingulate Cortex, Precuneus (B) 4 Giro Temporal Inferior, Giro Temporal Medio (I) 

5 Dorsal Anterior Cingulate Cortex (B) 5 Crus I (D) 

6 Thalamus (B) 6 Middle Frontal Rotation, Upper Frontal Rotation 

(D) 

7 Hippocampus (1) 7 Medium Front Swing (P) 

8 Hippocampus (D) 8 
Inferior Parietal Lobe, Supramarginal Gyrus, 

Angular Gyrus (D) 

9 Cortesa. RetrosΡEnial, Posterior Cingulate Cortex (I). 9 Upper Front Pivot (D) 

10 Middle Frontal Rotation (I) 10 Crus I, Crus II, Lobe VI (D) 

11 Parahippocampal Gyrus (I) 11 Caudate nucleus (D) 

12 Middle Occipital Twist (I) - - 

13 Retrospenial Cortex, Posterior Cingulate Cortex (D) - - 

14 Precuneus (B) - - 

15 Upper Front Twist, Middle Front Twist (D) - - 

16 Parahypocampal Gyrus (D) - - 

17 Angular Rotation. Middle Occipital Twist (D) - - 

Source: own elaboration. * D: regions located in the right hemisphere; I: regions located in the left hemisphere and B: regions located 

in both hemispheres. 

2.5 BOLD signal analysis 

For each DN and ECN region, the spectral 

measures ALFF and fALFF and the nonlinear met-

ric Permutation Entropy (PE) were applied. All 

metrics were calculated on signals in the frequen-

cy band from 0.01 Hz to 0.1 Hz. 

2.5.1 Amplitude of Low Sequence Fluctua-

tions 

ALFF is defined as the sum of amplitudes in a 

frequency band, while fALFF is defined as the frac-

tion of the sum of amplitudes in a frequency band. 

For a time series of length N defined in (1), the 

computation of the ALFF and fALFF metrics is 

represented by (2) and (3), respectively[27]. 

 
(1) 

 

(2) 

 
(3) 

2.5.2 Entropy by permutations 

Permutation entropy is an approach pro-

posed by Bandt et al.
[18]

 for the analysis of complex 

and chaotic time series, which has the advantage of 

giving significant results in the presence of obser-

vational and dynamic noise, moreover, it is a simple, 

fast computational and robust method. For a time 

series {##} = 1,...,...,..., # permutations of order #, 

the PE is defined by (4), where #(#) is defined by 

(5), where the symbol # refers to “number”[18]. 
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(4) 

 

   (5) 

An embedded delay (#) of (2) and an embed-

ded dimension (#) of (4)[28], where # and # fulfilled 

the condition defined by (6) to avoid undersampling 

of the signals, were used for the PD calculation. 

m! ≤ N – (m – 1) 

(6) 

N = 164, corresponds to the length of the time 

series. The parameter # does not have much influ-

ence on the entropy of the time series, its value was 

taken based on the literature reported by electroen-

cephalography studies[28]. The measurement was 

standardized by the natural algorithm of #!, where 

PE reaches its maximum value, (7): 

 
(7) 

2.5.3 Statistical analysis 

The effect of age was removed from the met-

rics by means of linear regression. A two-sample 

nonparametric statistical test, described by Glerean 

et al.[29], was used for the comparison between 

groups, with significance level p < 0.05, and correc-

tion was performed by means of the False Discov-

ery Rate (FDR, p_fdr) method. Uncorrected 

p-values (p_unc) were analyzed for multiple com-

parisons because this was an exploratory study on 

the PE metric and because it was a study with dif-

ferent sample sizes between groups (CN:57, AD:36). 

Effect size was calculated with Hedges’ g, using the 

Be Measures of Effect Size Toolbox[30]; the findings 

are mainly discussed with this measure. Additional-

ly, a correlation analysis was performed using 

Spearman’s correlation index between the clinical 

rating scales MMSE, CDR-SB and the metrics ob-

tained in the BOLD signal analysis of the AD 

group. 

The metrics were set to a range of 0 to 1 to 

improve the visualization of the results by means 

of box plots. 

3. Results 

3.1 Default network 

A statistically significant increase in entropy 

was observed in the AD group compared to the CN 

group in region 10 involving the retrosplenial cor-

tex and posterior cingulate cortex of the left hemi-

sphere, with median effect size value -0.57. The 

increase in entropy could also be observed in region 

4 involving the posterior cingulate cortex and 

pre-cuneus, with median effect size value -0.57 

(Table 3 and Figure 2). 

No differences between groups were observed 

for the ALFF and fALFF metrics, the box plot 

can be visualized in Figures S1 and S2 in the ap-

pendix. The values obtained by correlating the met-

rics with the CDR-SB and MMSE clinical scales for 

the default network regions can be found in Tables 

S1 and S2, respectively in the appendix. 

3.2 Executive control network 

An increase in ALFF was observed in the right 

caudate nucleus in the AD group, with a median 

effect size value of -0.43. On the other hand, an in-

crease in entropy was obtained in the AD group 

compared to the CN group in the following regions: 

Right Crus I with effect size -0.38, right middle 

frontal gyrus with effect size -0.35, right caudate 

nucleus with effect size -0.37 and in the region in-

volving Crus I, Crus II and right lobule VI with ef-

fect size -0.38. The previously described differences 

presented statistical significance without FDR cor-

rection (Table 4, Figure 3 and Figure 4). 

No between-group differences were observed 

for the fALFF metric. The box plot can be seen in 

Figure S3 in the appendix. 

The values obtained by correlating the metrics 

with the CDR-SB and MMSE clinical scales for the 

executive control network regions can be found in 

Tables S1 and S2, respectively, in the appendix. 
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Table 3. P-values and effect size for the 17 default network regions 

ROI 
ALFF fALFF PE 

p1_unc p2_unc ES p1_unc p2_unc ES p1_unc p2_unc ES 

1 0.40 0.60 -0.01 0.43 0.57 0.05 0.21 0.79 0.15 

2 0.29 0.71 0.08 0.09 0.91 0.16 0.08 0.92 0.35 

3 0.47 0.53 -0.03 0.72 0.28 -0.08 0.54 0.46 0.01 

4 0.47 0.53 -0.04 0.46 0.54 -0.07 0.99 0.01 -0.57 

5 0.53 0.47 -0.05 0.77 0.23 -0.16 0.47 53 0.06 

6 0.88 0.12 -0.29 0.70 0.30 -0.10 0.24 0.76 0.08 

7 0.85 0.15 -0.32 0.45 0.55 0.03 0.08 0.92 0.37 

8 0.50 0.50 -0.12 0.27 0.73 0.12 0.18 0.82 0.29 

9 0.45 0.55 -0.02 0.51 0.49 -0.01 10.0 0.00* -0.57 

10 0.40 0.60 -0.03 0.65 0.35 -0.12 0.59 0.41 -0.04 

11 0.86 0.14 -0.28 0.77 0.23 -0.09 0.84 0.16 -0.19 

12 0.26 0.74 0.09 0.36 0.64 0.07 0.16 0.84 0.26 

13 0.59 0.41 -0.13 0.52 0.48 -0.04 0.81 0.19 -0.07 

14 0.29 0.71 0.09 0.80 0.20 -0.25 0.87 0.13 -0.28 

15 0.44 0.56 -0.07 0.53 0.47 0.00 0.87 0.13 -0.23 

16 0.82 0.18 -0.25 0.83 0.17 -0.19 0.58 0.42 0.00 

17 0.37 0.63 0.02 0.59 0.41 -0.12 0.55 0.45 0.06 

Source: own elaboration. p1_unc: uncorrected p-value for CN tail > AD; p2_unc: uncorrected p-value for queue CN < AD; ES: effect 

size; I: left; D: right; *: region with p_fdr < 0.05 (p1_fdr:1.0, p2_fdr:0.04). 

 
Figure 2. PD in the default network, statistically significant difference *p ≤ 0.05 in the region involving the left retrosplenial cortex and 

posterior cingulate cortex, **: uncorrected in the region involving the posterior cingulate cortex and precuneus. 

Source: own elaboration.

Table 4. P-values and effect sizes for the 11 regions of the executive control network 

ROI 
ΛLFF fALFF PE 

p 1 _unc p2_unc EN pl_unc p2_unc EN pl_unc p2_unc EN 

1 0.47 0.53 0.01 0.88 0.12 -0.24 0.34 0.66 0.09 

2 0.21 0.79 0.17 0.41 0.59 0.05 0.56 0.44 -0.04 

3 0.41 0.59 0.06 0.20 0.80 0.18 0.24 0.76 0.16 

4 0.85 0.15 -0.23 0.82 0.18 -0.20 0.78 0.22 -0.17 

5 0.71 0.29 -0.12 0.58 0.42 -0.04 0.97 0.03 -0.38 

6 0.41 0.59 0.05 0.83 0.17 -0.21 0.29 0.71 0.12 

7 0.12 0.88 0.25 0.08 0.92 0.31 0.95 0.05 -0.35 

8 0.52 0.48 -0.01 0.40 0.60 0.06 0.17 0.83 0.22 

9 0.39 0.61 0.06 0.14 0.86 0.25 0.73 0.27 -0.13 

10 0.41 0.59 0.05 0.79 0.21 -0.17 0.96 0.04 -0.38 

11 0.98 0.02 -0.43 0.13 0.87 0.25 0.96 0.04 -0.37 

Source: own elaboration. p1_unc: uncorrected p-value for CN tail > AD; p2_unc: uncorrected p-value for CN tail < AD; ES: effect size; 

I: left; D: right. 
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Figure 3. ALFF: statistically significant differences were found in the executive control network. **: without correction in the right 

caudate nucleus. 

Source: own elaboration. 

 
Figure 4. EP: in the executive control network, statistically significant differences. **: no correction in the right Crus I region, right 

middle frontal gyrus, the region involving the right Crus I, Crus II and lobe VI, and in the right caudate nucleus. 

Source: own elaboration. 

4. Discussion 

In this study we investigated the potential of 

the permutation entropy metric to extract infor-

mation about brain complexity in regions that make 

up the default network and the executive control 

network, its performance was compared with the 

spectral metrics ALFF and fALFF in AD patients 

and healthy subjects. An increase in EP was found 

in AD patients in both networks, additionally an 

increase in ALFF was found in AD patients in the 

executive control network. 

When analyzing the default network in patients, 

an increase in PD was found in the region involving 

the posterior cingulate cortex and the precuneus. On 

the other hand, the study on the executive control 

network revealed an increase of ALFF in the cau-

date nucleus and an increase of PD in the right 

hemisphere regions: middle frontal gyrus, caudate 

nucleus and the region comprising Crus I, Crus II 

and lobule VI. In line with these findings, it 

has been reported that disorganization in the func-

tional connectivity of this region is of importance 

for the development of dementia in AD[31]. The 

posterior cingulate cortex is considered a key region 

of the default network in which changes in brain 

connectivity have been reported in AD[32], with high 

discriminatory power between it and control sub-

jects[33]. From a pathological point of view, the 
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precuneus and posterior cingulate cortex have been 

associated with the full development of AD, where 

tau protein retention and astrogliosis have been re-

ported, in addition to significant alterations in func-

tional connectivity[31]. A structural MRI study re-

ported that the posterior cingulate cortex is one of 

the most vulnerable regions involved in AD patho-

physiology. Accelerated impairment of multiple 

cognitive domains was identified in individuals 

with a higher rate of gray matter volume atrophy of 

this region[34]. In a meta-analysis of connectivity 

with rs-fMRI has been reported in AD subjects with 

no connectivity between the default network and 

the limbic system, given mainly by the precuneus 

and posterior cingulate areas[8]. Another study 

evaluating intranetwork connectivity by default 

showed increased connectivity between the posteri-

or cingulate with the parahippocampal cortex and 

the precuneus in people with AD compared to con-

trols[35]. However, it should be noted that the find-

ings of resting connectivity in AD are contradictory. 

Apparently, connectivity in the default network 

may be modified according to the stage of dementia, 

and there may be a decrease in posterior parietal 

and temporal areas at symptom onset and an in-

crease in anterior frontal areas with disease pro-

gression; whether this is due to possible compensa-

tion or a change due to the pathophysiology of 

abnormal protein deposition itself has not been 

clarified[36]. 

Contrary to the results of this investigation, 

previous rs-fMRI studies[19,37,38] have reported re-

duced complexity in AD compared to healthy sub-

jects. One such study[19] found decreased EP in the 

AD group when compared to the control group in 

temporal, occipital and frontal lobe regions (right 

hemisphere: inferior temporal gyrus, wedge, middle 

occipital gyrus and superior occipital gyrus; left 

hemisphere: middle frontal gyrus, superior frontal 

gyrus, anterior cingulate gyrus and wedge. On the 

other hand, the same study reported increased PD in 

the early-stage mild cognitive impairment group 

when compared to the control group in the right 

hemisphere regions: inferior temporal gyrus, middle 

frontal gyrus, wedge, middle occipital gyrus and 

superior occipital gyrus. It is important to highlight 

that the referenced study did not start from the 

study of regions that are part of the brain networks 

at rest that are mostly affected in Alzheimer’s dis-

ease; instead, the analysis was performed on 8 re-

gions belonging to 5 clusters that showed signifi-

cant differences after obtaining the EP metric over 

all brain voxels. The study data were taken from the 

ADNI initiative. On the other hand, the study by 

Zheng et al.[37] used the multiscale entropy metric to 

quantify the complexity of BOLD signals in sub-

jects with early mild cognitive impairment, late 

mild cognitive impairment and control subjects 

taken from the ADNI initiative. The study reported 

decreased complexity in the left fusiform gyrus re-

gion and rostral anterior cingulate cortex in the ear-

ly mild cognitive impairment group. The methodo-

logical approach consisted of generating multiscale 

entropy maps for each subject over all brain voxels. 

With respect to the study by Grieder et al.[38], they 

used the multiscale entropy metric to quantify the 

complexity of BOLD signals in subjects with mild 

cognitive impairment and control subjects recruited 

at the Memory Clinic of the Department of Geriat-

rics, Karolinska University Hospital, Huddinge, 

Sweden. The analysis was performed on regions of 

the default network defined by Shirer et al.[25], of 

which reported decreased entropy at the global level 

and at the nodal level reported reduction in the right 

hippocampus. Results are reported without correc-

tion for multiple comparisons. As common limita-

tions of the previously cited studies it is highlighted 

that the ADNI initiative did not publicly provide 

information on AD-related risk factors[19] and it is 

noted that previous studies have suggested that the 

ADNI diagnostic criterion of mild cognitive im-

pairment has a high false-positive rate[37]. 

The study by Boccardi et al.[39] evaluated the 

impact of aging on dementia from a cellular ap-

proach, in which late-onset AD can be seen as a 

manifestation of reduced energy production, result-

ing in increased entropy. The authors suggest that 

the accumulation of age-related modifications, as 

well as the depletion of mitochondria, could be re-

sponsible for the poor ability of the brain to adapt 

its brain structures and functions. On the other hand, 

the relationship between entropy during healthy 

aging and AD has been recently explored by 

rs-fMRI and brain entropy mapping (BEN) met-
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rics[40] in groups of control individuals (n = 54, age: 

65–95 years), memory-impaired controls (n = 27, 

age 65–95 years), early mild cognitive impairment 

(n = 58, age: 56–89 years), late mild cognitive im-

pairment (n = 38, 57–88 years) and subjects with 

AD (n = 34, 56–87 years). The referenced study 

reported the following behavior of BEN in the four 

groups of interest. The comparison is described 

with respect to the control group: slight increase in 

control individuals with memory compromise, more 

noticeable increase in the early mild cognitive im-

pairment group. For the late mild cognitive impair-

ment stage, a slight decrease was reported that lat-

er became a more noticeable reduction in the AD 

group, the reduction in BEN in the late stages of 

dementia is related by the author to a failed com-

pensation phenomenon[40]. According to Tagliazuc-

chi et al.[41] and the literature[42], the marked reduc-

tion in BEN present in the late stages of dementia 

results in accelerated deterioration of brain func-

tions that require high entropy levels to be func-

tionally flexible. The findings of this study, de-

scribed as Alzheimer’s type dementia in section 2.1, 

are in line with the behavior described by the ear-

ly-onset mild cognitive impairment group in the 

study by Wang[40], highlights this aspect for being 

the only study describing the behavior of entropy in 

5 cognitive stages of interest in the study of AD. 

However, through reference[38], contradictions are 

evident in the findings of studies performed from 

rs-fMRI data in AD with the aim of quantifying the 

complexity of BOLD signals in AD, suggesting that 

additional studies are needed in the field, which 

also include longitudinal follow-up and provide 

additional information on subject selection criteria. 

ALFF is a metric that allows the identification 

of spontaneous neural activity of specific brain re-

gions through the intensity of the BOLD signal. It 

has been used as a characteristic metric to improve 

the performance of machine learning algorithms for 

discriminating MCI and AD subjects from cogni-

tively normal individuals[13]. The ALFF and entropy 

metrics are theoretically unrelated, however, in this 

study an increase in ALFF and PE was found in the 

caudate nucleus. The study by Song et al.[43] con-

ducted with a cohort of healthy subjects reported 

positive correlations of medium to high magni-

tude between BEN and fALFF in the orbitofrontal 

cortex and posterior inferior temporal cortex. On 

the other hand, it reported high magnitude negative 

correlations between BEN and fALFF in visual 

cortex, anterior inferior temporal cortex, motor 

network, precuneus, and lateral parietal cortex, 

suggesting that fALFF and BEN are mutually inde-

pendent. The previously referenced study suggests 

that BEN may provide more complete information 

on brain function, especially in regions where there 

are no associations between BEN and fALFF, in 

line with the findings of our study. 

Among the limitations of this research is the 

use of unpaired groups by sex and age. It is im-

portant to note that OASIS-3 is a database that in-

cludes subjects ranging in age from 42 years to 95 

years who were recruited over the course of 30 

years. Some of the subjects included in this study 

were initially labeled as cognitively normal who 

developed AD dementia over time and others en-

tered the OASIS-3 initiative with a diagnosis of 

dementia of Alzheimer’s type, for both cases the 

review performed by clinical experts allowed ex-

cluding subjects with AD label who could have 

symptoms explained by other clinical conditions or 

not have a clear diagnosis, based on the information 

provided by the clinical history available in the da-

tabase. It should be noted that the database does not 

specify the clinical stage of dementia in which the 

subjects are found, so it had to be determined from 

scale measurements that, while reliable, do not 

match the clinical criteria. The analysis approaches 

reported by previous studies limit the comparability 

of the findings of this study, mainly because of the 

uncertainty about the stage of subjects classified as 

AD or ADNI mild and late cognitive impairment, in 

addition to the use of metrics other than PD to 

quantify the complexity of BOLD signals. In addi-

tion, some limitations were found related to the 

presence of artifacts in the images and changes in 

diagnosis during longitudinal follow-up that de-

creased the initial sample. Although the size of the 

signals is of longer duration compared to the EP 

study performed by Wang et al.[19], performing this 

analysis on signals with more than 164 volumes 

would be beneficial to assess the entropy in the AD 

continuum due to the 24 states defined by the em-
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bedded dimension equal to 4. 

While statistical tests give considerable infer-

ence of the relationship between two or more varia-

bles, allowing interpretability within the data, their 

predictive accuracy is not their main strength, so 

future research should consider the potential effects 

of machine learning to complement the results pre-

sented, where one would have the ability to gener-

ate a model from the nonlinear PE metric and ob-

tain reproducible predictions, with a more robust 

analysis in the search for discriminant patterns be-

tween groups, in this case AD vs CN, which would 

also allow obtaining greater predictive power with 

the addition of more samples from the different 

populations and reducing the presence of artifacts[44]. 

Consequently, according to certain studies[16,45], the 

use of functional connectivity metrics of nonlinear 

dynamic fluctuations as baseline data for analysis 

has been suggested, since it provides a better path-

ophysiological characterization of neural networks 

in populations with neurodegenerative diseases, in 

addition to being data that can be efficiently manip-

ulated by artificial neural networks, since they al-

low the modeling of nonlinear relationships in 

fields of great complexity. 

5. Conclusions 

The current study identified increased entropy 

in regions of the default network and the executive 

control network in AD patients. The differential 

finding of greatest magnitude was manifested in the 

posterior cingulate cortex and the precuneus. The 

implemented methodology allowed us to demon-

strate the ability of the permutation entropy metric 

to capture information about brain function in Alz-

heimer’s disease compared to spectral metrics. The 

metric should be explored in longitudinal studies 

and in longer duration signals to evaluate its poten-

tial to capture functional patterns related to AD. 
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Appendix 

 

Figure S1. ALFF in the default network, with no statistically significant findings. 

Source: own elaboration. 

 

Figure S2. fALFF in the default network, with no statistically significant findings. 

Source: own elaboration. 
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Figure S3. fALFF in the executive control network, with no statistically significant findings. 

Source: own elaboration. 

Table S1. Correlation of the metrics with the CDR-SB scale for the default network regions 

ROI 
ALFF fALFF PE 

r P r P r P 

1 0.01 0.94 -0.13 0.45 -0.14 0.41 

2 -0.10 0.55 -0.27 0.11 -0.04 0.83 

3 0.07 0.66 -0.12 0.48 0.04 0.82 

4 0.06 0.74 0.05 0.79 0.16 0.34 

5 0.10 0.58 0.13 0.46 -0.17 0.31 

6 0.05 0.76 -0.05 0.79 0.02 0.92 

7 0.05 0.77 0.02 0.90 -0.13 45 

8 0.06 0.72 -0.01 0.96 0.24 0.17 

9 0.07 0.70 -0.01 0.95 0.06 0.75 

10 0.13 0.44 -0.01 0.94 0.01 0.97 

11 0.09 0.59 0.25 0.15 -0.16 0.34 

12 -0.06 0.73 0.01 0.94 0.12 0.49 

13 0.11 0.54 0.08 0.66 0.03 0.86 

14 0.10 0.55 0.03 0.84 0.15 0.38 

15 0.04 0.80 0.06 0.71 -0.06 0.73 

16 0.05 0.77 -0.03 0.87 -0.20 0.24 

17 0.05 0.76 0.27 0.12 0.21 0.21 

Source: own elaboration. 

Table S2. Correlation of metrics with the MMSE scale for the default network regions 

ROI 
ALFF fALFF PE 

r P r P r P 

1 0.11 0.53 0.12 0.48 0.07 0.68 

2 0.07 0.68 0.03 0.88 0.12 0.47 

3 0.17 0.32 -0.06 0.74 0.07 0.67 

4 0.15 0.38 -0.05 0.78 -0.03 0.87 

5 0.03 0.85 -0.07 0.68 0.11 0.54 

6 0.13 0.44 -0.02 0.90 0.11 0.54 

7 -0.14 0.43 0.08 0.66 0.13 0.46 

8 -0.08 0.65 -0.12 0.50 -0.31 0.07 

9 0.11 0.54 -0.06 0.74 0.07 0.68 

10 0.09 0.61 0.11 0.51 0.32 0.06 

11 -0.13 0.46 0.05 0.75 0.14 0.41 

12 0.05 0.79 0.07 0.68 0.07 0.66 

13 0.04 0.82 0.05 0.78 0.09 0.62 

14 0.13 0.44 0.02 0.93 0.02 0.92 

15 0.12 0.47 -0.05 0.75 0.07 0.67 

16 -0.08 0.65 0.05 0.79 0.47 0.00 

17 0.02 0.93 0.00 0.98 -0.13 0.44 

Source: own elaboration. 
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Table S3. Correlation of metrics with the CDR-SB scale for executive control network regions 

ROI 
ALFF fALFF PE 

r P R P r P 

1 0.16 0.35 -0.16 0.35 -0.18 0.30 

2 0.08 0.62 -0.02 0.89 -0.28 0.10 

3 0.01 0.98 -0.05 0.79 0.13 0.45 

4 0.02 0.92 -0.01 0.95 -0.13 0.46 

5 0.16 0.35 0.07 0.68 0.07 0.71 

6 0.07 0.69 -0.15 0.38 -0.09 0.60 

7 -0.02 0.91 0.03 0.85 0.03 0.84 

8 0.03 0.86 0.13 0.44 0.02 0.90 

9 0.01 0.93 0.10 0.55 -0.03 0.85 

10 0.21 0.22 -0.06 0.73 0.31 0.06 

11 0.04 0.83 0.34 0.04 0.16 0.36 

Source: own elaboration. 

TABLE S4. Correlation of metrics with the MMSE scale for executive control network regions 

ROI 
ALFF fALFF PE 

r P R P r P 

1 0.14 0.43 0.07 0.67 0.19 0.27 

2 0.04 0.82 0.21 0.22 0.15 0.37 

3 0.04 0.83 -0.04 0.83 0.17 0.33 

4 -0.18 0.28 -0.05 0.76 -0.04 0.80 

5 -0.10 0.54 0.02 0.93 -0.16 0.36 

6 0.11 0.52 -0.05 0.76 0.07 0.67 

7 0.09 0.62 -0.12 0.49 0.27 0.10 

8 0.02 0.91 -0.20 0.24 0.02 0.92 

9 0.14 0.42 -0.08 0.65 0.01 0.97 

10 -0.05 0.78 0.11 0.51 0.11 0.53 

11 0.03 0.84 -0.25 0.14 0.04 0.80 

Source: own elaboration

 


