Molecular dynamics simulation of atomic interaction between mediator protein of human prostate cancer and Fe/C720 buckyballs-statin structures
Vol 6, Issue 2, 2023
VIEWS - 87 (Abstract) 85 (PDF)
Abstract
Atomic interaction between mediator protein of human prostate cancer (PHPC) and Fe/C720 Buckyballs-Statin is important for medical science. For the first time, we use molecular dynamics (MD) approach based on Newton’s formalism to describe the destruction of PHPC via Fe/C720 Buckyballs-Statin with atomic accuracy. In this work, the atomic interaction of PHPC and Fe/C720 Buckyballs-Statin introduced via equilibrium molecular dynamics approach. In this method, each PHPC and Fe/C720 Buckyballs-Statin is defined by C, H, Cl, N, O, P, S, and Fe elements and contrived by universal force field (UFF) and DREIDING force-field to introduce their time evolution. The results of our studies regarding the dynamical behavior of these atom-base compounds have been reported by calculating the Potential energy, center of mass (COM) position, diffusion ratio and volume of defined systems. The estimated values for these quantities show the attraction force between Buckyball-based structure and protein sample, which COM distance of these samples changes from 10.27 Å to 2.96 Å after 10 ns. Physically, these interactions causing the destruction of the PHPC. Numerically, the volume of this biostructure enlarged from 665,276 Å3 to 737,143 Å3 by MD time passing. This finding reported for the first time which can be considered by the pharmaceutical industry. Simulations indicated the volume of the PHPC increases by Fe/C720 Buckyballs-Statin diffusion into this compound. By enlarging this quantity (diffusion coefficient), the atomic stability of PHPC decreases and protein destruction procedure fulfilled.
Keywords
Full Text:
PDFReferences
1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018; 68(6): 394-424. doi: 10.3322/caac.21492
2. Koh KA, Sesso HD, Paffenbarger RS, et al. Dairy products, calcium and prostate cancer risk. British Journal of Cancer. 2006; 95(11): 1582-1585. doi: 10.1038/sj.bjc.6603475
3. Caini S, Gandini S, Dudas M, et al. Sexually transmitted infections and prostate cancer risk: A systematic review and meta-analysis. Cancer Epidemiology. 2014; 38(4): 329-338. doi: 10.1016/j.canep.2014.06.002
4. Lee MV, Katabathina VS, Bowerson ML, et al. BRCA-associated Cancers: Role of Imaging in Screening, Diagnosis, and Management. RadioGraphics. 2017; 37(4): 1005-1023. doi: 10.1148/rg.2017160144
5. Catalona WJ. Prostate Cancer Screening. Medical Clinics of North America. 2018; 102(2): 199-214. doi: 10.1016/j.mcna.2017.11.001
6. Grossman DC, Curry SJ, Owens DK, et al. Screening for Prostate Cancer. JAMA. 2018; 319(18): 1901. doi: 10.1001/jama.2018.3710
7. Cabarkapa S, Perera M, McGrath S, et al. Prostate cancer screening with prostate-specific antigen: A guide to the guidelines. Prostate International. 2016; 4(4): 125-129. doi: 10.1016/j.prnil.2016.09.002
8. Stratton J, Godwin M. The effect of supplemental vitamins and minerals on the development of prostate cancer: a systematic review and meta-analysis. Family Practice. 2011; 28(3): 243-252. doi: 10.1093/fampra/cmq115
9. Luszczak S, Kumar C, Sathyadevan VK, et al. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduction and Targeted Therapy. 2020; 5(1). doi: 10.1038/s41392-020-0109-y
10. World Health Organization. Chapter 1.1. World Cancer Report. World Health Organization; 2014.
11. Baade PD, Youlden DR, Krnjacki LJ. International epidemiology of prostate cancer: Geographical distribution and secular trends. Molecular Nutrition & Food Research. 2009; 53(2): 171-184. doi: 10.1002/mnfr.200700511
12. Leslie SW, Soon-Sutton TL, Sajjad H, Siref LE. Prostate Cancer. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.
13. Miller DC, Hafez KS, Stewart A, et al. Prostate carcinoma presentation, diagnosis, and staging. Cancer. 2003; 98(6): 1169-1178. doi: 10.1002/cncr.11635
14. Van der Cruijsen-Koeter IW, Vis AN, Roobol MJ, et al. Comparison of screen detected and clinically diagnosed prostate cancer in the European randomized study of screening for prostate cancer, section rotterdam. Journal of Urology. 2005; 174(1): 121-125. doi: 10.1097/01.ju.0000162061.40533.0f
15. Calle EE, Rodriguez C, Walker-Thurmond K, et al. Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. New England Journal of Medicine. 2003; 348(17): 1625-1638. doi: 10.1056/nejmoa021423
16. Menez R, Stura E, Jolivet-Reynaud C. Crystal structure of human prostate specific antigen complexed with an activating antibody. J Mol Biol. 2008; 376: 1021-1033. doi: 10.2210/pdb2ZCH/pdb
17. Winsberg E. Science in the Age of Computer Simulation. Chicago: University of Chicago Press; 2010.
18. Humphreys P. Extending Ourselves: Computational Science, Empiricism, and Scientific Method. Oxford: Oxford University Press; 2004
19. Nutaro JJ. Building Software for Simulation: Theory and Algorithms, with Applications in C++. John Wiley & Sons; 2011.
20. Schlick T. Pursuing Laplace’s Vision on Modern Computers. Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications. 1996; 82: 219-247. doi: 10.1007/978-1-4612-4066-2_13
21. Alder BJ, Wainwright TE. Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics. 1959; 31(2): 459-466. doi: 10.1063/1.1730376
22. Rahman A. Correlations in the Motion of Atoms in Liquid Argon. Physical Review. 1964; 136(2A): A405-A411. doi: 10.1103/physrev.136.a405
23. Jolfaei NA, Jolfaei NA, Hekmatifar M, et al. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Computer Methods and Programs in Biomedicine. 2020; 185: 105169. doi: 10.1016/j.cmpb.2019.105169
24. Ashkezari AZ, Jolfaei NA, Jolfaei NA, et al. Calculation of the thermal conductivity of human serum albumin (HSA) with equilibrium/non-equilibrium molecular dynamics approaches. Computer Methods and Programs in Biomedicine. 2020; 188: 105256. doi: 10.1016/j.cmpb.2019.105256
25. Koehl P, Levitt M. A brighter future for protein structure prediction. Nature Structural Biology. 1999; 6(2): 108-111. doi: 10.1038/5794
26. Sabetvand R, Ghazi ME, Izadifard M. Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. Journal of Computational Electronics. 2020; 19(1): 70-79. doi: 10.1007/s10825-020-01443-3
27. Wang LP, Martinez TJ, Pande VS. Building Force Fields: An Automatic, Systematic, and Reproducible Approach. The Journal of Physical Chemistry Letters. 2014; 5(11): 1885-1891. doi: 10.1021/jz500737m
28. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics. 1995; 117(1): 1-19. doi: 10.1006/jcph.1995.1039
29. Plimpton SJ, Thompson AP. Computational aspects of many-body potentials. MRS Bulletin. 2012; 37(5): 513-521. doi: 10.1557/mrs.2012.96
30. Brown WM, Wang P, Plimpton SJ, et al. Implementing molecular dynamics on hybrid high performance computers – short range forces. Computer Physics Communications. 2011; 182(4): 898-911. doi: 10.1016/j.cpc.2010.12.021
31. Brown WM, Kohlmeyer A, Plimpton SJ, et al. Implementing molecular dynamics on hybrid high performance computers – Particle–particle particle-mesh. Computer Physics Communications. 2012; 183(3): 449-459. doi: 10.1016/j.cpc.2011.10.012
32. Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society. 1992; 114(25): 10024-10035. doi: 10.1021/ja00051a040
33. Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. The Journal of Physical Chemistry. 1990; 94(26): 8897-8909. doi: 10.1021/j100389a010
34. Lennard-Jones JE. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A. 1924; 106(738): 463-477. doi: 10.1098/rspa.1924.0082
35. Rapaport DC, Blumberg RL, McKay SR, et al. The Art of Molecular Dynamics Simulation. Computers in Physics. 1996; 10(5): 456-456. doi: 10.1063/1.4822471
36. Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review. 1967; 159(1): 98-103. doi: 10.1103/physrev.159.98
37. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Section 17.4. Second-Order Conservative Equations. In: Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York: Cambridge University Press; 2007.
38. Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numerica. 2003; 12: 399–450. doi: 10.1017/S0962492902000144
39. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics. 1984; 81(1): 511-519. doi: 10.1063/1.447334
40. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A. 1985; 31(3): 1695-1697. doi: 10.1103/physreva.31.1695
41. Hoover WG, Holian BL. Kinetic moments method for the canonical ensemble distribution. Physics Letters A. 1996; 211(5): 253-257. doi: 10.1016/0375-9601(95)00973-6
42. Welty JR, Wicks CE, Wilson RE, Rorrer G. Fundamentals of Momentum, Heat, and Mass Transfer. Wiley; 2001.
43. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering. 2009; 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
DOI: https://doi.org/10.24294/irr.v6i2.6398
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by-nc/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.