References
Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. New England Journal of Medcine 2018; 378: 169–180.
Deutsche Gesellschaft für Neurologie. Diagnosis and Therapy of Multiple Sclerosis (German) [Diagnose und Therapie der Multiplen Skerose]. Stuttgart: Deutsche Gesellschaft für Neurologie; 2014.
Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology 1996; 46: 907–911.
Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014; 83: 278–286.
Bradl M, Lassmann H. Progressive multiple sclerosis. Seminars Immunopathology 2009; 31: 455–465.
Lassmann H, Van Horssen J, Mahad D. Progressive multiple sclerosis: Pathology and pathogenesis. Nature Reviews Neurology 2012; 8: 647–656.
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: Mechanisms and immunotherapy. Neuron 2018; 97: 742–768.
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nature Reviews Immunology 2015; 15: 545–558.
Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. Journal of Neurology 2005; 252: v16–v24.
Mallik S, Samson RS, Wheeler-Kingshott CAM, et al. Imaging outcomes for trials of remyelination in multiple sclerosis. Journal of Neurology, Neurosurgry & Psychiatry 2014; 85: 1396–1404.
Moccia M, De Stefano N, Barkhof F. Imaging outcome measures for progressive multiple sclerosis trials. Multiple Sclerosis Journal 2017; 23: 1614–1626.
Wattjes MP, Lutterbey GG, Gieseke J, et al. Double inversion recovery brain imaging at 3T: Diagnostic value in the detection of multiple sclerosis lesions. American Journal of Neuroradiology 2007; 28: 54–59.
Vigeveno RM, Wiebenga OT, Wattjes MP, et al. Shifting imaging targets in multiple sclerosis: From inflammation to neurodegeneration. Journal of Magnetic Resonance Imaging 2012; 36: 1–19.
Giovannoni G, Butzkueven H, Dhib-Jalbut S, et al. Brain health: Time matters in multiple sclerosis. Multiple Sclerosis and Related Disorders 2016; 9(Suppl1): S5–S48.
Casanova B, Coret F, Valero C, et al. High clinical inflammatory activity prior to the development of secondary progression: A prospective 5-year follow-up study. Multiple Sclerosis Journal 2002; 8: 59–63.
Katz Sand I, Krieger S, Farrell C, et al. Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Multiple Sclerosis Journal 2014; 20: 1654–1657.
European Medicines Agency. EPAR-An overview of Mayzent and why it is authorised in the EU. London (UK): European Medicines Agency; 2020.
Kappos L, Bar-Or A, Cree BAC, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. The Lancet 2018; 391: 1263–1273.
Lorscheider J, Buzzard K, Jokubaitis V, et al. Defining secondary progressive multiple sclerosis. Brain 2016; 139: 2395–2405.
Arnold DL, Fox R, Bar-Or A, et al. Effect of siponimod on cortical grey matter and thalamic volume in patients with secondary progressive multiple sclerosis-results of the EXPAND study. ECTRIMS 2019; 25: 382.
Filippi M, Preziosa P, Langdon D, et al. Identifying progression in multiple sclerosis: New perspectives. Annals Neurology 2020; 88(3): 438–452.
Benedict RH, Drake AS, Irwin LN, et al. Benchmarks of meaningful impairment on the MSFC and BICAMS. Multiple Sclerosis Journal 2016; 22: 1874–1882.
Ruet A, Deloire M, Hamel D, et al. Cognitive impairment, health-related quality of life and vocational status at early stages of multiple sclerosis: A 7-year longitudinal study. Journal of Neurology 2013; 260: 776–784.
Kobelt G, Thompson A, Berg J, et al. New insights into the burden and costs of multiple sclerosis in Europe. Multiple Sclerosis Journal 2017; 23: 1123–1136.
Flensner G, Landtblom AM, Soderhamn O, et al. Work capacity and health-related quality of life among individuals with multiple sclerosis reduced by fatigue: A cross-sectional study. BMC Public Health 2013; 13: 224.
Potagas C, Giogkaraki E, Koutsis G, et al. Cognitive impairment in different MS subtypes and clinically isolated syndromes. Journal of the Neurological Sciences 2008; 267: 100–106.
Ruano L, Portaccio E, Goretti B, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Multiple Sclerosis Journal 2017; 23: 1258–1267.
Planche V, Gibelin M, Cregut D, et al. Cognitive impairment in a population-based study of patients with multiple sclerosis: Differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. European Journal of Neurology 2016; 23: 282–289.
Patti F. Cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal 2009; 15: 2–8.
Deloire MSA, Bonnet MC, Salort E, et al. How to detect cognitive dysfunction at early stages of multiple sclerosis? Multiple Sclerosis Journal 2006; 12: 445–452.
Renner A, Baetge SJ, Filser M, et al. Characterizing cognitive deficits and potential predictors in multiple sclerosis: A large nationwide study applying brief international cognitive assessment for multiple sclerosis in standard clinical care. Journal of Neuropsychology 2020; 14(3): 347–369.
Huijbregts SCJ, Kalkers NF, De Sonneville LMJ, et al. Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology 2004; 63: 335–339.
Rovira A, Wattjes MP, Tintore M, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nature Reviews Neurology 2015; 11: 471–482.
Wattjes MP, Rovira A, Miller D, et al, Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-establishing disease prognosis and monitoring patients. Nature Review Neurology 2015; 11: 597–606.
Brownlee WJ, Altmann DR, Prados F, et al. Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain 2019; 142: 2276–2287.
Chung KK, Altmann D, Barkhof F, et al. A 30-year clinical and magnetic resonance imaging observational study of multiple sclerosis and clinically isolated syndromes. Annals of Neurology 2020; 87: 63–74.
Scalfari A, Romualdi C, Nicholas RS, et al. The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology 2018; 90: e2107–e2118.
Tintore M, Arrambide G, Otero-Romero S, et al. The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS. Multiple Sclerosis Journal 2019; 26(13).
Eden D, Gros C, Badji A, et al. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain 2019; 142: 633–646.
Filippi M, Preziosa P, Barkhof F, et al. Diagnosis of progressive multiple sclerosis from the imaging perspective: A review. JAMA Neurology 2020; 78(3): 351–364.
Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; 128: 2705–2712.
Li DKB, Held U, Petkau J, et al. MRI T2 lesion burden in multiple sclerosis: A plateauing relationship with clinical disability. Neurology 2006; 66: 1384–1389.
Moraal B, Wattjes MP, Geurts JJG, et al. Improved detection of active multiple sclerosis lesions: 3D subtraction imaging. Radiology 2010; 255:154–163.
De Graaf WL, Kilsdonk ID, Lopez-Soriano A, et al. Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: Increased lesion detection compared to 3 T confined to grey matter. European Radiology 2013; 23: 528–540.
Sethi V, Yousry TA, Muhlert N, et al. Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. Journal of Neurology, Neurosurgery & Psychiatry 2012; 83: 877–882.
Van De Pavert SHP, Muhlert N, Sethi V, et al. DIR-visible grey matter lesions and atrophy in multiple sclerosis: Partners in crime? Journal of Neurology, Neurosurgery & Psychiatry 2016; 87: 461–467.
Geurts JJG, Roosendaal SD, Calabrese M, et al. Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI. Neurology 2011; 76: 418–424.
Zecca C, Disanto G, Sormani MP, et al. Relevance of asymptomatic spinal MRI lesions in patients with multiple sclerosis. Multiple Sclerosis Journal 2016; 22: 782–791.
Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007; 130: 1089–1104.
Zurawski J, Lassmann H, Bakshi R. Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients with multiple sclerosis: A review. JAMA Neurology 2017; 74: 100–109.
Absinta M, Vuolo L, Rao A, et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 2015; 85: 18–28.
Kilsdonk ID, Schoonheim M, Wattjes MP. In vivo imaging of meningeal inflammation in multiple sclerosis: Presence of evidence or evidence of presence? Multiple Sclerosis Journal 2017; 23: 1169–1171.
Dal-Bianco A, Grabner G, Kronnerwetter C, et al. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7 T magnetic resonance imaging. Acta Neuropathologica 2017; 133: 25–42.
Elliott C, Wolinsky JS, Hauser SL, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Multiple Sclerosis Journal 2019; 25: 1915–1925.
Wattjes MP, Steenwijk MD, Stangel M. MRI in the diagnosis and monitoring of multiple sclerosis: An update. Clinical Neuroradiology 2015; 25(Suppl2): 157–165.
Marrie RA, Rudick R, Horwitz R, et al. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 2010; 74: 1041–1047.
Kilsdonk ID, Wattjes MP, Lopez-Soriano A, et al. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla. European Radiology 2014; 24: 841–849.
Calabrese M, Agosta F, Rinaldi F, et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Archives of Neurology 2009; 166: 1144–1150.
Calabrese M, Rinaldi F, Mattisi I, et al. Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 2010; 74: 321–328.
Rocca MA, Amato MP, De Stefano N, et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. The Lancet Neurology 2015; 14: 302–317.
Di Filippo M, Portaccio E, Mancini A, et al. Multiple sclerosis and cognition: Synaptic failure and network dysfunction. Nature Reviews Neuroscience 2018; 19: 599–609.
Minagar A, Barnett MH, Benedict RHB, et al. The thalamus and multiple sclerosis: Modern views on pathologic, imaging, and clinical aspects. Neurology 2013; 80: 210–219.
University of California, San Francisco MS, Cree BAC, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Annals of Neurology 2019; 85: 653–666.
Pitteri M, Romualdi C, Magliozzi R, et al. Cognitive impairment predicts disability progression and cortical thinning in MS: An 8-year study. Multiple Sclerosis Journal 2017; 23: 848-854
Schoonheim MM, Meijer KA, Geurts JJG. Network collapse and cognitive impairment in multiple sclerosis. Frontiers in Neurology 2015; 16: 82.
Arnold DL, Giovannoni G, Cree B, et al. Relationship between grey matter atrophy, disability and cognition in patients with secondary progressive multiple sclerosis: Analysis from the EXPAND study. ECTRIMS 2019; 25: 1057.
Gold R, Kappos L, Bar-Or A, et al. Efficacy of siponimod in secondary progressive multiple sclerosis patients with active disease: The expand study subgroup analysis. ECTRIMS 2019; 750.
Novartis. Technical Information of Mayzent (German) [Fachinformation Mayzent]. Basel: Novartis; 2020.