STRUCTURE and CONTENT of 64Zn+ ION HOT IMPLANTED and THERMAL OXIDATED Si

Privezentsev V.V.

Abstract


Impurity cluster formation in 64Zn+ ion hot implanted and subsequently thermal oxidized Si substrates are studied. After implantation on sample surface and in sample near-surface layer the metallic Zn clusters with average size near 200nm on sample surface and clusters with size about 20nm in a sample body were created. After annealing at 700°C there was transformation from metal Zn clusterss to its oxide form such as ZnO(core)/Zn2SiO4(shell) on a sample surface and conservation the metallic Zn phase in a sample body. We propose an explanation for this phenomenon by temperature dependence of the oxygen molecules diffusion in silicon body and zinc atom opposite moving to the sample surface during annealing.


Keywords


silicon, zinc, hot implantation, thermal oxidation, Zn and ZnO clusters

Full Text:

PDF

References


M. Vaseem, A. Umar, Y.-B. Hahn. Metal Oxide Nanostructures and Their Applications, USA: American Scientific Publishers, Ch.4 (2010) 1–36.

Sheng Chu, Mario Olmedo, Zheng Yang, Jieying Kong, and Jianlin Liu, Electrically pumped ultraviolet ZnO diode lasers on Si, Appl. Phys. Lett., 93 (2008) 181106-3.

C. Li, Y. Yang, X. W. Sun, W. Lei, X. B. Zhang, B. P. Wang, J. X. Wang, B. K. Tay, J. D. Ye, G. Q. Lo., Enhanced field emission from injector-like ZnO nanostructures with minimized screening effect, Nanotechnology, 18 (2007) 135604-4.

G.P. Smestad, M. Gratzel, Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter, J. Chem. Educ. 75 (1998) 752-756.

S. Inbasekaran, R. Senthil, G. Ramamurthy, T.P. Sastry, Biosensor using Zinc Oxide Nanoparticles, Intern. J. Innov. Res. Sci. Engineer. Technol. 3 (2014) 8601-8606.

Cheng Li, Gareth J. Beirne, Gen Kamita, Girish Lakhwani, Jianpu Wang, Neil C. Greenham, Probing the switching mechanism in ZnO nanoparticle memristors, J. Appl. Phys. 116 (2014) 114501-5.

D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Q1, D. Xue. Room temperature ferromagnetism of pure ZnO nanoparticles., J. Appl. Phys., 105 (2009) 113928-4.

T. Makino, T. Yasuda, Y. Segawa, A. Ohtomo, K. Tamura, M. Kawasaki, H. Koinutma. Strain effects on exciton resonance energies of ZnO epitaxial layers, Appl. Phys. Lett. 79 (2001) 1282-1284.

Y.X. Liu, Y.C. Liu, C.L. Shao, R. Mu. Excitonic properties of ZnO anocrystalline films prepared by oxidation of zinc-implanted silica. J. Phys. D: Appl. Phys. 37 (2004) 3025–3029.

Y.Y. Shen, X.D. Zhang, D.C. Zhang, Y.H. Xue, L.H. Zhang, C.L. Liu. Toward uniform ZnO nanoparticles embedded in SiO2 by post Xe irradiation, Mater. Lett. 65 (2011) 2966-2968.

D. Zatsepin, A. Zatsepin, D. Boukhvalov, E. Kurmaev, Z. Pchelkina, N. Gavrilov, Electronic structure and photoluminescence properties of Zn-ion implanted silica glass before and after thermal annealing, J. Non-Cryst. Solids, 432 (2016) 183-188.

V. Privezentsev, V. Kulikauskas, E. Steinman, A. Tereshchenko, A. Bazhenov, N. Tabachkova, A. Batrakov. Properties of near-surface layer of 64Zn+ ion hot-implanted Si, phys. stat.sol. (c) 12 (2015) 1170-1174.

V.V. Privezentsev, V.S. Kulikauskas, V.V. Zatekin, E.P. Kirilenko, A.V. Goryachev, A.A. Batrakov. Investigating 64Zn+ Ion Doped Silicon under Conditions of Hot Implantation. Bull. Russ. Acad. Sci.: Physics 80 (2016) 149–155.

Anil Vithal Ghule, Kalyani Ghule, Chin-Yuan Chen, Wen-Yin Chen, Shin-Hwa Tzing, Hua Chang, Yong-Chien Ling, In situ thermo-TOF-SIMS study of thermal decomposition of zinc acetate dehydrate, J. Mass Spectrometry 39 (2004) 1202–1208.

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, K. L. Teo, Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics, Appl. Phys. Lett. 95 (2009) 101905-101911.

Pei-Ling Lee, Bo-Chia Chen, Ganesh Gollavelli, Sin-Yu Shen, Yu-Sheng Yin, Shiu-Ling Lei, Cian-Ling Jhang, Woan-Ruoh Lee, Yong-Chien Ling, Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells, J. Hazardous Maters 277 (2014) 3–12.

http://www.srim.org.

Luc Van Vaeck, Annemie Adriaens, Renaat Gijbels, and Freddy Adams, Static Secondary Ion Mass Spectrometry: (S-SIMS) Part 1. Methodology and Structural Interpretation. Part 2. Material Science Applications, Mass Spectrometry Reviews, 18 (1999) 1 – 81,Wilrijk, Belgium.

NIST X-ray Photo-electron Spectroscopy Database, version 4.1 (http://srdata.nist.gov/xps).

J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie, USA, 1992.

X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang. Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Physica B: Condensed Matter, 388 (2007) 145–152.

R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramic international, 39 (2013) 2283–2292.

Z. Jiang, R.A. Brown. Atomistic Calculation of Oxygen Diffusivity in Crystalline Silicon, Phys. Rev. Lett. 74 (1995) 2046-2049.

R. Hultgren, R. L. Orr, P. Anderson, K.K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys, Wiley, 1963.

M. Takesue, H. Hayashi, R. L. Smith, Jr. Thermal and chemical methods for producing zinc silicate (willemite): A review, Prog. Cryst. Growth Characterz. Maters, 55 (2009) 98-124.




DOI: http://dx.doi.org/10.24294/irr.v0i0.1100

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.