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ABSTRACT 

In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the 

SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium 

“vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify 

and predict epidemics. The findings showed promising results in both classification and prediction tasks. We 

quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. 

Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.  

Keywords: deep learning; supervised learning; convolutional neural networks; support vector machines; training; neural 

network architectures 

1. Introduction 

Deep learning (DL) has been widely used in many fields of 

modern life[1,2]. DL is a subfield within machine learning (ML), and it 

does not require any human-designed rule to work. DL, rather needs 

and uses large amounts of data to establish and map a given input to 

specific relationships or labels. Segmentation and classification tasks 

using DL unlike ML (where the latter requires performing a set of 

sequential steps guided by the specialist), with DL, one can 

automatically learn a set of features from an input database, and to 

carry out these tasks without human intervention. 

In the last decade, DL have had successes very outstanding, 

which have improved the quality of human life in a remarkable way 

with an additional accuracy in diagnosis of diseases, in study of 

epidemics, in research of microscopic images, in discovery of new 

drugs, as well as in many other areas. Literature has pointed out that 

the average accuracy of disease diagnosis of a DL network has been 

superior to that of many medical specialists[3]. 

Computer vision researchers increasingly use algorithms from 

DL to help build robust, intelligent and reusable imaging 

interpretation systems. For this reason, artificial systems that learn 

and adapt represent an important challenge in computer vision 

research. 

Today, automated analysis of microscopic biomedical images 

has become very important, especially as traditional medicine starts 

to shift to a more preventive and predictive paradigm. Automated 
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analysis of microscopic images remains a considerably challenging task, mainly because microscopic images 

are complex and variant[4,5]. Moreover, the difference between disease and nondisease cases many times is 

subtle. Therefore, accurate automated analysis of microscopic images requires the development of innovative 

and adaptive computational models. DL approaches to microscopic image analysis, often coupled to other 

intelligent algorithms, have shown great promise [6,7]. 

Very likely that due to unhealthy and unhygienic lifestyles, poor eating habits and climate change coupled 

with stress; many types of viruses and bacteria are transmitted to humans producing diseases that become true 

epidemics, accentuated in low-income and underdeveloped countries. Such are the cases of the epidemics of 

malaria, cholera and covid-19, where millions of people around the world have been affected and have died 

due to these pandemics. For that reason, the development of new algorithms by using techniques of artificial 

intelligence and, basically, DL in order to face new pathologies will be always welcome in the field of 

medicine[8]. 

In this study, we utilized a convolutional neural network (CNN) trained on microscopic images 

encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria 

in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples 

(healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both 

classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those 

attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using 

convolutional neural network algorithms. 

The rest of the paper is organized as follows: In section 2, the materials and methods are given, and we 

slightly outlines some theoretical and algorithmic aspects. Here, we will specify on the database used. Section 

3 contains the obtained results and discussion. We will describe our conclusion s in section 4. 

2. Materials and methods 

2.1. Medical methodology 

In the fields of medicine and biology, detection of certain microorganisms that affect the human health is 

often rigorous and costly. Sometimes the results take an undetermined amount of time, time that is essential 

for the preservation of life. 

For those reasons, predicting infections through the study of microorganisms using intelligent 

computational techniques is very convenient in order to reduce the clinical process of patient, reducing the 

waiting time and the cost involved. 

We obtained the microscopic image samples of SARS-CoV-2 virus in the same way as in the studies of 

Rodríguez et al.[4,5]. In Figure 1, we show two microscopic images of a patient infected with SARS-Cov-2 

virus. 

The “vibrio cholerae” is the causative agent of cholera, an acute diarrheal disease that occurs in form of 

epidemic outbreaks. The vibrio cholerae species are classified according to their somatic lipopolysaccharide 

antigens into different serogroups. The genes responsible for the O antigen synthesis are present in an area of 

genome called wbf. Of the two hundred serogroups identified, only serogroup O1 and O139 are recognized as 

the only ones responsible for cholera epidemic. 
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(a) (b) 

Figure 1. Two examples of SARS-CoV-2 virus, (a) and (b) original microscopic images. 

In Figure 2, we show microscopic images of blood samples from positive patients of cholera.  

  
(a) (b) 

Figure 2. Two examples of microscopic images of blood samples from positive patients infected with cholera. 

The plasmodium falciparum is a protozoan parasite that causes the most virulent form of human malaria 

and kills, every year at least, thousands of children. In the case of malaria, the infection is caused by the entry 

of the parasite into the erythrocytes, which is responsible for acute and severe malaria. All this is a complex 

and dynamic process[9,10]. Therefore, the identification and classification of this blood-stage infection through 

microscopic images using automated artificial intelligence techniques is of vital importance f or a good 

diagnosis and more effective treatment. 

In Figure 3, we show microscopic images of blood samples from positive patients of malaria.  

  
(a) (b) 

Figure 3. Two examples of microscopic images of blood samples from positive patient infected with malaria. 

The identification and classification of structures of all these microorganisms through the study of high-

resolution microscopy are essential to know the etiological agents of many epidemics. For this reason, the 

development of new artificial intelligence techniques based on deep learning to the early study of new 

epidemics will always be welcome in the field of medicine. 
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2.2. Deep learning 

We use the deep learning (DL), employing high-resolution microscopy, for the study of the structures of 

microorganisms, as it is known that the DL does not need any human-designed rules to work. DL uses large 

volumes of data in order to establish and map the given input to specific relations, and has the ability of learning 

a feature set from input data. Unquestionably, the successes of DL have been outstanding, improving the 

quality of human life with an additional accuracy in diagnosis of many pathologies, and in the discovery of 

new drugs, among many other good results [3]. However, despite the undisputed merits of DL, its main 

disadvantage is that need of a large database that serve as training set. Otherwise, training can result in poor 

quality and an undesired result can occur, especially in problems of visual pattern re cognition and 

classification[11]. 

Undoubtedly, to learn and classify tens of thousands of objects and patterns from a huge number of 

images, one needs a model that has a large learning capacity; and on the other hand, such a model must have 

prior knowledge to be able to compensate for data that one does not have. One such class of models is deep 

convolutional neural networks (CNNs)[12]. In this paper, we quantitatively compared the obtained results by 

using CNNs with those attained employing the support vector machine (SVM).  

2.2.1. Database 

For an effective comparison, we built a standard database (microscopic images were resized to a size of 

100 × 100 pixels) and then performed the training task. We used a specific metric (to be detailed in the 

experimental results section) because the database was unbalanced in the number of microscopic images per 

class, which was evident in the learning models, especially in the cholera class. 

Thus, the database of microscopic images (7270 samples) encompassed the SARS-CoV-2 virus (1055 

micro-images), the protozoan parasite “plasmodium falciparum” (3180 micro-images), the bacterium “vibrio 

cholerae” (905 micro-images) and non-infected samples (2130 micro-images). 

We separated the database composed of four classes into two groups: the set of microscopic images for 

the training and another for the validation process. 

2.2.2. Proposed architectures 

In practice, one can quantitatively measure the performance of a deep learning model previously trained. 

Thus, we implemented different metrics to evaluate the performance of the learning process in order to improve 

the predictive power of the models. In this work, we use the following metric: Accuracy, recall, F1-score, 

confusion matrix and precision[13]. 

Table 1. Description of features of the proposed CNN models. 

Considerations Model I Model II Model III Model IV 

Database Total number of microscopic images: 7270 

Micro-images of healthy samples (non-infection): 2130 Micro-images of plasmodium falciparum samples: 3180 

Micro-images of Sars-CoV-2 samples: 1055 

Micro-images of vibrio cholerae: 905 

Normalization Data Augmentation and Drop Out[14–16] 

Layers 6 ReLu layers, 6 max pooling 
layers, drop out 50% of 

neurons in the hidden layer 

6 ReLu layers, 6 max 
pooling layers, drop out 

25% of neurons in the 

hidden layer 

3 ReLu layers, 3 max 
pooling layers, drop out 

50% of neurons in the 

hidden layer 

3 ReLu layers, 3 max 
pooling layers, drop out 

25% of neurons in the 

hidden layer 

Optimization Root Mean Square Propagation[17] 

Loss function Weighted Cross-Entropy Loss Function[17] 

Validation We choose from initial dataset the 20% of them 
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We proposed four models of CNN architectures, and selected the best one according to the evaluation 

metrics. In Table 1, we will describe the characteristics of the architectures of the different CNN models. In 

addition, in the experimental results, we will present the obtained scores by metrics for each proposed models. 

In that section, one will appreciate why the Model IV was the chosen one and whose architecture is the 

following: 

a) Data augmentation via ImageDataGenerator[17]. 

b) Convolutional layer with ReLu activation function: with 3 × 3 kernel size for convolution (contains 32 

neurons). 

c) Max pooling layer: 2 × 2 pooling size. 

d) Convolutional layer with ReLu activation function: with 2 × 2 kernel size for convolution (contains 64 

neurons). 

e) Max pooling layer: 2 × 2 pooling size. 

f) Convolutional layer with ReLu activation function: with 2 × 2 kernel size for convolution (contains 64 

neurons). 

g) Max pooling layer: 2 × 2 pooling size. 

h) Flatten layer. 

i) ReLu dense layer (contains 256 neurons)[18]. 

j) Drop out 25% of neurons in the hidden layer. 

k) SoftMax classification layer. 

In Figure 4, we show the architecture of Model IV. 

 
Figure 4. Architecture of Model IV. 

3. Experimental results: Analysis and discussion 

Due to the variety of components and hyper-parameters possible to employ in a deep neural network 

model, one can establish a large number of combinations in the creation of such model. For this reason, it was 

necessary to carry out a study of the state of art of different architectures used in classifications and 

predictions[15,16,19,20] (see Table 1). 

We will show in Tables 2–5 the results of the evaluation metrics for the different models, and will carry 

out a quantitative comparison among them in order to select the best model in the prediction of these epidemics. 

In order to measure the performance of trained algorithms in multi-class databases (to classification and 

prediction tasks), it is possible to use three types of metrics: micro-average method, macro-average method or 

weights-average method. For example, one can use the macro-average method when one wants to know how 

the system performs overall across the database, but should not come up with any specific decision with this 

average. In other words, the macro-average method considers all classes as basic elements of the calculation: 

each class has the same weight in the average, so that there is no distinction between highly and poorly 

populated classes. Therefore, it is not convenient to select this macro-average approach when the datasets are 
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very unbalanced. However, micro-average method can be a useful measure when the datasets varies in size [20]. 

In this research, the datasets are very unbalanced (see the difference in size between the plasmodium 

falciparum class and vibrio cholerae class). For this reason, we chose the micro-average method for carrying 

out the quantitative comparison, and to determine, from the proposed CNN models, which one had the best 

performance. Now, we will show all the metrics in Tables for a better visualization and comparison of them. 

 

Table 2. Results of evaluation metrics for the Model I. 

 Classes 

Metrics  Healthy Plasmodium falciparum Sars-CoV-2 Vibrio cholerae 

Precision 0.9942 0.9574 0.8736 0.9565 

Recall 0.9157 1.0 0.9880 0.5238 

F1-score 0.9534 0.9782 0.9273 0.6769 

Precision (micro) 0.9556 

Precision (macro) 0.9454 

Precision (weights) 0.9573 

Recall (micro) 0.9556 

Recall (macro) 0.8569 

Recall (weights) 0.9556 

F1-score (micro) 0.9556 

F1-score (macro) 0.8840 

F1-score (weights) 0.9523 

Confusion Matrix 

[

174 16 0    0
0
0
1

518
0
7

0
83
12

0
1

22

] 

Accuracy 0.9556 

F1-score assesses the performance of classification model starting from the confusion matrix, where F1-

score can be interpreted as a weighted average between precision and recall, and this reaches its best value at 

one (1) and worst score at zero (0). In the multi-class cases, F1-score should involve all the classes, and so this 

metric can have two different specifications: Micro F1-Score and Macro F1-Score, where the macro model 

considers all the classes as basic elements of the calculation[21,22]. Thus, one can see that the Model IV obtained 

the best score when using the micro average method (remember that micro averaging considers all the units 

together, without taking into consideration possible differences between them).  

To further deep why the Model IV was selected. For example, if one analyzes the Accuracy metric, it is 

evident that the highest was that of Model IV (0.9846), and the same is true for the micro precision metric 

(0.9844) and the micro F1-score (0.9845). The same is true when analyzing the confusion matrices, which the 

best was that of Model IV. 
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Table 3. Results of evaluation metrics for the Model II. 

 Classes 

Metrics Healthy Plasmodium falciparum Sars-CoV-2 Vibrio cholerae 

Precision 1.0 0.9333 0.9230 1.0 

Recall 0.8368 1.0 1.0 0.6904 

F1-score 0.9111 0.9651 0.9600 0.8169 

Precision (micro) 0.9472 

Precision (macro) 0.9641 

Precision (weights) 0.9508 

Recall (micro) 0.9472 

Recall (macro) 0.8818 

Recall (weights) 0.9472 

Table 3. (Continued). 

 Classes 

Metrics Healthy Plasmodium falciparum Sars-CoV-2 Vibrio cholerae 

F1-score (micro) 0.9472 

F1-score (macro) 0.9133 

F1-score (weights)  0.9450 

Confusion Matrix 

[

159 31 0    0
0
0
0

518
0
6

0
84
7

0
1

29

] 

Accuracy 0.9472 

Table 4. Results of evaluation metrics for the Model III. 

 Classes 

Metrics Healthy Plasmodium falciparum Sars-CoV-2 Vibrio cholerae 

Precision 1.0 0.9829 0.9438 1.0 

Recall 0.9842 1.0 1.0 0.7380 

F1-score 0.9920 0.9913 0.9710 0.8493 

Precision (micro) 0.9832 

Precision (macro) 0.9816 

Precision (weights) 0.9837 

Recall (micro) 0.9832 

Recall (macro) 0.9305 

Recall (weights) 0.9832 

F1-score (micro) 0.9832 

F1-score (macro) 0.9509 

F1-score (weights) 0.9823 

Confusion Matrix 

[

187 3 0    0
0
0
0

518
0
6

0
84
5

0
0

31

] 

Accuracy 0.9832 
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Therefore, to be precise, in the selection of a better deep learning model for automatic multi-class 

classification, working with the Micro approach is the most correct way, on all when the datasets is very 

unbalanced. In this case, if one obtain a poor performance on small classes is not important, since the number 

of units belonging to those classes is small compared to the database size [21]. 

Table 5. Results of evaluation metrics for the Model IV. 

 Classes 

Metrics  Healthy Plasmodium falciparum Sars-CoV-2 Vibrio Cholerae 

Precision 0.9947 0.9904 0.9325 0.9687 

Recall 0.9947 1.0 0.9880 0.7380 

F1-score 0.9947 0.9951 0.9595 0.8378 

Precision (micro) 0.9844 

Precision (macro) 0.9716 

Precision (weights) 0.9844 

Recall (micro) 0.9844 

Table 5. (Continued). 

 Classes 

Metrics  Healthy Plasmodium falciparum Sars-CoV-2 Vibrio Cholerae 

Recall (macro) 0.9302 

Recall (weights) 0.9844 

F1-score (micro) 0.9845 

F1-score (macro) 0.9468 

F1-score (weights) 0.9835 

Confusion Matrix 

[

189 1 0    0
0
0
1

518
0
4

0
83
6

0
1

31

] 

Accuracy 0.9846 

3.1. Learning mode 

Once we selected the model, the following step was to carry out the training, which was performed in 20 

epochs, and for each epoch 500 validation steps were realized.  

Figure 5a shows the adjustment of the weights, which was produced in an ascending way by epochs. For 

example, when selecting accuracy as metric and despite presenting a little overfitting, one can said that the 

adjustment had a desired behavior, that is, a correct learning process. In this case, overfitting is denoted in the 

peaks of the continuous line that appeared by epochs (validation set curve), which means that the training was 

not completely uniform with respect to the accuracy metric, although there were epochs that were somewhat 

close to the training set curve (dotted curve). 

However, despite the non-uniformity in the learning due to the appearance of some peaks in certain epochs 

that move away from a monotonous upward behavior, these peaks decreased in frequency as the epochs 

progressed, which indicated again a good learning process. 

Figure 5b shows the graphic of the loss function. One can see in the curve that a bit of overfitting is also 

evident, when observing the random peaks that emerged with the advancement of epochs. This behavior 

indicated that the neuron weights were not uniformly adjusted in the validation process at each epoch, as 

happened in the training. 
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(a) (b) 

Figure 5. Learning curves of Model IV, (a) accuracy; (b) loss function. 

In many cases, one can evaluate the models through the analysis of graphics (see Figure 5), which 

sometimes this do not provide very accurate results when one works with a single metric and wants comparing 

different models. For this reason, one must use other evaluation metrics (precision, recall, F1-score, etc.) to 

carry out a more analytical and in-depth study of models. 

 

3.2. Comparison of the obtained results with CNNs and support vector machine (SVM)  

We will carry out a quantitative comparison between the obtained results in the prediction of epidemics 

using CNNs with those achieved using SVM. For this comparison, we also worked with four SVM models, 

which are shown in Table 6. Here, our goal is not to give an exhaustive explanation of SVM, which is a well-

known machine learning technique. This method was chosen for comparison because it has proven to be 

effective, and it was convenient to compare the results obtained with CNNs with a classical method such as 

SVM. 

Table 6. Description of features of the SVM models. 

Aspects Model V Model VI Model VII Model VIII 

Dataset Total number of microscopic images: 7270 
Micro-images of healthy samples (non-infection): 2130 Micro-images of plasmodium falciparum samples: 3180 

Micro-images of Sars-CoV-2 samples: 1055 

Micro-images of vibrio cholerae: 905 

Kernel Linear Sigmoid Radial Basis Polynomial 

Validation We choose the 25% of initial dataset through the K-Fold algorithm[22] 

Based on the metrics mentioned above, we carried out tests with each of models shown in Table 6. Due 

to space constraints, we will only present the obtained results with Model VIII, which was the model chosen. 

For example, the Model VIII, relative to the other SVM models, had the highest score of metrics. Thus, micro 

accuracy metric, micro precision metric and micro F1-score were higher in this model, and the Confusion 

matrix had lower false positives and negatives. These are shown in Table 7. 

In the quantitative comparison between the Model IV (CNN) and the Model VIII (SVM), we obtained an 

Accuracy of 98%, which is a measure of a good performance of both algorithms.  

However, when the quantitative analysis is carried out by using a single metric, one should not be absolute 

and certify that it is in presence of fully reliable models without a detailed study of the database. In effect, the 

accuracy considers (in the numerator) the sum of true positive (TP) and true negative (TN) elements, and at 

the denominator, the sum of all the entries of the confusion matrix (elements incorrectly classified by the 
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model). Therefore, the Accuracy returns an overall measure of how much the model correctly predicted on the 

entire dataset, and each unit contributed with the same weight to the accuracy value.  

Table 7. Results of evaluation metrics for the SVM model VIII. 

 Classes  

Metrics Healthy Plasmodium falciparum Sars-CoV-2 Vibrio cholerae 

Precision 1.0 0.99 0.99 0.77 

Recall 1.0 0.99 1.0 0.77 

F1-score 1.0 0.99 0.99 0.77 

Precision (micro) 0.9841 

Precision (macro) 0.9364 

Precision (weights) 0.9841 

Recall (micro) 0.9841 

Recall (macro) 0.9390 

Recall (weights) 0.9844 

F1-score (micro) 0.9841 

F1-score (macro) 0.9377 

F1-score (weights) 0.9841 

Table 7. (Continued). 

 Classes  

Metrics Healthy Plasmodium falciparum Sars-CoV-2 Vibrio cholerae 

Confusion Matrix 

[

303 0 0    0
0
0
0

761
0
9

1
84
0

9
0

30

] 

Accuracy 0.9841 

But, in the multiclass classification, a class can have a more important weight than another, since there 

will be classes with a high number of units and others with few ones. In this situation, as it happened in our 

database, the highly populated classes will have higher weight compared to the smallest ones. When the 

datasets are imbalanced, the Accuracy tends to hide classification errors for classes with less elements, since 

those classes have few weight compared to the biggest ones. Therefore, one should address the analysis 

towards other metrics, in order to carry out a global study in the validation of the performance of a model.  

For example, in the case of the selected CNN model, an analysis by class using the micro F1-score metric 

showed a score we presented in Table 8. Remember that F1-score is the harmonic mean between precision 

and recall. 

Table 8. Results of the F1-score for CNNs. 

Datasets % F1-score 

Plasmodium falciparum 99.51 

Sars-CoV-2 95.95 

Vibrio cholerae 83.78 

Healthy 99.87 
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It is clear that the results shown in Table 8 are very promising. These results highlighted that a deep 

convolutional network is capable of achieving reliable classifications on a challenging dataset by using 

supervised learning. Here, we verified that the network degraded significantly as the number of deep layers 

and the degree of neuron drop out increased, resulting in a loss of approximately 4% in network performance. 

In Table 9, we showed the obtained results using SVM. One can see that these results via SVM are also 

remarkable. The SVM model showed higher reliability in the prediction of SARS-CoV-2. However, the CNN 

model had better prediction in Vibrio Cholerae, which is the class with the smallest size. 

Table 9. Results of the F1-score for SVM. 

Datasets  % F1-score 

Plasmodium falciparum 99.00 

Sars-CoV-2 99.00 

Vibrio cholerae 77.00 

Healthy 99.78 

We will carry out an analysis of these results. It is known that despite the undisputed merits of deep 

learning (DL), its main disadvantage is that it needs of a large database that serve as training set. The larger 

the database, the more the network learns, but more time for training too. However, in this case and due to the 

somewhat black-box behavior of DL algorithms (CNNs), it is not completely clear why it learned SARS-CoV-

2 with a score more lower than SVM, and at the same time, the vibrio cholerae with a higher percent than 

SVM. Then, one should expect that the results of DL in the classification and prediction of epidemics should 

improve with the increase of datasets. 

On the other hand, the obtained results with SVM evidenced that one should not completely discard some 

machine learning algorithms. Sometimes, in many practical problems when one does not have large datasets, 

it is best to use hybrid techniques that might mitigate this situation, and at the same time, to provide satisfactory 

results[4,5]. Nevertheless, despite the imbalance of datasets, the obtained results with DL can be considered 

promising, and further development in this direction will be welcome.  

4. Conclusions 

In this work, we utilized a convolutional neural network (CNN) trained on microscopic images 

encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum”, the bacterium “vibrio 

cholerae” and non-infected samples to effectively classify and predict epidemics. The findings showed 

promising results in both classification and prediction tasks. We quantitatively compared the obtained results 

by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction 

reached 98% when using convolutional neural network algorithms. 

 However, when analyzing other metrics, the SVM model performed better for the SARS-CoV-2 virus than 

the DL model, while the opposite was true for vibrio cholerae. We concluded that due to the somewhat black-

box behavior of DL algorithms (CNNs), it is not completely clear why it learned SARS-CoV-2 with a score 

lower than SVM. Then, we should expect that the results of DL in the classification and prediction of epidemics 

should improve with the increase of datasets. 

In future work, we will carry out further research and analysis based on these results, increasing the 

datasets and trying to achieve a better balance among all classes.  
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