
Imaging and Radiation Research 2024, 7(1), 4085. 
https://doi.org/10.24294/irr.v7i1.4085 

1 

Article 

Generation of PAS-stained images of glomerular tissue units using a 
generative adversarial network with spectral normalization colorization 
method 

Jincheng Peng, Guoyue Chen*, Kazuki Saruta, Yuki Terata 

Department of Information and Computer Science, Akita Prefectural University, Akita Yurihonjo 015-0055, Japan 
* Corresponding author: Guoyue Chen, chen@akita-pu.ac.jp 

Abstract: In recent years, the pathological diagnosis of glomerular diseases typically involves 

the study of glomerular his-to pathology by specialized pathologists, who analyze tissue 

sections stained with Periodic Acid-Schiff (PAS) to assess tissue and cellular abnormalities. In 

recent years, the rapid development of generative adversarial networks composed of generators 

and discriminators has led to further developments in image colorization tasks. In this paper, 

we present a generative adversarial network by Spectral Normalization colorization designed 

for color restoration of grayscale images depicting glomerular cell tissue elements. The 

network consists of two structures: the generator and the discriminator. The generator 

incorporates a U-shaped decoder and encoder network to extract feature information from input 

images, extract features from Lab color space images, and predict color distribution. The 

discriminator network is responsible for optimizing the generated colorized images by 

comparing them with real stained images. On the Human Biomolecular Atlas Program 

(HubMAP)—Hacking the Kidney FTU segmentation challenge dataset, we achieved a peak 

signal-to-noise ratio of 29.802 dB, along with high structural similarity results as other 

colorization methods. This colorization method offers an approach to add color to grayscale 

images of glomerular cell tissue units. It facilitates the observation of physiological information 

in pathological images by doctors and patients, enabling better pathological-assisted diagnosis 

of certain kidney diseases. 

Keywords: spectral normalization; generative adversarial networks; PAS staining; medical 

image colorization 

1. Introduction 

Stained tissue unit: The three-dimensional cellular cluster with the glomerular 
capillaries at its center constitutes the functional tissue unit (FTU) of the renal 
glomerulus. Pathologists have studied FTU stained sections to analyze a number of 
common renal diseases [1]. These tissue units are collected and analyzed by pathology 
experts during biopsy, often employing Periodic Acid-Schiff stain (PAS) for staining 
[2]. The PAS-stained whole tissue units are subsequently scanned under an electron 
microscope to generate stained tissue unit et al. slice images corresponding to relevant 
areas. In this process, based on the images post-staining, an evaluation of the diffusion 
distance between each cell and other cells within the entire tissue scan is conducted to 
analyze the pathological causes of kidney diseases. However, the manual staining of 
FTU slices is exceedingly intricate, necessitating the utilization of chemical reagents 
by specialized staining pathologists to color the tissue cells, This approach is 
characterized by lengthy staining cycles, high costs, and the potential irreversible 
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damage to tissue caused by the employed chemical reagents, Moreover, the 
inconsistency in the depth of staining for pathological slice sections diminishes the 
reusability of the slices, These challenges call for computer image digitization as a 
solution. Because of the deep learning has made amazing advances in the field of 
computer vision in recent years, the mainstream approach to image colorization is no 
longer traditional machine learning. Instead, it uses the powerful parametric learning 
capabilities of deep neural networks to learn how to select, propagate and predict color 
distributions from large-scale data. 

Iizuka et al. [3] converted the image colorization problem into an image 
classification task, utilizing a two-channel network that combines local feature 
information and global prior knowledge in images to achieve automatic colorization 
of grayscale images of arbitrary sizes. However, this network solely employed 
convolutional neural networks for predicting color distributions, leading to a loss of 
pixel semantic information, resulting in misclassification and unnatural colorization 
compared to the original images. Zhang et al. [4] addressed this limitation by stacking 
multiple convolutional layers to predict the probabilities of 313 ab color channels in 
the Lab color space, thereby effectively predicting the color distribution of the dataset. 
Larsson et al. [5] integrated a VGG neural network for semantic parsing and localized 
information extraction into the colorization system. This system predicts color 
histograms for each image location to anticipate color distributions for individual 
pixels. While these methods exhibited further improvements in colorization effects, 
they still struggle to resolve issues such as desaturated generated images, yellowish 
tones, unnatural colorization, and the susceptibility to gradient vanishing during 
training. 

Over the past few years, with the rapid development of generative adversarial 
network, the field of automatic image colorization as a branch of image restoration has 
witnessed significant advancements, garnering consistent attention from researchers. 
The literature [6] proposes a method for image colorization by using deep 
convolutional generative adversarial network, This method uses a discriminator to 
predict the loss of the generated image from the real image to predict the color 
distribution of each pixel. Cao et al. [7] utilized an unsupervised colorization network 
based on cGAN for image colorization, where the generator was designed without an 
encoder-decoder structure. Instead, it incorporated random optimization noise at 
various layers of fully convolutional layers, this approach enhanced realism and 
diversified image generation, yet the increased noise introduction led to uncontrollable 
randomness and compromised colorization quality. To address the instability of 
Generative Adversarial Networks (GANs), a method was proposed in the study by 
Miyato et al. [8] that replaces the original normalization structure with spectral 
normalization. This ensures that the discriminator D satisfies Lipschitz continuity, 
restricting the degree of drastic changes in the function. As a result, this stabilizes the 
GAN model and makes it more robust. 

Early studies on traditional medical image colorization relied on transferring 
false-color information from real objects to medical image datasets, highlighting 
subtle details that were hard to discern. A method proposed by Lagachinski et al. [9] 
employed user annotations and mixed distance transformations for medical image 
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colorization, However, this method was based on manual coloring of specified 
regions, falling short of complete automation. In 2016, Khan et al. [10] presented a 
method to migrate colors from endoscopic images to grayscale endoscopic images, 
This approach generated physical colors based on dictionary-based color mapping, 
which were then applied to preprocessed grayscale images to reproduce colors. 
However, this method utilized shallow handcrafted feature extraction, resulting in less 
satisfactory colorization, slow efficiency, and the risk of information loss. Liang et al. 
[11] propose a colorization network based on the Cycle Generative Adversarial 
Network (CycleGAN) model, applying style transfer to the coloring of medical 
images. In 2023, Chen [12] propose a self-supervised coloring framework based on 
Cycle Generative Adversarial Network (CycleGAN), treating the coloring of medical 
images as a cross-modal domain transfer problem in the color space. 

Building on the previous discussion regarding the colorization of medical images 
using Generative Adversarial Networks (GANs) and the research on spectral 
normalization. In this paper, we propose an automatic colorization method based on 
spectral normalization generative adversarial networks for color recovery of gray-
scale images of glomerular tissue unit, The network is divided into two structures, the 
generator and the discriminator, the generator is used to extract the feature information 
of the image, and the general feature information of the image is obtained by 
generative network block, The U-shaped decoder and encoder network is introduced 
in the generator, which extracts the original L-channel grayscale image features and 
predicts the color distribution of the ab channel by skipping connections, The network 
of discriminators is responsible for optimizing the combined chromatic map to obtain 
the final color image. This method utilizes a generative adversarial network to generate 
new colorized images, enhancing the naturalness, saturation, and realism of the 
resulting images, which closely resemble actual PAS-stained images of glomerular 
cell tissue units. Moreover, the discriminator of the GAN introduces a spectral 
normalization module to replace the original normalization module, enhancing the 
GAN’s stability by ensuring the discriminator satisfies Lipschitz continuity. Finally, 
an evaluation of colorization structure was performed on both glomerular tissue unit-
stained images and the original PAS-stained images using peak signal-to-noise ratio 
and structural similarity indices. On the Human BioMolecular Atlas Program 
(HuBMAP)—Hacking the Kidney FTU segmentation challenge dataset, we achieved 
a peak signal-to-noise ratio of 29.802 dB, along with high structural similarity results. 
As the PAS-stained images of glomerular tissue units involve predicting a simplified 
color category distribution, the predicted colorized images closely resemble the actual 
original PAS-stained tissue images. Hence, this method holds significant practical and 
research value. The colorized images can aid in the pathological diagnosis of certain 
kidney diseases. 

2. Methods 

In this chapter we describe in detail the structure of spectral normalized 
generative adversarial colorization networks. 
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2.1. Network structure 

The entire network structure is shown in Figure 1. The spectral normalization 
generative adversarial network model consists of two parts: the generator and the 
discriminator, At the same time, spectral normalization was added to the discriminator 
to improve the normalization method used before. In this paper, the Lab color space is 

used for color prediction, The grayscale image of the L channel component is 
passed through a generator to predict the a and b chrominance channel 
components. 𝑋௟ → 𝑋௔௕

෪ . The generated 𝑋௔௕
෪  component is combined with the original 

L-channel to form a colorized image, which serves as the input image for the 
discriminator. The discriminator network discriminates and distinguishes between the 
input virtual colorized image and the real color image until it can no longer 
differentiate them, producing an infinitely close approximation of the real colorized 
image. This can predict the color distribution of the original cellular tissue grayscale 
image. Finally, a PAS-stained image of the glomerular tissue unit that closely 
resembles reality is generated. 

 
Figure 1. The spectral normalization generative adversarial network structure. 

2.2. Generative network block 

The generator network employs a U-shaped architecture consisting of an encoder 
and a decoder, as illustrated in Figure 2. The architecture includes downsampling 
convolutional modules, a bridging module, and upsampling convolutional modules 
[13]. The network takes grayscale images of glomerular tissue units in the Lab color 
space as input, specifically the luminance information from the L channel. The output 
comprises chromatic information (ab) for the PAS-stained images of glomerular tissue 
units. The left side represents the encoder, comprising 7 downsampling modules. Each 
downsampling module consists of a convolutional layer (with a 4 × 4 kernel size), 
normalization layer, and LeakyReLU layer. The downsampling convolutional 
modules are responsible for extracting feature structures from the images, 
progressively capturing high-level semantic information and color texture details. The 
right side corresponds to the decoder, composed of 7 upsampling modules. Each 
upsampling module includes a deconvolutional layer (with a 4 × 4 kernel size), 
normalization layer, and LeakyReLU layer. The downsampling modules serve to 
consolidate the encoded image information for reconstruction and precision. The 
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output from each block in the encoding area is connected to its corresponding block 
in the decoding area through skip connections. These skip connections facilitate the 
direct transfer of shallow-level information to the same-height deconvolutional layers, 
resulting in images with reasonably consistent overall colorization. 

 
Figure 2. Generative network block structure. 

2.3. Discriminator network block 

The discriminator in this paper, as shown in Figure 3, uses a typical discriminator 
in a conditional generative adversarial network, with spectral normalization replacing 
the normalization module in each layer. The discriminator in the conditional 
generative adversarial network introduces domain information and applies constraints 
to control the content generated by the network, transforming an unsupervised network 
into a supervised model. By introducing a reference image as input condition to the 
discriminator, the color information of the target generated image is supervised to 
obtain colors that are consistent with the reference image. The network structure of 
the discriminator is shown in Figure 3, which includes four convolutional layers with 
a kernel size of 4 × 4. The first three layers have a convolution stride of 2 to obtain a 
larger receptive field, and the last layer has a stride size of 1 [14]. Finally, a fully 
connected (FC) layer is used to integrate and classify feature information. For an input 
image with a resolution of 256 × 256, the generated color is compared with the 
reference image to produce colors that are more consistent with the reference image. 
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Figure 3. Discriminator network block structure. 

2.4. Spectral normalization 

There are problems with gradient disappearance and pattern collapse in 
generative adversarial networks, which are related to the mechanisms of generative 
adversarial networks. The generative adversarial network suffers from Kullback-
Leibler (KL) dispersion asymmetry, which makes the generative adversarial network 
obsessed with the accuracy of the discriminator, thus ignoring the diversity of 
generator generation patterns. resulting in the patterns learned by the generator 
covering only some of the patterns in the real data, making the diversity of the 
generated samples low and eventually leading to a pattern collapse in the model. 

The spectral normalization structure normalizes the weights of each layer in a 
neural network based on their spectral norms, this is achieved by performing singular 
value decomposition on the weight matrices and then constraining the singular values 
within a predefined range, thereby calculating and controlling the spectral norm of the 
weight matrix [8]. In contrast to some complex normalization techniques, spectral 
normalization incurs low computational costs, requires no additional hyperparameter 
tuning, enhances training stability, and effectively addresses the aforementioned 
issues. Spectral normalization is defined as: 

𝑊௦(𝑊): =
𝑊

𝜎(𝑊)
 (1)

W is the parameter matrix that is subjected to normalization to control the spectral 

norm, 𝑊௦ is Spectral Normalized Weight Matrix, 𝜎 is Spectral Normalization Singular 
Value, the spectral normalization makes the discriminant network satisfy the lipschitz 
constraint, where K is the maximum singular value of the matrix W: 

𝜎(𝑊௦(𝑊)): = 𝜎 ൬
𝑊

𝜎(𝑊)
൰ =

1

𝐾
𝜎(𝑊) = 1 (2)

It is thus demonstrated that adding spectral normalization to the network can 
make the discriminator network satisfy the condition that the Lipschitz, constant 
Lipschitz is equal to 1 by strictly constraining the spectral norm of the weight matrix 
of each network layer ,and without destroying the structure of the weight matrix, thus 
enhancing the stability of the deep convolutional generative adversarial network in 
training and improving the generator performance of the deep convolutional 
generative adversarial network and the discriminator performance of the 
discriminator. 
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2.5. Loss function 

In this paper, the design of the loss function is divided into two parts, which are 
the generator loss function and the discriminator loss function. where the loss function 
L1 of the distance between the generated image and the target image is defined using 
the MAE [15] (mean-absolute error) loss function. The mean absolute error loss 
function calculates the mean absolute error of the images generated by each color 
channel in the generator with respect to the standard stained slices in the input 
discriminator network, where the MAE is expressed as follows: 

𝑀𝐴𝐸 =
1

𝑀𝑁
෍ ෍ห𝑧୪ୟୠୣ୪(𝑝, 𝑞) − 𝑧୭୳୲୮୳୲(𝑝, 𝑞)ห

ேିଵ

௤ୀ଴

ெିଵ

௣ୀ଴

 (3)

M represents the number of rows in a matrix or the size of the first dimension, N 
represents the number of columns in a matrix or the size of the second dimension, p is 
a variable used to denote the row index in the pixels, q is a variable used to denote the 

column index in the pixels, 𝑧୪ୟୠୣ୪ is translated as reference color image, 𝑧୭୳୲୮୳୲ is 

translated as predicted color image. 
The discriminator loss for the generating adversarial colorization model is 

described as: 
𝐿஽ = 𝐸௫ ~ ௉೏ೌ೟ೌ

[𝑙𝑜𝑔𝐷(𝑥, 𝐶, 𝑦)] + 𝐸௫ ~ ௉೏ೌ೟ೌ
[log(1 − 𝐷(𝑥, 𝐶, 𝐺(𝑥, 𝐶))] (4)

Its generator loss is described as: 
𝐿ீ = 𝐸௫ ~ ௉೏ೌ೟ೌ

[log(1 − 𝐷(𝑥, 𝐶, 𝐺(𝑥, 𝐶))] + 𝐿ଵ (5)

where 𝐷(∗) denotes the discriminator, 𝐺(∗) denotes the generator, x denotes the gray 

target image, C denotes the feature condition of the reference image, and y denotes the 
original color information of the image. 

2.6. Evaluation method 

Due to the uncertainty of the colorization task, the general mainstream evaluation 
method uses the peak signal-to-noise ratio and structural similarity metrics in the 
image restoration task to evaluate the quality of the images generated by the coloring 
algorithm. peak signal-to-noise ratio (PSNR) is the ratio between the maximum 
possible signal power and the destructive noise power which affects its accuracy. The 
maximum signal-to-noise ratio is often expressed in logarithmic decibels. PSNR was 
defined as Mean Square Error (MSE). For the generated colorization images with 
standard colorization images, if one is an approximation of another’s noise, the PSNR 
between them is defined as: 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔ଵ଴(
𝑀𝐴𝑋ଶ

𝑀𝑆𝐸
) (6)

MAX represents the maximum possible pixel value in the image. 
Structural similarity [16] (SSIM) is often used as an indicator to assess image 

quality, generally measuring the similarity of two images in terms of contrast, 
brightness and resulting information. In this paper, structural similarity is used to 
compare the similarity between the generated stained images and the real colorization 
images, and the larger the structural similarity value, the closer the two images are, the 
better the learning effect. structural similarity can be defined as: 
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𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇௑𝜇௒ + 𝑐ଵ)(2𝜎௑௒ + 𝑐ଶ)

(𝜇௑
ଶ + 𝜇௒

ଶ + 𝑐ଵ)(𝜎௑
ଶ + 𝜎௒

ଶ + 𝑐ଶ)
 (7)

where 𝜇௫  is the mean of X, 𝜇௬ is the mean of image Y, 𝜎௫
2 is the covariance of X, 

𝜎௬
2 and similarly is the covariance of Y, 𝜎௑௒ representing the covariance of X and Y, 𝑐1 

and 𝑐2 are constants that maintain stability. 

3. Experiments 

3.1. Database 

HuBMAP - Hacking the Kidney FTU segmentation challenge dataset [11,17] was 
used to evaluate our model. This dataset, published by the HuBMAP organization, 
includes 11 fresh frozen and 9 formalin-fixed paraffin embedded PAS kidney tissue 
samples. Each sample includes PAS stained FTU images and annotation labels, with 
8 training sets and 5 public test sets, consisting of TIFF files. To prepare the data, we 
sliced out 9580 PAS colorization images with FTU annotation labels from the TIFF 
files. As we only needed the original tinted image without annotation labels, we 
cropped the images to 256 × 256 as the original size was too large and would have 
wasted storage space. 

Furthermore, we converted the color space from RGB to Lab, and extracted the 
L luminance channel information as the network input image. The information on the 
luminance channels a and b were used as the target image. The data processing steps 
is shown in Figure 4. 

 
(a) luminance information L 

 
(b) chromaticity information a 

 
(c) chromaticity information b 

Figure 4. Lab color space pre-processing of Kidney FTU segmentation challenge 
dataset. 

3.2. Implementation details 

All training and testing experiments are performed on workstations. The CPU 
used is Intel (R) Xeon (R) CPU e52630V4@2,20GHz. The GPU uses two NVIDIA 
forcedx1080ti with 12GB GPU memory, with a total memory of 24 G. All network 
architectures are implemented with pytorch 1.7.1+cu101 framework. We start the 
training with a batch size of 10. The proposed architecture is optimized by the Adam 

optimizer with the learning rate initially set to 0.0001, 𝛽1 = 0.5, 𝛽2 = 0.999, The loss 
function is used as the combined loss function mentioned earlier. 

3.3. Comparisons with other method 

Table 1 shows the PSNR and SSIM assessment results from the table below. It 
can be seen that the generated adversarial network model with spectral normalization 
has the highest average PSNR score after comparing with other coloring networks, 
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which is 1.193 dB higher than the DCGAN model with only normalized structure. 
From Figure 5, it can be seen that the Colorful Image Colorization coloring network 
proposed by Zhang [3] in the ECCV2016 conference has a low distribution of color 
prediction, and the overall coloring effect is purple. The real tissue stained cells are 
light pink, and the background area that was originally white was also predicted to be 
purple. The subsequently proposed method, Real-Time User-Guided Image 
Colorization with Learned Deep Priors, has improved the metrics of PSNR and SSIM, 
but there is still a gap between the staining effect and the color prediction of real tissue-
stained cells. The AutoEncoder coloring method is slightly higher than the generative 
adversarial network in terms of structural similarity values, though. However, the 
color was misclassified in the circle region as in the fourth figure of Figure 5, and the 
original prediction of black classification was colored by the network with mauve, 
while the latter two groups were predicted to be black classification using the 
generative adversarial network. 

Table 1. Different colorization methods peak signal-to-noise ratio a structural 
similarity on the Kidney FTU segmentation challenge dataset. 

Methods Zhang Real-Time Autoencoder Dcgan Our 

PSNR 25.656 25.689 26.862 28.609 29.802 

SSIM 0.839 0.855 0.867 0.866 0.911 

 
Figure 5. Different colorization methods effect on the Kidney FTU segmentation 
challenge dataset. 

This shows that the generative adversarial network approach can generate 
sufficiently realistic images to deceive the discriminant through the generator, this 
method can better learn the image color distribution model, so that the colorization 
image is closer to the actual natural colorization. From the last two sets of colorization 
results, it can be seen that deep convolutional generative adversarial network (GANs) 
perform poorly on images in the test dataset that differ significantly from the training 
distribution. This is evidenced by the appearance of blotchy, uncolored blue spots, 
which lead to a decrease in PSNR. In contrast, the GAN-based colorization network 
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with the added spectral normalization structure did not produce these blotchy, 
uncolored spots. Overall, the PSNR table indicates that the improved spectral 
normalization GAN-based colorization model proposed in this study generates images 
with higher quality and better resemblance to the original stained images. This 
improves the overall level of image colorization and can help standardize it as a routine 
staining practice. 

We also tested the structural similarity loss of DCGAN and SN-DCGAN, the 
structural similarity loss values from the similarity curves in Figure 6 demonstrate 
that, with the incorporation of spectral normalization, the structural similarity values 
are higher than those of the deep convolutional generative adversarial network 
(DCGAN) model. After 40 epochs of training, structural similarity values continue to 
increase as the number of training batches rises. This observation provides evidence 
that integrating spectral normalization can enhance the color prediction capability of 
the deep convolutional generative adversarial network model, resulting in improved 
colorization outcomes. 

 
Figure 6. Structural similarity for DCGAN, SNDCGAN (Spectral Normalized 
DCGAN). 

4. Discussion 

This study applies a generative adversarial network by Spectral Normalization 
colorization method for PAS stained images of Glomerular Tissue Unit. improving 
upon the disorganized blue and uncolored spots generated by DCGAN. The 
enhancements aim to make the final generated color images more closely resemble the 
original stained images. It has been validated that Spectrum Normalization DCGAN 
(SN-DCGAN) achieves improved coloring results. However, there are certain 
limitations to this study. The experiments are confined to pseudo-coloring grayscale 
images, and despite the good coloring results achieved, there is still a gap compared 
to real stained images. The research also does not delve into how to control implicit 
features to control the diversity of coloring samples. Future research will focus on 
addressing these limitations through model and method improvements. 
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5. Conclusion and future works 

In many cases, the diagnosis and treatment of various kidney diseases require 
assistance from pathological staining and slicing. However, the production of 
pathological staining slides in clinical practice involves a complex process. The 
current PAS staining slide production technique is time-consuming, labor-intensive, 
and may pose challenges in terms of staining. In this paper, we propose an automatic 
coloring method using a spectral normalization Generative Adversarial Network 
(GAN) to restore color to grayscale images of glomerular tissue units. This method 
has the advantage of generating more natural and saturated coloring effects, closely 
resembling the appearance of real glomerular tissue unit PAS staining images. 
Additionally, the discriminator of the Generative Adversarial Network includes a 
spectral normalization module, replacing the traditional normalization module. This 
ensures that the discriminator D satisfies Lipschitz continuity, thereby restricting the 
intensity of variations in the Generative Adversarial Network. We tested and trained 
our model on the HuBMAP—Hacking the Kidney glomerular functional tissue unit 
FTU cGAN segmentation challenge dataset. The experiments demonstrate that the 
color images generated by the Generative Adversarial Network are clear, natural, and 
closely resemble the original glomerular tissue unit staining images. It can be used for 
the diagnosis and analysis of kidney diseases. However, there is still a gap when 
directly applying this algorithm to the large-scale clinical application of staining and 
slicing PAS unstained images due to differences, such as contrast, in the grayscale 
images and unstained images used for training in this paper. Future research should 
focus on the registration of unstained images and real stained images to address this 
issue. It is also expected to be extended to general monochrome tissue and cell slicing 
staining methods, contributing to large-scale and random pathological staining slice 
clinical studies. 
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