
Imaging and Radiation Research (2020) Volume 3 Issue 1 
doi:10.24294/irr.v3i1.1723 

23 

Original Research Article 

Pulmonary dynamics of anatomical structures of interest in 4DCT 
imaging 
Sarahí Hernández-Juárez, Aldo Rodrigo Mejía-Rodríguez*, Edgar R. Arce-Santana 

Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), S.L.P., Mexico. E-mail: al-
do.mejia@uaslp.mx 

ABSTRACT 
The present work shows an application of the Chan-Vese algorithm for the semi-automatic segmentation of ana-

tomical structures of interest (lungs and lung tumor) in 4DCT images of the thorax, as well as their three-dimensional 
reconstruction. The segmentation and reconstruction were performed on 10 CT images, which make up an inspira-
tion-expiration cycle. The maximum displacement was calculated for the case of the lung tumor using the reconstruc-
tions of the onset of inspiration, the onset of expiration, and the voxel information. The proposed method achieves ap-
propriate segmentation of the studied structures regardless of their size and shape. The three-dimensional reconstruction 
allows us to visualize the dynamics of the structures of interest throughout the respiratory cycle. In the future, it is ex-
pected to have more evidence of the good performance of the proposed method and to have the feedback of the clinical 
expert, since the knowledge of the characteristics of anatomical structures, such as their dimension and spatial position, 
helps in the planning of Radiotherapy (RT) treatments, optimizing the radiation dose to cancer cells and minimizing it in 
healthy organs. Therefore, the information found in this work may be of interest for the planning of RT treatments. 
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1. Introduction 
Medical imaging is one of the most powerful tools in the clinical 

setting due to its ability to show anatomical and functional information 
of the human body, which can be used for the diagnosis of diseases and 
the evaluation or follow-up of medical treatments through the analysis 
of anatomical structures of interest such as bones, healthy structures or 
structures affected by a tumor (lungs, brain, prostate, etc.), or the tumor 
itself[1]. For example, in Radiation Therapy (RT), patients undergoing 
radiation treatment for cancer usually present loss in the volume of the 
tumor and the surrounding healthy organs (organs at risk), which causes 
a decrease in the functionality of these organs as a side effect of the 
therapy. For this reason, knowledge of the characteristics of these 
structures, such as their size and spatial position, makes it possible to 
plan the treatment, optimizing the radiation dose to the tumor and 
minimizing the dose absorbed by healthy organs[2]. 

One of these treatments is Tomotherapy, which delivers high en-
ergy ionizing radiation in a modulated manner, being able to create very 
strong dose distributions around target volumes (tumors). However, 
during radiation, patients may undergo significant anatomical changes 
due to physiological processes, as in the case of the lungs, which can 
modify their volume and shape considerably due to the movements 
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caused by breathing (inspiration-expiration cycle)[3]. 
As a direct consequence, there are discrepan-

cies between the planned dose distribution and the 
actual dose[4], which increases the importance of 
analyzing and studying the anatomical changes of 
the lungs during the respiratory cycle in order to 
target the corresponding radiation dose and thus 
improve treatment efficiency. 

For the analysis of anatomical structures of in-
terest in RT treatments, one of the most critical and 
complicated steps is the extraction of these struc-
tures by means of a segmentation process. This 
segmentation process can be performed either 
manually by a clinical expert (which involves a 
great deal of time and effort), or by segmentation 
algorithms. In the literature it is possible to find 
different image segmentation algorithms based on: 
intensity (gray levels) of the pixels or voxels of the 
image, thresholding, spatial features, fuzzy sets, 
among others[5-7]. 

These methods seek to obtain a good bal-
ance between accuracy, noise robustness and com-
putation time. In particular, the noise factor is of 
vital importance for medical imaging, since it is 
always present and can be of different types, de-
pending on the imaging technology used for its ac-
quisition, the pathology present in the patient, in-
ternal movements of physiological processes, 
among other factors, so defining a standard seg-
mentation algorithm for medical imaging remains 
an open problem. 

A quantitative evaluation of the performance 
of the classical K-means and Otsu segmentation 
algorithms (methods widely used in clinical set-
tings), and an algorithm based on the Chan-Vese 
method, is presented by Hernandez et al.[8], for the 
segmentation of anatomical structures of interest 
with complex shapes (such as lungs and tumors) in 
medical Computed Axial Tomography (CT); in this 
work it was shown that the three methods studied 
have a good performance for the segmentation of 
large structures (such as lungs), however, the algo-
rithm based on the Chan-Vese method was the most 
robust and accurate for tumor segmentation (com-
pared to the segmentation performed manually by a 
clinical expert). For this reason, this paper proposes 

the use of this active contouring method for the 
segmentation of the lungs and a lung tumor in 4D 
CT (4DCT) medical images[9], i.e., a set of volu-
metric images acquired at specific time periods of 
the respiratory cycle. 

For this reason, the objective of this work is to 
segment the volume corresponding to the structures 
of interest of the lungs and a lung tumor in order to 
obtain information that could be useful for the 
planning of a RT treatment, related to the dynamics 
of these structures throughout the respiratory cycle. 
Additionally, as a complement to 4DCT image 
segmentation, this work proposes the use of 
three-dimensional reconstruction and visualization 
tools to have a clearer representation of the changes 
that occur during the respiratory cycle. 

2. Methodology 
The Chan-Vese method has proven to be very 

useful to achieve the segmentation of various ob-
jects or anatomical structures in images with a large 
amount of noise, or where the edges of the objects 
of interest are not well defined. There are works in 
the literature in which the Chan-Vese method is 
used for the segmentation of anatomical structures 
such as small intestine and blood vessels, as well as 
in the industrial field for the extraction of carbure-
tors, tires and other automotive parts[10–12]. In gen-
eral, the Chan-Vese algorhythm is a segmentation 
method where the minimization of an energy func-
tional is sought. In this work, the original proposal 
of the method developed by Chan and Vese[13] is 
used as a basis, to carry out our implementation by 
extending the classical method, which works with 
2D images, to work with volumetric images and 
obtain the segmentation of the lungs and the lung 
tumor in 3D. 

2.1 Theoretical Basis—Chan-Vese Algorithm 
For the description of the Chan-Vese method, 

it can be assumed that an image I consists of two 
regions of different homogeneous intensities, in this 
case Ii and Io, where the object to be detected is 
represented by the region I, i.e. the area that belongs 
to the object, which is delimited by a curve C; while 
Io is the area that does not belong to the object. The 
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energy functional can be defined taking into con-
sideration the region Ii, as the area inside the curve 
(Cin) and Io as the region outside the curve (Cout), 
as follows: 

 
(1) 

where C is a variable curve and the constants C1 
and C2 correspond to the average value of the inten-
sity of the image pixels I inside and outside the C 
curve. When the curve C is outside the area of in-
terest, we have that F1(C) > 0 and F2(C) ≈ 0, while 
if F1(C) ≈ 0 and F2(C) > 0 are the cases, the curve is 
inside the area. It is said that the minimization of 
the energy functional occurs when the curvature is 
outlining the contour of the object to be segmented, 
i.e., when F1(C) ≈ 0 and F2(C) ≈ 0. To this model 
we add some regularization terms such as the length 
of the curve C, and the area inside C, defining now 
the energy functional shown below: 

 

 

 
(2) 

where μ ≥ 0, v ≥ 0 are constant regularization pa-
rameters and λ1, λ2 > 0 are constant weight parame-
ters dependent on the image I. Under this principle, 
the curve C is represented by a zero-level curve of a 
Lipschitz function (φ) using level sets, the energy 
function remaining in terms of φ. On the other hand, 
the signs taken by this function can be represent-
ed by means of the Heaviside function, H(Φ): 

 
 (3) 

The derivative of H(Φ) is the Dirac delta 
function (δ0), which can be approximated by: 

 
(4) 

i.e., δ0 is the approximation to the Dirac delta 
function when ε tends to zero. Based on the above, 
the energy function can be written as: 

 

 

 
 (5) 

Keeping fixed and minimizing the energy of 
F(C1, C2, Φ) with respect to the constants C1 and 
C2, these can be written in terms of: 

 

 
 (6) 

On the other hand, in order to minimize the 
functional (5) in terms of the function Φ, its first 
variation is defined by means of the Euler-Lagrange 
equation. Using these considerations, the difference 
equation can be written as follows:  

 

 
 (7) 

For the practical part and implementation of 
the algorithm, the discrete version of equation (7) is 
used, thus achieving the delimitation of the object 
to be segmented through the evolution of the curve. 
Using the gradient de-census, an artificial variable 
is introduced with respect to time as follows: 

 
 (8) 

In this version of the Chan-Vese method, the 
number of iterations (n) and the time between each 
iteration (Δt) must be taken into account. The dis-
crete form of the minimization of the energy func-
tional is shown below: 

 
 (9) 

2.2 Implementation of the Chan-Vese Seg-
mentation Algorithm in 3D 

In this work, modifications were made to the 
model described in the previous section in order to 
perform the segmentations of the structures of in-
terest volumetrically. That is, the energy functions 
described above were modified to work along the 
three cartesian axes (x, y, z), i.e., the functions are 
generalized to work in the entire imaging domain. 
The energy function of the model is described as 
follows: 

 

 
 (10) 

where S is the variable surface, Sin is the domain of 
the internal region of the object, Sout the external 
region and Ω represents the image domain. The first 
part of the function refers to the regularization 
terms considered, in this case the surface area and 
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the interim volume of the surface, which were suit-
able for working with the domain of the energy 
function. 

The other terms describe the expansion 
movement of the surface when it is inside the area 
or object; and the contraction movement when it is 
outside the object. With Φ being the zero level 
representing the active contour, the functional pro-
posed to be minimized is as follows: 

 

 

 
 (11) 

Once the above functional is derived with re-
spect to the Φ  term (to achieve its minimiza-
tion) by means of the Euler-Lagrange equation, the 
resulting difference equation can be written in the 
same way as equation (7). In order to achieve the 
delimitation of the object of interest through the 
evolution of the surface, the discrete version of the 
difference equation is also used considering the 
number of iterations and the time between each it-
eration, as shown in equation (9). To facilitate the 
implementation of the proposed algorithm de-
scribed above, in equation (7) it was considered that 
δ0(Φ) = 1 and v = 0 based on tests performed by 
Chan and Vese[13], in addition to an update in order 
to calculate the sign of the zero-level set of the 
function, resulting in the following expression: 

 

 
 (12) 

The values of the λ1 and λ2 terms in the above 
expression were calculated from the intensities of 
the voxels inside and outside the curve. To achieve 
this objective, the thresholds of the lungs and the 
lung tumor were calculated from the information of 
the original image using the Otsu method[7], imple-
mented in MatLab® by means of the multi-thresh 
function, which returns the threshold that allows us 
to differentiate the objects or areas of interest, in 
this case the lungs or the tumor, with respect to 
the background. Once the thresholds were deter-
mined, we obtained the variances of those values of 

the image that would exceed these thresholds 
(background), as well as the opposite case, where 
the values correspond to one of the desired anatom-
ical structures. Thus, the values of λ’s are ob-
tained by calculating the inverse of the variances 
obtained. 

Additionally, as initial curve in both cases the 
whole set of masks resulting from a previous seg-
mentation of the images with the K-means method 
was used, which is a method based on the grouping 
of clusters represented with a weighted average of 
pixels called centroids. The main foundation of the 
algorithm is to define K centroids (one for each 
group of data of interest) within the image to be 
processed[6]. For this initialization, the MatLab® 
kmeans function was used, in which the number of 
clusters to be obtained must be specified. In this 
case, 2 clusters were defined, which made it possi-
ble to differentiate the anatomical structure of in-
terest (lungs or lung tumor) from the other infor-
mation in the image (background and other 
structures). 

For all segmentations performed, the parame-
ters μ and Δt had a value of 0.1. In the lung seg-
mentation, the constants C1 and C2 were calculated 
with the average of the pixels of the entire volume 
taking into account when Φ ≥ 0 and Φ < 0 respec-
tively; while in the case of the tumor segmentation, 
the calculation of the constants was carried out with 
the help of a subvolume, where it was only possible 
to delimit the pixels of the object, thus facilitating 
the location of the area where the structure was lo-
cated. 

Finally, the number of iterations used for lung 
and tumor segmentation were set to 10 and 5 re-
spectively. These values were defined by means of a 
segmentation consistency test, where the minimum 
number of iterations necessary to obtain a segmen-
tation that differed by less than 1% with respect to a 
segmentation generated with a maximum number of 
100 iterations was sought. 

Given the characteristics of the proposed 
method, in each iteration of the algorithm the entire 
volume of the images is used, which means that the 
operations of the discrete function of the algorithm 
are performed in a three-dimensional way, thus ob-
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taining the evolution of a surface. In summary, the 
evolution of the implemented segmentation algo-
rithm can be approached using the following strat-
egy (Figure 1): 

 
Figure 1. Strategy for the evolution of the implemented algo-
rithm. 

2.3 4DCT chest images 
For the analysis of the Chan-Vese algorithm, a 

set of 4DCT chest images obtained from the data-
base of the Léon Bérard Cancer Center and the 
Biomedical Imaging Research Laboratory (CREA-
TIS lab) in Lyon, France[9] was selected, where it is 
possible to observe pulmonary structures together 
with their internal characteristics (bronchial ramifi-
cations) and a large pulmonary tumor located in the 
right lung. This 4D dataset is made up of 10 CT 
images that were acquired from a patient in differ-
ent phases of the respiratory cycle, i.e., one inspira-
tion-expiration cycle is divided into 10 CT images. 
Each of the CT images has a size of 475 × 335 × 
123 voxels, with a voxel dimension of 0.98 mm × 
0.98 mm × 2.00 mm. 

2.4 Quantitative analysis of the performance 
of the segmentation method 

To validate the accuracy of the volumetric 
segmentations obtained with the implemented algo-
rithm based on the Chan-Vese method, the differ-
ences between the contours resulting from this al-
gorithm and the contours validated by a clinical 
expert were analyzed. These contours were obtained 
following the strategy proposed by Faggiano et 
al.[14] for the case of lung structure, and manually 
using the MIPAV software[15] for the case of lung 
tumor. The differences were quantified by calculat-
ing precision indexes used in the medical field for 
the analysis of structures of interest[2], including the 
dice similarity coefficient (DICE), the mean sym-
metric distance between contours (DSM), and the 

percentage of distances greater than the voxel di-
mension (%DMDV)[16]. 

The DICE index is a measure of global preci-
sion, specifically of overlap between the structures 
to be compared, which can have values between 0 
(absence of coincidence in the masks) and 1, which 
translates into a perfect overlap between the struc-
tures. These structures are represented by binary 
masks generated from the contours obtained in the 
segmentations. The calculation of the DICE index is 
performed as follows: 

 
(13) 

In this case, the intersection between the bina-
ry plus-faces A and B (masks to compare) is calcu-
lated, and # represents the cardinality of the sets. 

The DSM is the mean value of the calculation 
of all Euclidean distances between the points of two 
contours (CA and CB), and is estimated as follows:  

 
(14) 

where pA and pB are the voxels belonging to the 
contours CA and CB, and d(p,C) is the minimum Eu-
clidean distance between the voxels and the contour 
opposite to where they are located. This index pro-
vides a measure of the mean error (misalignment) 
present between the analyzed contours. 

Finally, the %DMDDV index indicates the 
percentage of distances between contours that ex-
ceed an established admissible error threshold, 
normally the voxel dimension is used as the thresh-
old, as this establishes a percentage of the percepti-
ble differences between segmentations. Considering 
two sets defined as follows: 

 

(15) 
 

(16) 
where DimVoxel refers to the voxel thickness, 
the %DMDDV index can be calculated as: 

 
(17) 

2.5 Three-dimensional reconstruction 
The reconstruction of the results of both seg-
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mentations (lungs and tumor) was performed 
through the graphing of an isosurface, using the tool 
already defined in the MatLab® software. 

This consists of calculating the surface values 
of the data from a volume, which in this case are the 
masks resulting from the segmentations, and then 
connecting and adjusting these points on the x, y, 
and z axes. 

In this case, each structure was reconstructed 
individually, and in addition, the two structures 
were plotted in the same plane, which allowed the 
two results to be observed together. To achieve this, 
the outer structure (lungs) had to be plotted as a 
transparency in order to visualize the inner tumor. 

The term that gives transparency to an isosur-
face is alpha. When this term has a value closer to 0, 
the more translucent the reconstructed volume 
can be observed, while at values close to 1 the 
volume will take on a more opaque appearance. 

The alpha value used for the reconstruction of 
the lungs was 0.1, which allowed to visualize not 
only the lung tumor, but also to visualize in detail 
the internal ramifications of the lungs. 

2.6 Pulmonary dynamics 
The three-dimensional reconstruction proce-

dure was performed on the ten phases (CT images) 
of the respiratory cycle available in order to obtain 
information on the dynamics of the structures of 
interest throughout the respiratory cycle. In particu-
lar, for the case of the lung tumor, we sought to 
calculate the maximum displacements (in millime-
ters) in each cartesian axis. 

This is possible to obtain using the reconstruc-
tions of the lung tumor in the phases of the begin-
ning of inspiration and the beginning of expiration, 
together with the information of the voxel dimen-
sion (0.98 mm × 0.98 mm × 2.00 mm). This infor-
mation is important because it could be used in the 
planning of tomotherapy treatments. 

3. Results and discussion 
3.1 Iteration definition analysis 

To determine the number of iterations for the 
lung and lung tumor segmentations, a robustness 
and consistency analysis of the proposed algorithm 

was performed, in which the result of a segmenta-
tion using a maximum number of 100 iterations was 
compared with the result of segmentations using 
iterations of 5, 10, 20, ..., up to 100. Taking into 
account the above, Figure 2 shows the difference in 
voxels between the result of the segmentation of the 
lungs with 100 iterations compared to the result of 
the other segmentations (from 5 to 100). Addition-
ally, in this figure, a red line can be observed at the 
value of 600 voxels, which represents that there is a 
difference of 0.01%. Thus, it is possible to appreci-
ate that the segmentations are very similar (con-
sistent) regardless of the number of iterations used 
in a range between 5 and 100 iterations; however, 
the number of iterations was set to that value that 
had an error below 0.01%, which corresponds to a 
number of 10 iterations for the case of lung seg-
mentation. For the lung tumor segmentation, the 
same procedure was performed in order to deter-
mine that the minimum number of iterations neces-
sary for a consistent segmentation was set at 5. 

It is important to mention that although it 
seems that the number of iterations does not seem 
to have a great impact on the accuracy of the seg-
mentation, the minimum number of iterations is 
sought in order to obtain a good result in the short-
est possible time. Therefore, for the case of the 
three-dimensional segmentation of the lungs with 
10 iterations, the computation time was approxi-
mately 10 minutes, while for the lung tumor the 
segmentation took 4 minutes with 5 iterations. In all 
cases the segmentations were performed on a 
mid-range laptop computer (Intel Core i7 @2.5 
GHz processor with 8 GB of RAM). 

3.2 Evaluation and quantitative analysis of 
3D segmentations 

For the visual presentation of the results ob-
tained by the proposed method, the CT image in the 
final phase of expiration was used, which was con-
sidered in this work as the reference image. Figure 
3 shows a central slice of the CT image of the im-
age, showing the original image (Figure 3a) and the 
results of the segmentation of the structures using 
the proposed method; lungs (Figure 3b) and lung 
tumor (Figure 3c). 
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Figure 2. Difference in voxels between segmentations using different number of iterations. 

  

 
Figure 3. Segmentation results of the structures of interest. (a) CT image of lung and tumor (reference phase); (b) lung contour ob-
tained by the proposed method; (c) lung tumor contour obtained by the proposed method. 

In Figure 3 it is possible to appreciate that the 
implemented method performs a good segmentation 
of both anatomical structures of interest, since it 
manages to efficiently define their contours. In the 
case of the lungs, the method manages to define the 
external border of the lungs, and also manages to 
segment their internal characteristics (bronchial 
ramifications), which are visible in Figure 3a. As 
for the lung tumor, the proposed algorithm manages 
to adequately segment the complex shape of this 

anatomical structure, being able to differentiate 
small details located in the periphery of the tumor. 
This reinforces the conclusions reported by Her-
nandez et al.[8], i.e., that the Chan-Vese method is 
robust and accurate for the segmentation of ana-
tomical structures of different sizes and shapes. 

To reinforce the results of the good qualitative 
performance shown in Figure 3, Table 1 shows the 
results from the calculation of the precision indexes 
as a quantitative complement to the evaluation of 
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the segmentations obtained by the proposed meth-
od. 

In Table 1, the good performance of the im-
plemented method in the segmentation of the lung 
and tumor structures can be verified. For the DICE 
index, values close to 1 were found (above 0.90 for 
the case of the lungs and above 0.80 for the case of 
the tumor), which shows a great similarity of the 
result obtained with the contours validated by the 
clinical expert, regardless of the dimension and 
shape of the structures. 

As for the DSM index, it has a mean error val-
ue of 2.55 mm for the case of the lungs, which 
may be due to the details (internal ramifications) 
that the proposed method is able to segment and 
that in the reference segmentation are not consid-
ered by the clinical expert. This suggests that the 
more details found inside the lungs, the higher the 
DSM value and therefore also the %DMDV value, 
which reflects the percentage of distances greater 
than a set threshold, which in this case corresponds 
to 2 mm (voxel thickness). 

Table 1. Accuracy index results for the quantitative analysis of 
the segmentations of the structures of interest 
Indice Structures of in-

terest 
Lungs tumor 

DICE 0.94 0.82 

DSM (mm) 2.55 0.41 

%DMDV (%) 29.25 0.01 

However, for the case of the tumor, these two 
indices show values very close to 0, which speaks 
of a great similarity of the expert’s manual contours 
with the segmentation resulting from the proposed 
method, to such a degree that the differences are 
smaller than the voxel dimension. 

3.3 Three-dimensional reconstruction 
Figure 4 shows the three-dimensional recon-

structions of the results of the segmentations in the 
reference phase, where the structure of the lungs 
(Figure 4a) and the lung tumor (Figure 4b) 
can be better observed. Additionally, the representa-
tion of both three-dimensional structures in the 
same plane is shown (Figure 4c), where it is possi-
ble to identify the tumor in red and the lungs as a 
transparency, which allows us to observe their in-
ternal ramifications. 

These reconstructions allow us to know in de-
tail the characteristics of the structures of interest, 
such as their shape and size, and in the case of lung 
tumor, it also allows us to visualize and confirm its 
location within the lungs by means of transparency. 

3.4 Pulmonary dynamics 
Finally, Figure 5 shows the reconstructions 

of both anatomical structures of interest in the ten 
phases of the respiratory cycle, where we can ob-
serve the inspiratory phase (Figure 5a–e), being 
Figure 5a the beginning of inspiration, and the ex-
piratory phase (Figure 5f–j)), which begins in Fig-
ure 5f. 

Figure 5 allows us to appreciate the displace-
ment generated both in the lungs and in the tumor 
due to respiration. To improve the detail in the dy-
namics of the tumor, we added some guides (blue 
lines) that allow us to check the maximum dis-
placement of the tumor on the z-axis of 17 trans-
verse slices, corresponding to 34.0 mm (using the 
information of the voxel dimension), between the 
phases of the beginning of inspiration and the be-
ginning of expiration. With respect to the x-axis and 
y-axis, the tumor had a smaller displacement of 2.9 
mm and 3.9 mm, respectively. 

It is important to mention that the maximum 
displacement along the z-axis was expected, since 
anatomically the movement generated by the dia-
phragm along this axis is much greater than the dis-
placement of the thoracic walls due to inspiration 
and expiration. These results confirm the influence 
of breathing on the movement of the anatomical 
structures studied, and the maximum displacements 
obtained could be used in the planning of tomo-
therapy treatments. 

4. Conclusions 
In this work we presented the implementation 

of an active contour segmentation method based on 
the Chan-Vese algorithm to extract anatomical 
structures of interest in 4DCT images of the chest. 
The proposed algorithm succeeds in properly seg-
menting both lungs and the lung tumor present in 
the images, confirming that the method is capable 
of segmenting structures of different sizes and   
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Figure 4. Three-dimensional reconstruction of the structures of interest. (a) Reconstruction of the lungs; (b) 3D reconstruction of the 
lung tumor; (c) reconstruction of the lung and tumor structures in the same plane. 

 
Figure 5. Three-dimensional reconstruction of lung structures and lung tumor in the phases of the respiratory cycle. (a–e) Inspiratory 
phase; (f–j) expiratory phase. The x, y axes are pixels and the z axis are cross sections. 

shapes. Specific characteristics of each anatomical 
structure can be known in detail by means of the 

three-dimensional reconstruction, in addition to the 
location of the structures of interest (tumor), infor-
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mation that can be of great importance in radio-
therapy and tomotherapy treatments, where the aim 
is to minimize radiation in healthy organs near the 
cancer cells. 

It is important to mention that the results pre-
sented in this work correspond only to a set of 
4DCT images of a study subject, therefore, it is ex-
pected in the future to be able to perform the same 
procedure to a database with more patients. Addi-
tionally, comparisons will be made between the 
proposed algorithm and other segmentation and 
reconstruction methods in the state of the art RT 
applications, so that more evidence of the good 
performance of the proposed algorithm can be ob-
tained. Finally, it is expected to have feedback from 
medical physicists to validate the possible use of the 
information of the maximum displacements ob-
tained in the planning of tomotherapy treatments. 
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