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Abstract: This paper discusses the parameter estimation of the multivariate normal distribution using Bayesian statistical methods. Tradi-

tionally, frequency statistical methods are used to estimate the parameters of the multivariate normal distribution, but this method may face 

sampling limitations and model complexity. In contrast, the Bayesian method can more effectively explain the uncertainty of parameter 

estimation by introducing prior information and subsequent reasoning, and show better robustness to data limitations or model complexity. 

Through literature review and empirical analysis, this paper demonstrates the benefits and potential of using Bayesian methods to estimate 

the parameters of the multivariate normal distribution, and proposes new ideas for parameter estimation of the multivariate normal distribu-

tion in various fields, such as providing new ideas and methods for portfolio management.
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1 Introduction

1.1 Project Overview

The classical multivariate normal distribution is based on the use of frequency statistics to estimate model parameters. This may lead to 

some limitations, especially when the sample is limited or the modeling is complex. In other words, the classical method may underestimate 

the actual uncertainty and risk associated with the investment.

In recent years, Bayesian statistical methods have received increasing attention in data analysis and parameter estimation. The Bayes-

ian method allows us to consider prior knowledge of parameters and update them based on observed data, which makes it more flexible and 

robust for different market scenarios. However, parameter estimation under the Bayesian statistical method also faces more complex diffi-

culties, such as: the choice of parameter prior distribution and likelihood function, and the difficulty in obtaining analytical solutions for the 

posterior distribution and posterior predictive distribution. This article will use Jeffrey’s prior ideas to calculate and derive the parameter esti-

mation of the multivariate normal distribution step by step.

1.2 Methodology

Within the framework of Bayesian statistical methods, the following definition theorems will be used: Bayes’ theorem, likelihood func-

tion, inverse Wishart distribution, multivariate Student’s T distribution, Jeffrey prior, prior distribution, posterior distribution and posterior 

predictive distribution, etc.

1.3 Project Outcome

Although the multivariate normal distribution is widely defined in various models, such as in economics, where it is often defined as 

the distribution of excess returns of assets, it may face limitations in estimating parameters, especially in periods of financial instability or 

limited data availability.

In this context, Bayesian statistical methods represent a promising approach to estimating the parameters of the multivariate normal 

distribution. By integrating prior knowledge and data, they can improve the accuracy of estimates and manage uncertainty more effectively.

Although the use of Bayesian methods in parameter estimation is still relatively new, there have been many studies that have confirmed 

the effectiveness and applicability of Bayesian methods in estimating the parameters of the multivariate normal distribution. The following is 

a detailed review of these studies and an analysis of their results.
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2 Research and solution of the problem

2.1 Multivariate Normal Distribution

The initial preparation for the definition of the multivariate normal distribution begins by assuming that there are N different random 

variables. Let X denote an N-dimensional vector of random variables consisting of N random variables. In this case, the multivariate normal 

distribution is defined as a distribution with mathematical expectation μ and covariance Σ, where μ is a vector of size N×1 and Σ is a matrix 

of size N timesN.

where |Σ| is the determinant of the covariance matrix.

Assume that there are N random variable vectors as samples of parameter estimation. Let Xt denote the th random vector variable sam-

ple.

The estimation of parameters μ and Σ can be divided into two types: frequency statistics methods and Bayesian statistics methods. 

Next, we will describe how these two methods achieve parameter estimation. The theorems used and their proofs will also be given.

2.2 Frequency statistics methods

frequency statistics methods assumes that the parameters  and  have certain values. The parameters are estimated using the maximum 

likelihood estimation method:

Unbiasedness of parameter estimates:

Testing the unbiasedness of μ ̂ :

Theorem 2.2.1 [8]

Property of orthogonal matrices: All column vectors Yj are unit orthogonal vectors. Therefore:

Theorem 2.2.2 [10]

Let X1,X2,...,Xn be samples from the population X, X~Np (μ,Σ).

 There exist independent P-dimensional vectors  therefore:



-28- International Journal of Mathematics and Systems Science

Proof:

Let Y=(Y1,Y2,...,Yn-1,Yn )=(X1-μ,X2-μ,...,Xn-1-μ,Xn-μ)U, where U- is an orthogonal matrix of the form:

Therefore, Yj is a linear combination of Xi-μ,...,Xn-1-μ,Xn-μ. Its expectation vector and covariance matrix are:

By the orthogonal matrix theorem (2.2.1) it follows:

where,

Therefore:Y1,...,Yn-1,Yn are independent of each other and Yi~Np (0,Σ), i=1,2,...,n.

Since:



Volume 7  Issue 9  -29-

Therefore:

Testing the unbiasedness of Σ ̂ :

According to Theorem 2.2.2

Therefore:

Therefore, the estimator μ̂ is unbiased, and the estimator Σ̂ is not unbiased. But it follows that  is unbiased.

Consequently, the estimators of the parameters μ and Σ have the following forms:

The above is the whole process of estimating the parameters of the multivariate normal distribution using the frequency statistics meth-

ods. The following is the parameter estimation process using the Bayesian statistics methods. Before that, let us first add two important prob-

ability distributions.

2.3 Inverse - Wishart Distribution

An N×N matrix Σ~ Inverse - WishartN (Σ|Ψ,υ) with degrees of freedom υ if its probability density function has the following form:

where,ΓN is the multivariate gamma distribution.

2.4 Multivariate Student’s t-distribution with degrees of freedom 

An N-dimensional vector y~tυ (μ,Σ)  with degrees of freedom υ if its probability density function has the following form:

Then the mathematical expectation E(y)=μ and the covariance matrix  for  υ>2.
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2.5 Bayesian statistics methods

The Bayesian statistics methods assumes that the parameters μ and Σ are random variables, and their joint distribution is P(μ,Σ). Esti-

mating the parameters will produce the distribution of the parameters.

Then the probability density function of the random variable vector sample Xt (N-dimensional multivariate normal distribution) be-

comes the conditional probability distribution p(Xt |μ,Σ)

Theorem 2.5.1 (Bayes’ Theorem) [10]

Let A and B be continuous random variables with joint distribution P(A,B).

Then:

where

P’ (A) - marginal distribution of A(prior distribution)

P(A|B)  - posterior probability;

P(B|A) - conditional distribution;

P^’ (B) - marginal distribution of B.

Theorem 2.5.2 (N-dimensional Gauss integral) [3]

Let A be an N-dimensional symmetric matrix

where, |A| is the determinant of the symmetric matrix A.

Theorem 2.5.3 [2]

Let X1,X2,...,Xn be samples from the population X,X~Np (μ,Σ).

, therefore:

Proof:

Theorem 2.5.4 [10]

Let X~N(μX,σX
2 ) and Y~N(μY,σY

2 ). The probability density functions are fX and fY. If Z=X+Y, then its probability density function 

fZ=∫fX (x)-fY (z-x)dx⇨ Z~N(μX+μY,σX
2+σY

2 ).

Then, according to Bayes’ theorem (2.5.1), the posterior distribution of asset returns is as follows:

Since the double integral ∫∫P(R1,...,RT |μ,Σ) P’ (μ,Σ)dμdΣ is one constant. Therefore:

The posterior distribution of the parameters μ and Σ here is the Bayesian estimate of the parameters μ and Σ.
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Assuming that there is no prior information about the parameters μ and Σ, then the parameters μ and Σ follow an uninformative prior 

distribution, that is, the Jeffrey distribution.

At the same time, the likelihood function of the N-dimensional multivariate normal distribution P(X1,...,XT |μ,Σ)  is equal to:

Then the posterior distribution of the parameters μ and Σ:

Based on the posterior distribution, the distribution of predicted asset returns is defined as:

where, P(μ,Σ) is an estimate of the parameters  μ and Σ, i.e., the posterior distribution of the parameters μ and Σ. Therefore:

Marginal posterior distribution of the parameter Σ:

Since :

We can find out that :

Only  has μ. Therefore:

It is clear that the upper integral is an N-dimensional Gauss integral (Theorem 2.5.2):

So, the result of the integral is:

A posteriori conditional distribution of the parameter μ:
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By Theorem 2.5.3 we can follow:

Since the random variable vector sample follows an N-dimensional multivariate normal distribution:

Therefore:

According to Theorem 2.5.4 we can follow:

It can be seen that the form of this integral is part of the integral of the distribution Inverse - Wishart(Σ|A,T) Since the integral of the 

probability density function is 1, the result of this integral is the reciprocal of the constant term of the distribution Inv - Whisart(Σ|A,T)

Therefore:

By processing the coefficients, we can obtain:

That is, the distribution of predicted asset returns is a multivariate Student’s t-distribution with degrees of freedom T-N.

Therefore, the estimates of the parameters μ and Σ are:
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where, μ̂ and Σ can be seen 2.2.

3 Conclusion and Future Directions

3.1 Conclusion

In this paper, we have discussed in depth the problem of parameter estimation for multivariate normal distributions, and given a con-

crete procedure for parameter estimation by traditional frequency statistics methods and Bayesian statistics methods. Traditional frequency 

methods are based on maximum likelihood estimation, which, despite its good properties with large samples, may show limitations when 

dealing with complex high-dimensional data and finite sample situations. In contrast, Bayesian methods, by introducing prior information, 

are able to deal with data uncertainty more effectively, especially in the case of small samples or complex models.

Through the research and analysis in this paper, we find that Bayesian methods have great potential for application in financial and 

statistical modelling, especially when data is limited or the model needs to capture more uncertainty. Bayesian inference can clearly portray 

parameter uncertainty through posterior distributions, a property that provides a more robust means for risk management and forecasting in 

financial markets. For example, in this paper we use the uninformative treatment of the covariance matrix by Jeffrey’s prior to demonstrate 

that Bayesian methods can exhibit good fit in high-dimensional data and avoid parameter estimation bias in frequency methods.

3.2 Future Directions

Although Bayesian methods show a wide range of applications in parameter estimation, there are still many issues that deserve further 

exploration. The research in this paper provides the following potential ideas for future directions:

Numerical Optimisation in High-Dimensional Problems: Although Bayesian methods have significant advantages in dealing with un-

certainty and small-sample data, the problem of computational complexity in high-dimensional spaces remains severe. Future research can 

further explore how to accelerate the computation of posterior distributions through more efficient numerical methods, such as variational in-

ference and Hamiltonian Monte Carlo (HMC) algorithms, especially for parameter estimation in high-dimensional financial data, which will 

greatly improve the efficiency of the practical application of Bayesian methods.

Integration of Bayesian and Machine Learning: With the development of machine learning techniques, combining Bayesian inference 

with deep learning can bring greater flexibility to data-driven models. For example, using Bayesian neural networks or probabilistic graphical 

models, potential uncertainties in financial data can be modelled and predicted in greater depth. Future research could explore how Bayesian 

uncertainty inference can be applied to deep learning frameworks to improve model robustness and generalisation.

Applications of Dynamic Bayesian Models: In dynamic environments such as financial markets, the statistical properties of data may 

change over time. Dynamic Bayesian models (e.g., state-space models or time-series Bayesian models) are uniquely suited to cope with 

time-varying parameters and non-stationary data. Future research could explore how dynamic Bayesian methods can be applied to problems 

such as asset price forecasting, risk management and option pricing in financial markets.
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