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ABSTRACT
Many questions of control theory are well studied for systems which satisfy to the relative degree definition. If this

definition is fulfilled then there exists linear state-space transform reducing system to a very convenient canonical form
where zero dynamics is a part of system’s equations. Algorithms of such reduction are well-known. However, there
exist systems which don’t satisfy this definition. Such systems are the subject of investigation in the presented paper. To
investigate their properties here we suggest to consider an analogue of the classical relative degree definition – the
so-called column-wise relative degree. It turned out that this definition is satisfied in some cases when classical relative
degree doesn’t exist. We introduce this notion here, investigate it properties and suggest algorithm for reducing systems
to the column-wise relative degree compliant form if possible. It is possible to show that systems with column-wise
relative degree also can be reduced to a convenient canonical form by a linear state-space transformation. Some
problems arise from the fact that some systems which do not have relative degree can be reduced to a form with it using
linear inputs or outputs transform. Here we show that this is an interesting mathematical problem, which can be solved
with the help of properties of relative degree, formulated and proved in this paper.
Keywords: Control Theory; Linear Dynamical Systems; Relative Degree; Zero Dynamics; Canonical Forms

1. Introduction
The notion of zero dynamics (i.e. the dynamics of

the system with respect to zero output) plays an
important role in control theory. To analyze zero
dynamics (i.e. find its specter, dimension and so on) the
notion of system's relative degree is usually used. For
linear time-invariant SISO-systems the above problems
are solved completely. However, for the vector (MIMO)
systems there exist unsolved problems (even for linear
MIMO systems).

In the present paper the following discrete-time
linear time-invariant system is considered:
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where state-space vector
ntx R , input and output

ltt yu R, , (i.e. the system is “square”), BA, and
C – are constant matrices of appropriate sizes.

Let us recall the classical notion of relative degree
(RD).

Definition 1. A vector ),,(= 1 lrrr  - is called the
relative degree vector for system (1) if the following

conditions are satisfied:
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Here iC denotes i-th row of matrix C , that's
why whenever the conditions of Definition 1 are satisfied
for vector r, we call such a vector “row-wise” relative
degree. Whenever the conditions of Definition 1 are
satisfied, there exists a nonsingular coordinate change
such that the transformed system has the following form:
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— denotes new system's phase vector. Note that the
following part of phase vector

Tti

ir
titi yyy ))~(,,)~((=)~( 1 

is system's output
iy at

time 1,1,,  irttt  . Whenever 0ty for all
*tt  , the condition 0~ ty holds since some moment

t, and system's dynamics is described by the first

subsystem, namely, by the equation
tt xAx ~=~

11
1

.
The dimension of zero dynamics is equal to
|| rn , and it is uniquely identified by system's relative

degree vector. The system can be transformed to the form
(2) iff it has vector relative degree.

The conditions of Definition 1 can be inconsistent for
a controllable and observable system. For example, the
following system






















ttt

tt

tt

tt

tt

xxy
xy

ux
xx
ux

212

11

2
1

3

3
1

2

1
1

1

=
=

=
=
=

does not have relative degree. Indeed, vector r = 1,1
satisfies condition 1 of Definition 1, but the matrix
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=(1,1)H

is singular, so the second condition is not satisfied.
It is easy to see that Definition 1 is invariant under

nonsingular coordinate change. However, the definition

is not invariant under nonsingular output change Tyy =~ ,

where
llT R is a nonsingular matrix. Namely, in the

above example output change
ttttt yyyyy 12211 =~,=~  ,

(i.e.
tttt xyxy 2211 =~,=~
) leads to the system with output

y~ and this system has relative degree vector (1,2)=r .
Then the following questions arise: when does an

output transformation reducing the system to a form with
relative degree exist, and how to find such
transformation?

These questions are crucial part of the solution of
some control problems -- for example, inverse problem
for linear time-invariant dynamical system. Note that in
the literature (namely, in[2, p.72-82]) examples of systems
reducible to a form with relative degree, as well as
non-reducible ones are given.

Namely, in the paper[3] it was proved that every

controllable and observable third-order system with two
inputs and two outputs can be reduced using linear
nonsingular output change to a form with relative degree.
It was also proved that in general case this condition
does not hold, i.e. there exist systems that cannot be
reduced to a form with relative degree using such output
change. Let us also give an example of latter system.
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(3)
As it was shown in paper[4], this system does not

have a classical relative degree and cannot be reduced to
a form with relative degree using nonsingular linear
output change.

Indeed, for this system
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It is easy to verify, that system (4) is observable and

controllable. But for every linear output transform
0||,22   TT R we receive:
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otherwise first row of outputs matrix C~ would be zero.

Also 023 c , otherwise rank of outputs matrix
would be incomplete. But in this case
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Thus, for the specified system it is impossible to
find linear transform reducing it to a form with RD. This
example shows that such transform doesn’t always exist.

However, to reduce system (1) to a convenient
canonical form it is possible to suggest an alternative
method, namely, to consider an analogue of RD by

changing rows of C to columns of B — the
so-called column-wise RD. We shall discuss this notion
in the presented paper.
2. Column-wise relative degree and
it’s properties

Let’s introduce column-wise RD definition.

Definition 2. Vector ),,(= 1 lrrr  - is a
vector of column-wise relative degree for system (1), if
the following conditions are fulfilled:
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where iB are columns of matrix B .
It is necessary to note, that conditions 1) and 2) of

Definition 2 may be inconsistents, and, thus, for some
systems this definition is not satisfied.
RD defined by Definition 1 may be called row-wise.

Let’s note, that if ),,(= 1 lrrr  — column-wise RD
for system (1), then this vector appears to be row-wise
RD for conjugated system
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It is an actual question whether reducibility of
system (1) to a form with row-wise RD is equivalent to
it’s reducibility to a form with column-wise RD ? The
answer for this question is negative. Let’s turn back to
the example (3-4), considered earlier. In it system is
unreducable to a form with row-wise RD, but it’s
column-wise RD exists and is described by the following
considerations:
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In case of reducibility of system (1) to a form with
column-wise RD, system (1) itself can be reduced to a
form with zero dynamics by some nondegenerate linear
state-space transform ([4]):
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where
iH — i -th column of matrix H , ij —

denotes Kronecker delta.
Let us consider properties of column-wise RD. First,

let us introduce a notion of incomplete (column-wise)
relative degree (IRD).

Definition 3. A vector � = �1,…,�� is the
incomplete relative degree (IRD) vector if the first
condition of Definition 1 is satisfied.
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Let us formulate and prove some properties of
relative degree (in what follows we consider
column-wise relative degree). The first property is an
invariance of RD definition's second condition under
nonsingular output change that does not change system's
IRD vector. Therefore, we can consider IRDs with the
same set of components, but possibly different order of
these components, equivalent, because any order can be
achieved by permutation of columns of matrix � , i.e.
permutation of outputs. Namely, whenever a
nonslingular linear output transformation does not
change IRD vector's set of components (i.e. it changes
only the order of components), the second condition of
Definition 1 is satisfied or not satisfied for both initial
and transformed system simultaneously. The change of
IRD vector's components order is acceptable, because it
can be corrected by permutation of input matrix's
columns, which does not change the absolute value of
matrix's � (taken from the second condition of
Definition 1) determinant.

Statement 1. Suppose input change TBB =~

( 0)(det,   TT llR ) does not change the set of
components of system's IRD vector (i.e. there exists a
permutation of transformed system's IRD vector
components such that after the permutation this vector
coincides with the initial system's IRD). Then
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columns we can sort IRD components descending
without change of Definition 1 second condition. That's
why without loss of generality we can assume that initial
system and transformed system IRD vectors components
are sorted descending:
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values � � are the same for every component in the
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upper triangular form:
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As it was shown above, columns � are split into
groups, and therefore matrix � has the form:
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Let us show that
0=qiT for iq > . We fix an �

and consider several cases where � is from � to � + 1
(suppose that � < �, and therefore � � > � � ).

Case kq = . We multiply equation (5) by
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Since by assumption initial system has relative degree,
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Therefore we get 0=kiT .
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Since the initial system has relative degree, columns
1)(11)(  kkr BCA are linearly independent. Therefore

we get
0=1)( ikT  . If we continue the procedure for
1,2,=  ikq  , we get
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iq > .
Let us show that
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TBBT =~: has been performed, which doesn’t
change the IRD vector. Let us show that
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Thus it has been proved, that if the first condition of
RD definition is fulfiled in different basises for the same
IRD vector, then the second condition of RD definition is
hold or not hold simultaneously in these basises. So
certain vector defines a family of basises, where system
has RD.

Lets prove one more statement about the properties
of IRD and RD. Suppose, there exists basis of inputs

manifold, where matrix B has the form
*B , and both

conditions of RD are satisfied for vector
*r . Suppose

that in some other basis  RD definition is not
satisfied. Let’s investigate possibility of linear transition

from basis  to basis  by increasing some certain
component of IRD vector. Without losing generality of
argumentation, let’s consider, that in all basises columns
of inputs matrix are ordered nondecreasingly by the
corresponding IRD components (this always can be
achived by renumbering inputs and swapping columns of
matrix). Result of this investigation plays significant role
for constructing step-by-step algorithms for transition
from arbitrary basis to a basis where RD definition is
satisfied. This result is formulated in the following
assertion.
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, to a value, greater or equal than

*
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Proof. Without loosing generality of argument we

shall suppose that columns in matrices B and
*B

are ordered undecreasingly by values of components of
r  и

*r , correspondingly. Lets suppose that for system
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)( there doesn’t exist transformation to some system
)(  , which satisfies the conditions of satement. Lets

consider as a mentioned index
*i the maximum of

possible values in the conditions of statement, i.e. such,

that ii rr )(=* 
for

*> ii . Suppose there doesn’t exist
elementary transform of columns of matrice B , which
increases some component of IRD with index not greater

than
*i , up to the value

*
*i
r

or greater. By a condition

of statement matrices T and T
~

are square transform
matrices and are nondegenerate. Lets consider the

equality TTBB 1* )~(=  . For column i of this matrix

equality it is fulfilled ii TBB =*
, where iT - i -th

column of matrix TTT 1)~(= 
. Multiplication of

column iT by matrix B is equivalent to taking linear
combination of it’s columns with coefficients, equal to

elements of column iT , which can not be all zeros
simultaneously because of nondegenerate matrix T .
This linear combination may be represented by a
sequence of elementary transformations of column

jB )( 
, if

0ijT . If matrix T is nondegenerate, than

among it’s elemnents
**,, ijiiTij 

we can find at
least one nonzero. Lets suppose that this element is

00 ji
T

. There is correct equality 0

*

0
= jj TBB 

, which
can be applied for nondegenerate transform of the

column of matrix B with index 0i in order to obtain

the coumn
*

0j
B

. Thus in matrix B by means of

nondegenerate transform the column with index 0i

may be reduced to a form of the column 0j of matrix
*B , keeping

*
0

*
0 , ijii  , which provides the

increasment of 0i -th component of IRD (as is
demanded by the satement) thus making possible the

transition from system )( to system )(  . That
obtained contradiction finishes the proof of the statement.
Moreover, the proof containes the way to know which
certain component of IRD vector can be increased.

Notice 1. Lets note, that condition
*)( ii rr 

in
the conditions of statement 2 doesn’t limit the generality
and is the natural correspondance between the ordered
vectors od IRD and RD. It’s easy to verify, since
increassement of IRD component by means of linear
transform is possible only when matrix H is

degenerate.
Notice 2. Although it is not mentioned in the

statement formulation, the proof is given without loosing
generality for systems with ordered IRD vectors. Lets
note that after transform procedure described in
statement 2 initial system with ordered IRD vector
may be reduced to a system with unordered IRD vector.
In this case before repeatedly applying this statement the
received system must be reordered by IRD components.

In particular, if system with IRD (1,1,2) is

reduced to a system with RD (1,3,2) one need to
understand that this reduction is equivalent to a

transform to a system with RD (1,2,3) from the point
of ability to achieve such RD. Here is an example of
such system:







































kk

kk

kk

kk

kk

kk

kk

kkk

kkk

xy
xy
xy

xx
ux
xx
xx
uxx
uux

63

42

11

5
1

6

3
1

5

3
1

4

2
1

3

21
1

2

21
1

1

=
=
=

;

=
=
=
=

=
=

0.=
100
000
011

|=(1,1,2)|
2=1]0[0=;0]0[0=

1=0]0[1=
1=0]0[1=

333

22

11

H
rCABCB

rCB
rCB

TT

T

T







IRD of this system is
(1,1,2)=r . System

doesn’t have RD but can be reduced to it by a transform
ttttttt uuuuuuu 3322211 =~,=~,=~  . As a result of such

transform the second column of matrix B will be
changed. For the transformed system we receive:

0|(1,3,2)|;0]1[0=~;0]0[0=~;0]0[0=~
2

2
22 HBCABCABC TTT

This system has RD (1,3,2)=r . Renumbering of
inputs allows to obtain ordered new RD vector:

(1,2,3)=r .
The proved statement guarantees the existance of

the sequence of column-wise elementary transforms,
which reduces system with IRD to a form with RD if it
exists.

In the development of step-by-step iterative
algorithms it is an actual quesation to find the moment
for stopping iterations. If we suppose that some
algorithm is looking for basis of inputs in which system
would satisfy the definition of relative degree using on
each step increasement of some IRD component, it is
necessary to have a condition, which guarantees that it is
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useless to continue the process of increasing IRD
components. The answer to this question is given by the
following statement concerning the maximum possible
value of the RD vector compoment.

Statement 3. If for some system with order n
RD definition is satisfied then all components of the RD
vector are not greater than n .

Proof. Lets prove from the opposite. Suppose that
some component of the RD vector is greater than n . In
this case for some column of inputs matrix it is fulfilled

0=,0,=0,=0,= 12
j

n
jjj BCABCACABCB 

.
Applying Hamilton-Cayley theorem we can represent

matrix
nA as a linear form of the previous degrees of

matrix A , i.e. of the matrices
12 ,,,, nAAAI  . In

this case,

0==)(= 1
1

2
210

1
1

2
210 j

n
njjjj

n
nj

n BCABCACABCBBAAAICBCA 



   

. Taking into consideration, that in similar way senior
degrees (which are greater than n ) of matrix A alse
are represented using minor degrees, we obtain that

equality
0=j

kBCA
is valid for all k , and this leads

to the invalidation of the first condition of the RD
definition in this case. The received contradiction proves
the statement.
3. Conclusion

On the basis of the proved properties of the RD we
can suggest the following algorithm of the reduction of
MIMO-system to a form with a relative degree by a
nondegenerate linear transform of inputs. If for
current basis RD definition is not satisfied, we will pass
from one basis of matrix B to another as stated in
Statement 2 trying to increase some IRD component.
Lets consider all possible variants of such increasement
in order to reach all vertexes of the graph, which

correspond to all possible vectors of l components

from ,1)(1,1, to ),,,( nnn  . We
start bypassing graph from the vertex with current IRD
vector and move in the directions of increasement of IRD
components. Edges of the graph connect its neighbouring
vertexes (i.e. vertexes corresponding to vectors which
differes in one component by a minimum possible whole
number which allows transition between them via
nondegenerate transform of inputs). According to
Statement 1 when we reach vertex corresponding to the
real RD vector, in the current basis both conditions of the
RD definition are satisfied. In this case the success of the
algorith is detected by verifying the second condition of
RD definition in the current vertex. According to
Statement 2 the path to such vertex (if the vertex exists)
is available and can be found by search of all possible
paths. According to Statement 3 we can stop search when

the vertex with RD does not exist. This can be detected
after complete search of all possible paths and verifying
the second condition of the RD definition in all of the
vertexes. The number of vertexes necessary to verify is

limited by a value of )1)!(!/(1)!(  nlln .
Algorithm allows parallel computing on supercomputers
and GPU systems.
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