Fuzzy Soft LA-(m,n)-Γ-ideals in LA-Γ-semigroups

Canan Akın
Department of Mathematics, Giresun University, 28100, Giresun, Turkey

ABSTRACT

In this paper, we introduce some certain fuzzy soft algebraic notions of generalized concepts in LA-Γ-semigroups and study some properties of their families.

Keywords: (Fuzzy) Soft Sets; LA-Γ-semigroup; (Fuzzy) LA-(m,n)-Γ-ideals

1. Introduction

In[23], Zadeh introduced the notion of fuzzy subset. The notion of a fuzzy ideal in Γ -ring was first introduced by Jun and Lee[10]. The concept of an LA-semigroup (also known as AG-groupoids) was defined by Kazim and Naseeruddin[12]. The notion of Γ-semigroup was introduced by Sen[19,20].

Shah and Rehman[22], introduced the notion of LA-Γ-semigroup (Γ -AG-groupoid) and discussed some properties of Γ-ideals and Γ-bi-ideals in Γ-AG-groupoids. Moreover in[23], they defined fuzzy Γ -ideals in a Γ -AG-groupoid and studied some of its properties. Abbasi and Basar[1], introduced the notion of (m,n) - Γ -ideal of an LA-Γ -semigroup. In[3], Akın investigated generalizations of some concepts in LA-Γ-semigroup.

Fuzzy soft sets which has drawn a steadily increasing attention of the researchers and has led to remarkable development in some research areas also has been a very dynamic area for the algebraists. In this paper, we study some certain concepts of the fuzzy soft sets in LA-(m,n)-Γ-semigroups.

2. Preliminaries

In this section we recall certain definitions and results in the notion of LA-Γ-semigroups from the references[1,3,13,14,22,23,25] and we also recall certain definitions in the concept of (fuzzy) soft sets from the references[2,4,9,11,15-18,24].

2.1 LA-Γ-semigroups

Let S and Γ be nonempty sets. We call S to be an LA-Γ-semigroup if there exists a mapping S×Γ×S→S, written as (a,γ,b) and denoted by ab such that S satisfies the identity (ab)c=a(bc) for all a,b,c∈S and γ,α∈Γ. If S is an LA-Γ-semigroup and A,B⊆S, then we denote AB={a+b|a∈A,b∈B and γ ∈ Γ}. For a positif integer m, the power of B is defined as follows: B^m=...((BΓB)...ΓB.

Example 2.1

(i) (22), Example 2) Let Γ = {1,2,3} . Define a mapping Z×Γ×Z→Z by ab = b−γ−a for all a,b∈Z and γ ∈ Γ , where “−” is a usual subtraction of integers. Then Z is a LA-Γ-semigroup.

(ii) Let S = (0, + ∞) = Γ . Define a mapping S×Γ×S→S by ab = bγ for all a,b∈S and γ ∈ Γ. Then S is a LA-Γ-semigroup.

(iii) Let S = M_n(ℝ) = Γ . Define a mapping S×Γ×S→S by AB = AT + γ + B for all A,B∈S and γ ∈ Γ. Then S is a LA-Γ-semigroup.

Definition 2.2 Let S be an LA-Γ-semigroup.

(i) An element e of S is called left (right) identity if ea = a(ay = a) for all a ∈ S and γ ∈ Γ.

(ii) S is called a band if its all elements are idempotent, i.e., aγa = a for all a ∈ S and γ ∈ Γ.

(iii) S is called a locally associative LA-Γ-semigroup if (aγa)α = aγ(αa) for all a ∈ S and γ,α ∈ Γ.
Example 2.3 (\cite{21}, Example 2.8.) Let S be a locally associative AG-groupoid (LA-semigroup) defined by the following Cayley table.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Let for all $a,b \in S$ and $\alpha \in \Gamma$, define a mapping $S \times \Gamma \times S \rightarrow S$ by $\alpha \cdot b = a \cdot b$. Then S is a locally associative LA-Γ-semigroup.

Lemma 2.4 (\cite{14}, Proposition 60) Let S be a locally associative LA-Γ-semigroup and m be a positif integer. Then $a^{m}\Gamma b^{m} = (a^{m} \Gamma b)^{m}$ for all $a,b \in S$.

Proposition 2.5 Let S be an LA-Γ-semigroup.

(i) The left (right) identity in an LA-Γ-semigroup is unique if it exists.

(ii) If S contains a right identity, then it becomes a commutative Γ-semigroup.

(iii) Every LA-Γ-semigroup with left identity satisfy the equalities $\gamma (a \cdot b) = b \cdot (a \cdot c)$ and $(\gamma a)(c \cdot b) = (dyc) (a \cdot (b\beta))$ for all $a,b,c,d \in S$ and $\gamma,\alpha,\beta \in \Gamma$.

(iv) S is Γ-medial, i.e., $(\alpha \cdot b) \cdot (\gamma \cdot c) = (\alpha \cdot c) \cdot (\beta \cdot d)$ for all $a,b,c \in S$ and $\gamma,\alpha,\beta \in \Gamma$ in S.

Definition 2.6 Let S be an LA-Γ-semigroup.

(i) A nonempty subset A of S is called a LA-Γ-subsemigroup of S if $a \cdot b \in A$ for all $a,b \in A$ and $\gamma \in \Gamma$.

(ii) A nonempty subset A of S is called a left (right) Γ-ideal of S if $\gamma A \subseteq A$ (\Gamma A \subseteq A). A nonempty subset A of S is called a Γ-ideal of S if it is both a left and a right Γ-ideal of S.

(iii) A nonempty subset A of S is called a generalized Γ-bi-ideal of S if $(\Gamma A) \Gamma A \subseteq A$.

(iv) An LA-Γ-subsemigroup A of S is called a Γ-bi-ideal of S if $(\Gamma A) \Gamma A \subseteq A$.

(v) A nonempty subset A of S is called a Γ-interior ideal of S if $(\Gamma A) \Gamma S \subseteq A$.

Lemma 2.7 (\cite{22,23}) Let S be an LA-Γ-semigroup. If S is an LA-Γ-semigroup with left identity e, then every right Γ-ideal of S is a left Γ-ideal of S.

2.2 Fuzzy subsets of LA-Γ-semigroups

A function f from a nonempty set S to the unit interval $[0,1]$ is called a fuzzy subset of S. Let f,g be fuzzy subsets of S, then $f \subseteq g$ means that $f(a) \leq g(b)$ for all $a,b \in S$. For $t \in [0,1]$, the set $f_{t} = \{a \in S | f(a) \geq t \}$ is called a level set of f. Let A be a subset of S, then χ_{A} is the characteristic function of A defined as, for all $x \in S$,

$$\chi_{A}(x) = \begin{cases} 1 & , \ x \in A \\ 0 & , \ x \notin A \end{cases}$$

For all $(f_{t})_{t \in (\alpha \subseteq A) \in \mathbb{P}(S)}$ and $x \in S$,

$$(\Lambda_{\alpha \subseteq A})_{t \in (\alpha \subseteq A)}(x) = \Lambda_{\alpha \subseteq A} f_{t}(x) \text{ and } (\vee_{\alpha \subseteq A})_{t \in (\alpha \subseteq A)}(x) = \vee_{\alpha \subseteq A} f_{t}(x).$$

Let f,g be any fuzzy subsets of a LA-Γ-semigroup S and $x \in S$, then the Γ-product $f \cdot g$ is defined by

$$(f \cdot g)(x) = \begin{cases} \vee_{x \in y \gamma} f(y) \wedge g(b) & , \exists \gamma \in \Gamma \text{ such that } x = ayb \\ 0 & , \text{otherwise} \end{cases}$$

Definition 2.8 Let S be an LA-Γ-semigroup and f be a fuzzy subset of S.

(i) f is called a fuzzy LA-Γ-subsemigroup of S if $f(ab) \geq f(a) \wedge f(b)$ for all $a,b \in S$ and $\gamma \in \Gamma$.

(ii) f is called a fuzzy left (right) Γ-ideal of S if $f(ab) \geq f(b)$ ($f(ab) \geq f(a)$) for all $a,b \in S$ and $\gamma \in \Gamma$. f is called a fuzzy Γ-two-sided ideal of S if it is both a fuzzy left and fuzzy right ideal of S.

(iii) f is called a fuzzy generalized Γ-bi-ideal of S if $f((ab)c) \geq f(a) \wedge f(c)$ for all $a,b,c \in S$ and $\gamma,\alpha \in \Gamma$.

(iv) A fuzzy LA-Γ-subsemigroup f is called a fuzzy Γ-bi-ideal of S if $f((ab)c) \geq f(a) \wedge f(c)$ for all $a,b,c \in S$ and $\gamma,\alpha \in \Gamma$.

(v) f is called a fuzzy Γ-interior ideal of S if $f((ab)x) \geq f(x)$ for all $a,b,x \in S$ and $\gamma,\alpha \in \Gamma$.

Lemma 2.9 (\cite{23}) Let S be an LA-Γ-semigroup.

(i) Let $\emptyset \neq A \subseteq S$. Then A is a LA-Γ-subsemigroup of S if and only if the characteristic function χ_{A} of A is a fuzzy LA-Γ-subsemigroup of S.

(ii) Let $\emptyset \neq A \subseteq S$. Then A is a left (right) LA-Γ-ideal of S if and only if the characteristic function χ_{A} of A is a fuzzy left (right) LA-Γ-ideal of S.

(iii) A fuzzy subset f of S is fuzzy LA-Γ-subsemigroup of S if and only if the level set of f is LA-Γ-subsemigroup of S.

(iv) A fuzzy subset f of S is fuzzy left (right) LA-Γ-ideal of S if and only if the level set of f is left (right) LA-Γ-ideal of S.
2.3 (Fuzzy) LA-(m,n)-\(\Gamma\)-ideals

The following definition introduces some certain concepts of LA-(m,n)-\(\Gamma\)-semigroups.

Definition 2.10[3] Let \(S\) be LA-\(\Gamma\)-semigroup.

(i) For an element \(a \in S\) and positive integer \(m\), the power of \(a\) is defined as the set \(a^m = ((a(a\Gamma a))_n)\Gamma a\), where \(a^1 = (a)\) and \(a^2 = a^1a\) (See [14]).

(ii) A nonempty subset \(A\) of \(S\) is called an LA-(m,n)-\(\Gamma\)-subsemigroup of \(S\) if \(a^m\Gamma b^n \subseteq A\) for all \(a,b \in A\).

(iii) A nonempty subset \(A\) of \(S\) is called an LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if \((a^m\Gamma s^n)\Gamma b^n \subseteq A\) for all \(s \in S\) and \(a \in A\). A nonempty subset \(A\) of an LA-\(\Gamma\)-semigroup \(S\) is called a LA-(m,n)-\(\Gamma\)-two-sided ideal of \(S\) if it is both an LA-(m,n)-\(\Gamma\)-left and an LA-(m,n)-\(\Gamma\)-right ideal of \(S\).

(iv) A nonempty subset \(A\) of \(S\) is called a generalized LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if \((a^m\Gamma s^n)\Gamma b^n \subseteq A\) for all \(s \in S\) and \(a,b \in A\).

(v) An LA-(m,n)-\(\Gamma\)-subsemigroup \(A\) of \(S\) is called an LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if \((a^m\Gamma s^n)\Gamma b^n \subseteq A\) for all \(s \in S\) and \(a,b \in A\).

(vi) A nonempty subset \(A\) of \(S\) is called an LA-(m,n)-\(\Gamma\)-interior ideal of \(S\) if \(((s_1)^m\Gamma a)^c(s_2)^n \subseteq A\) for all \(s_1,s_2 \in S\) and \(a \in A\).

The following definition introduces some certain fuzzy concepts of LA-(m,n)-\(\Gamma\)-semigroups.

Definition 2.11[3] Let \(f\) be a fuzzy subset of \(S\).

(i) \(f\) is called a fuzzy LA-(m,n)-\(\Gamma\)-subsemigroup of \(S\) if \(f(a) \wedge f(b)\) for all \(a,b \in S\) and \(x \in a^m\Gamma b^n\).

(ii) \(f\) is called a fuzzy left (right) LA-(m,n)-\(\Gamma\)-ideal of \(S\) if \(f(a) \subseteq f(b)\) \((f(a) \supseteq f(b))\) for all \(a,b \in S\) and \(x \in a^m\Gamma b^n\).

(iii) \(f\) is called a fuzzy generalized LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if \(f(x) \geq f(a) \wedge f(c)\) for all \(a,b,c \in S\) and \(x \in (a^m\Gamma c)\Gamma b^n\).

(iv) A fuzzy LA-(m,n)-\(\Gamma\)-subsemigroup \(f\) is called a fuzzy LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if it is a fuzzy generalized LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\).

(v) \(f\) is called a fuzzy LA-(m,n)-\(\Gamma\)-interior ideal of \(S\) if \(f(x) \geq f(c)\) for all \(a,b,c \in S\) and \(x \in (a^m\Gamma c)\Gamma b^n\).

Proposition 2.12[3] Let \(S\) be an LA-\(\Gamma\)-semigroup.

(i) \(A\) is an LA-(m,n)-\(\Gamma\)-subsemigroup of \(S\) if and only if \(\chi_A\) is a fuzzy LA-(m,n)-\(\Gamma\)-subsemigroup of \(S\).

(ii) \(A\) is an left (right) LA-(m,n)-\(\Gamma\)-ideal of \(S\) if and only if \(\chi_A\) is a fuzzy left (right) LA-(m,n)-\(\Gamma\)-ideal of \(S\).

(iii) \(A\) is a generalized LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if and only if \(\chi_A\) is a fuzzy generalized LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\).

(iv) \(A\) is an LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if and only if \(\chi_A\) is a fuzzy LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\).

(v) \(A\) is an LA-(m,n)-\(\Gamma\)-interior ideal of \(S\) if and only if \(\chi_A\) is a fuzzy LA-(m,n)-\(\Gamma\)-interior ideal of \(S\).

Proposition 2.13[3] Let \(S\) be an LA-\(\Gamma\)-semigroup.

(i) \(f\) is a fuzzy LA-(m,n)-\(\Gamma\)-subsemigroup of \(S\) if and only if all of the nonempty level sets of \(f\) is an LA-(m,n)-\(\Gamma\)-subsemigroup of \(S\).

(ii) \(f\) is a fuzzy left (right) LA-(m,n)-\(\Gamma\)-ideal of \(S\) if and only if all of the nonempty level sets of \(f\) is an left (right) LA-(m,n)-\(\Gamma\)-ideal of \(S\).

(iii) \(f\) is a fuzzy generalized LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if and only if all of the nonempty level sets of \(f\) is a generalized LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\).

(iv) \(f\) is a fuzzy LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\) if and only if all of the nonempty level sets of \(f\) is an LA-(m,n)-\(\Gamma\)-bi-ideal of \(S\).

(v) \(f\) is a fuzzy LA-(m,n)-\(\Gamma\)-interior ideal of \(S\) if and only if all of the nonempty level sets of \(f\) is an LA-(m,n)-\(\Gamma\)-interior ideal of \(S\).

2.4 Soft sets

Let \(U\) be an initial universe set and \(P\) be a set of parameters. The power set of \(U\) is denoted by \(P(U)\) and \(A\) is a subset of \(P\). A pair \((f,A)\) is called a soft set over \(U\) where \(F\) is a mapping given by \(F:A \rightarrow P(U)\)[18]. The pair \((U,P)\) denotes the collection of all soft sets on \(U\) with the attributes from \(P\) and is called a soft class[15].

Definition 2.14[18] Let \((f,A)\) and \((G,B)\) be two soft sets over \(U\), \((f,A)\) is called a soft subset of \((G,B)\), denoted by \((f,A) \subseteq (G,B)\), if \((i)\ B \subseteq A\), \((ii)\ F(x) \subseteq G(x)\) for each \(x \in B\).

Definition 2.15[6,8,9,11] Let \(\{(F_i,A_i)\mid i \in \Lambda\}\) be a family of soft sets in a soft class \((U,P)\). Then

(i) The restricted intersection of the family \(\{(F_i,A_i)\mid i \in \Lambda\}\), denoted by \((\cap_{i \in \Lambda})F_i\), is the soft set \((F,A)\) defined as: \(A = \bigcap_{i \in \Lambda} A_i\), \(F(x) = \bigcap_{i \in \Lambda} F_i(x)\) \((\forall x \in A)\).

(ii) The extended intersection of the family \(\{(F_i,A_i)\mid i \in \Lambda\}\), denoted by \((\cap_{i \in \Lambda})F_i\), is the soft set \((F,A)\) defined as: \(A = \bigcup_{i \in \Lambda} A_i\), \(F(x) = \bigcup_{i \in \Lambda} F_i(x)\) \((\forall x \in A)\).
\[\bigcap_{i \in E(x)} F_i(x) \quad (\forall x \in A) \] where \(A(x) = \{ i | x \in A_i \} \).

(iii) The restricted union of the family \(\{ (f_i, E) \mid i \in A \} \), denoted by \(\bigcap_{f \in E} (f_i, E) \), is the soft set \((F, E) \) defined as: \(A = \bigcap_{i \in E} A_i \), \(F(x) = \bigcup_{i \in E(x)} F_i(x) \) (\(\forall x \in A \)).

(iv) The extended union of the family \(\{ (f_i, E) \mid i \in A \} \), denoted by \(\bigcap_{i \in E} (f_i, E) \), is the soft set \((F, E) \) defined as: \(A = \bigcup_{i \in E} A_i \), \(F(x) = \bigcup_{i \in E(x)} F_i(x) \) (\(\forall x \in A \)).

Definition 2.16 \[6,8,11,16\] Let \(\{(f_i, E) \mid i \in A \} \) be a family of soft sets in a soft class \((U, P)\). Then

(i) The \(\Lambda \)-intersection of the family \(\{ (f_i, E) \mid i \in A \} \), denoted by \(\Lambda_{i \in E} (F_i, A_i) \), is the soft set \((F, E)\) defined as: \(A = \prod_{i \in E} A_i \), \(H((x_i)_{i \in E}) = \bigcap_{i \in E} H_i(x_i) \) (\(\forall (x_i)_{i \in E} \in A \)).

(ii) The \(\vee \)-union of the family \(\{ (f_i, E) \mid i \in A \} \), denoted by \(\vee_{i \in E} (F_i, A_i) \), is the soft set \((F, E)\) defined as: \(A = \prod_{i \in E} A_i \), \(H((x_i)_{i \in E}) = \bigcup_{i \in E} H_i(x_i) \) (\(\forall (x_i)_{i \in E} \in A \)).

(iii) The product of the family \(\{ (F_i, A_i) \mid i \in A \} \), denoted by \(\prod_{i \in E} (F_i, A_i) \), is the soft set \((F, E)\) defined as: \(A = \prod_{i \in E} A_i \), \(H((x_i)_{i \in E}) = \prod_{i \in E} H_i(x_i) \) (\(\forall (x_i)_{i \in E} \in A \)).

2.5 Fuzzy soft sets

Let \(U \) be an initial universe set and \(P \) be a set of parameters. \(F(U) \) denotes the set of all fuzzy sets of \(U \). A pair \((f, E)\) is called a fuzzy soft set over \(U \), where \(f : E \rightarrow F(U) \) is a mapping\[17\]. The pair \((U, P)\) denotes the collection of all fuzzy soft sets on \(U \) as initial set with the attributes from \(P \) and is called a fuzzy soft class\[2\].

Definition 2.17 \[5\] Let \((f, E)\) be a fuzzy soft set over \(U \). For each \(\alpha \in [0, 1] \), the set \((f(E))_{\alpha} = (f_\alpha)_{E} \) is called an \(\alpha \)-level set of \((f, E)\), where \(f_\alpha(a) = f(a)_{\alpha} \) for each \(a \in E \). Obviously, \((f, E))_{\alpha} \) is a soft set over \(U \).

Definition 2.18 \[17\] Let \((f, E)\) and \((g, H)\) be two fuzzy soft sets over \(U \), \((f, E)\) is called a fuzzy soft subset of \((g, H)\), denoted by \((f, E) \subseteq (g, H)\), if

(i) \(E \subseteq H \),

(ii) for each \(a \in E \), \(f(a) \subseteq g(a) \).

Definition 2.19 \[2,16,17\] Let \(\{(f_i, E) \mid i \in A \} \) be a family of fuzzy soft sets in a fuzzy soft class \((U, P)\). Then

(i) The restricted intersection of the family \(\{(f_i, E) \mid i \in A \} \), denoted by \(\bigcap_{i \in E} (f_i, E) \), is a fuzzy soft set \((f, E)\) defined as: \(E = \bigcap_{i \in E} E_i \) and for all \(x \in E \), \(f(x) = \Lambda_{i \in E} f_i(x) \).

(ii) The extended intersection of the family \(\{(f_i, E) \mid i \in A \} \), denoted by \(\bigcap_{i \in E} (f_i, E) \), is a fuzzy soft set \((f, E)\) defined as: \(E = \bigcup_{i \in E} E_i \) and for all \(x \in E \), \(f(x) = \Lambda_{i \in E} f_i(x) \).

2.6 Fuzzy Soft Sets in \(\Gamma \)-Semigroups

Akram et. al introduce some definitions of algebraic structure of fuzzy soft sets in \(\Gamma \)-semigroups.

Definition 2.21 \[4\] Let \(S \) be a \(\Gamma \)-semigroup and \((f, E)\) be a fuzzy soft set in the fuzzy soft class \((S, P)\). Then

(i) \((f, E)\) is called a fuzzy soft \(\Gamma \)-subsemigroup of \(S \) if \(f(x) \) is a fuzzy \(\Gamma \)-subsemigroup of \(S \) for all \(x \in E \).

(ii) \((f, E)\) is called a fuzzy soft left (right) \(\Gamma \)-ideal of \(S \) if \(f(x) \) is a fuzzy left (right) \(\Gamma \)-ideal of \(S \) for all \(x \in E \).

(iii) \((f, E)\) is called a fuzzy soft \(\Gamma \)-ideal of \(S \) if \(f(x) \) is both a fuzzy left and fuzzy right \(\Gamma \)-ideal of \(S \) for all \(x \in E \).

3. Main results

In this paper, we consider an LA-\(\Gamma \)-semigroup \(S \) as the initial universe and we introduce the fuzzy soft concepts in LA-(\(m,n \))-\(\Gamma \)-semigroups.

Definition 3.1 Let \(S \) be an LA-\(\Gamma \)-semigroup and \((f, E)\) be a fuzzy soft set in the fuzzy soft class \((S, P)\). Then

(i) \((f, E)\) is called a fuzzy soft \(\Lambda \)-subsemigroup of \(S \) if \(f(x) \) is a fuzzy...
LA-(m,n)-Γ-subsemigroup of S for all x ∈ E.

(ii) (f,E) is called a fuzzy soft left (right) LA-(m,n)-Γ-ideal of S if f(x) is a fuzzy left (right) LA-(m,n)-Γ-ideal of S for all x ∈ E. (f,E) is called a fuzzy soft LA-(m,n)-Γ-ideal of S if f(x) is both a fuzzy left and fuzzy right LA-(m,n)-Γ-ideal of S for all x ∈ E.

(iii) (f,E) is called a fuzzy soft generalized LA-(m,n)-Γ-bi-ideal of S if f(x) is a fuzzy generalized LA-(m,n)-Γ-bi-ideal of S for all x ∈ E.

(iv) (f,E) is called a fuzzy soft LA-(m,n)-Γ-bi-ideal of S if f(x) is a fuzzy LA-(m,n)-Γ-bi-ideal of S for all x ∈ E.

(v) (f,E) is called a fuzzy soft LA-(m,n)-Γ-interior ideal of S if f(x) is a fuzzy LA-(m,n)-Γ-interior ideal of S for all x ∈ E.

Example 3.2 Let μ be a fuzzy LA-(m,n)-Γ-subsemigroup of S. Then (f,[0,1]), defined by f(x) = μxα for all α ∈ [0,1], is a fuzzy soft LA-(m,n)-Γ-subsemigroup of S.

Lemma 3.3 Let S be an LA-Γ-semigroup. Then

(i) (f,E) is a fuzzy soft LA-(m,n)-Γ-subsemigroup if and only if all of the nonempty level sets of f is an LA-(m,n)-Γ-subsemigroup,

(ii) (f,E) is a fuzzy soft left (right) LA-(m,n)-Γ-ideal if and only if all of the nonempty level sets of f is a left (right) LA-(m,n)-Γ-ideal,

(iii) (f,E) is a fuzzy soft generalized LA-(m,n)-Γ-bi-ideal if and only if all of the nonempty level sets of f is a generalized LA-(m,n)-Γ-bi-ideal,

(iv) (f,E) is a fuzzy soft LA-(m,n)-Γ-bi-ideal if and only if all of the nonempty level sets of f is an LA-(m,n)-Γ-bi-ideal,

(v) (f,E) is a fuzzy soft LA-(m,n)-Γ-interior ideal if and only if all of the nonempty level sets of f is an LA-(m,n)-Γ-interior ideal.

Proof. Straightforward from Definition 3.1 and Proposition 2.13.

Lemma 3.4 Let S be an LA-Γ-semigroup and A ⊆ E. Then

(i) If (f,E) is a fuzzy soft LA-(m,n)-Γ-subsemigroup, then (f,A) is a fuzzy soft LA-(m,n)-Γ-subsemigroup,

(ii) If (f,E) is a fuzzy soft left (right) LA-(m,n)-Γ-ideal, then (f,A) is a fuzzy soft left (right) LA-(m,n)-Γ-ideal,

(iii) If (f,E) is a fuzzy soft generalized LA-(m,n) - Γ -bi-ideal, then (f,A) is a fuzzy soft generalized LA-(m,n) - Γ -bi-ideal,

(iv) If (f,E) is a fuzzy soft LA-(m,n) - Γ -bi-ideal, then (f,A) is a fuzzy soft LA-(m,n) - Γ -bi-ideal,

(v) If (f,E) is a fuzzy soft LA-(m,n) - Γ -bi-ideal, then (f,A) is a fuzzy soft LA-(m,n) - Γ -bi-ideal.

Proof. Straightforward.

Theorem 3.5 Let \((f_i,E_i) \{i ∈ Λ \} \) be a family of fuzzy soft LA-(m,n)-Γ-subsemigroups of S. Then

(i) \(\bigcap_{i ∈ Λ} f_i(E_i) \), if \(\bigcap_{i ∈ Λ} E_i ≠ \emptyset \),

(ii) \(\bigcup_{i ∈ Λ} f_i(E_i) \),

(iv) \(Λ_{i ∈ Λ}(f_i,E_i) \),

(v) \(\prod_{i ∈ Λ}(f_i,E_i) \) are fuzzy soft LA-(m,n)-Γ-subsemigroups of S.

Proof. Let a,b ∈ S and u ∈ a\"Γ\"b".

(i) Let \(\bigcap_{i ∈ Λ}(f_i,E_i) = (f,E) \). Then E = \(\bigcap_{i ∈ Λ} E_i \) and f(x) = \(Λ_{i ∈ Λ}(f_i(x)) \) for all x ∈ E. Since f(x) = \(Λ_{i ∈ Λ}(f_i(x)) \) (u) = \(Λ_{i ∈ Λ}(f_i(x))(u) \geq Λ_{i ∈ Λ}(f_i(x)(a) ∧ f_i(x)(b)) = \(Λ_{i ∈ Λ}(f_i(x))(a) ∧ Λ_{i ∈ Λ}(f_i(x)(b)) = \(Λ_{i ∈ Λ}(f_i(x))(a) ∧ Λ_{i ∈ Λ}(f_i(x)(b)) = \), therefore \(\bigcap_{i ∈ Λ}(f_i,E_i) \) is a fuzzy soft LA-(m,n)-Γ-subsemigroup of S.

(ii) Let \(\bigcup_{i ∈ Λ}(f_i,E_i) = (f,E) \). Then E = \(\bigcup_{i ∈ Λ} E_i \) and f(x) = \(Λ_{i ∈ Λ}(f_i(x)) \) for all x ∈ E, where \(Λ(x) = \{i | x ∈ E_i \} \). Since f(x) = \(Λ_{i ∈ Λ}(f_i(x))(x) \) = \(Λ_{i ∈ Λ}(f_i(x))(a) ∧ f_i(x)(b)) = \(Λ_{i ∈ Λ}(f_i(x))(a) ∧ Λ_{i ∈ Λ}(f_i(x)(b)) = \), therefore \(\bigcup_{i ∈ Λ}(f_i,E_i) \) is a fuzzy soft LA-(m,n)-Γ-subsemigroup of S.

(iii) Let \(Λ_{i ∈ Λ}(f_i,E_i) = (f,E) \). Then E = \(\prod_{i ∈ Λ} E_i \) and f(x) = \(Λ_{i ∈ Λ}(f_i,E_i) \) for all x ∈ E. Since f(x) = \(\bigvee_{i ∈ Λ}(f_i(x)) \) (u) = \(\bigvee_{i ∈ Λ}(f_i(x))(u) \geq \bigvee_{i ∈ Λ}(f_i(x)(a) ∧ f_i(x)(b)) = \), therefore \(\bigcup_{i ∈ Λ}(f_i,E_i) \) is a fuzzy soft LA-(m,n)-Γ-subsemigroup of S.

(iv) Let \(\prod_{i ∈ Λ}(f_i,E_i) = (f,E) \). Then E = \(\prod_{i ∈ Λ} E_i \) and f(x) = \(\bigvee_{i ∈ Λ}(f_i,E_i) \). Since
Indeed, let \(\Gamma \subseteq \text{any} \) and \(\bigvee_{E = f(x)(u)} = \text{finite} \). For all \(\alpha \in \Gamma \), the family \((f,A),(g,A) \) of \(\text{fuzzy} \) \(\text{LA} \)-subsemigroups of \(S \) is finite. Let \((f_A),(g_A) \in \langle S,P \rangle \) be defined by \(f(a) = x_{BFS} \) and \(g(a) = x_{SBF} \) for all \(a \in A \). Thus \((f_A)U^g(g_A) \) is not a fuzzy soft \(\text{LA}-(1,1) \)-\(\Gamma \)-subsemigroups of \(S \) although \((f_A),(g_A) \) are fuzzy soft \(\text{LA}-(1,1) \)-\(\Gamma \)-subsemigroups of \(S \). Indeed, \((f(a)U^g(g)(x))(y) = (x_{BFS}U^x_{SBF})(x)(y) = 0 \) for any \(a \in A \). However, \((f(a)U^g(g)(x))(y) = (x_{BFS}U^x_{SBF})(x)(y) = 1 \)

Theorem 3.7 Let \(\{f_iE\mid i \in A\} \) be a family of fuzzy soft \(\text{LA}-(m,n) \)-\(\Gamma \)-subsemigroups of \(S \).

(i) Let \(U^e_{\text{IA}}(f_iE) \) is fuzzy soft \(\text{LA}-(m,n) \)-\(\Gamma \)-subsemigroups of \(S \).

(ii) Let \(V_{\text{IA}}(f_iE) = \langle f,E \rangle \) and let \(x \in E \). For all \(i \in A \), if \(f_i(x) \not\subseteq f_i(x) \) or \(f_i(x) \not\subseteq f_i(x) \), then \(V_{\text{IA}}(f_iE) \) is fuzzy soft \(\text{LA}-(m,n) \)-\(\Gamma \)-subsemigroups of \(S \).

Proof. Straightforward.

Theorem 3.8 Let \(\{f_iE\mid i \in A\} \) be a family of fuzzy soft left (right) \(\text{LA}-(m,n) \)-\(\Gamma \)-ideal of \(S \).

(i) Let \(\cap_{\text{IA}}(f_iE_i) \) if \(\cap_{\text{IA}} E_i \neq \emptyset \),

(ii) Let \(U^r_{\text{IA}}(f_iE_i) \),

(iii) Let \(U^e_{\text{IA}}(f_iE_i) \),

(iv) Let \(V_{\text{IA}}(f_iE_i) \).

(v) \(\Lambda_{\text{IA}}(f_iE_i) \),

(vi) \(V_{\text{IA}}(f_iE_i) \),

(vii) \(\prod_{\text{IA}}(f_iE_i) \) fuzzy soft left (right) \(\text{LA}-(m,n) \)-\(\Gamma \)-ideals of \(S \).

Proof. Let \(a,b \in S \) and \(u \in a^*b^* \).

(i) Let \(\cap_{\text{IA}}(f_iE_i) = \langle f,E \rangle \) and \(f(x) = \Lambda_{\text{IA}A}(f_iE_i) \) for all \(x \in E \). Since \(f(x)(u) = (\Lambda_{\text{IA}A}(f_iE_i)(u))((\Lambda_{\text{IA}A}(f_iE_i)(u)) \geq (\Lambda_{\text{IA}A}(f_iE_i)(b)) = \text{fuzzy soft} \text{ left} \text {LA}-(m,n)-\Gamma\text{-ideal of } S \text{ if } \cap_{\text{IA}} E_i \neq \emptyset \).

(ii) Let \(\cap_{\text{IA}}(f_iE_i) = \langle f,E \rangle \). Then \(E = \prod_{\text{IA}}(f_iE_i) \) is fuzzy soft left \(\text{LA}-(m,n)-\Gamma\text{-ideal of } S \).

(iii) Let \(V_{\text{IA}}(f_iE_i) \). Then \(E \subseteq V_{\text{IA}}(f_iE_i) \) and \(f(x) = \Lambda_{\text{IA}A}(f_iE_i) \) for all \(x \in E \), where \(\Lambda(x) = \{i|x \in E_i\} \). Since \(f(x)(u) = (\Lambda_{\text{IA}A}(f_iE_i)(u)) = (\Lambda_{\text{IA}A}(f_iE_i)(u) \geq (\Lambda_{\text{IA}A}(f_iE_i)(b)) = \text{fuzzy soft} \text{ left} \text {LA}-(m,n)-\Gamma\text{-ideal of } S \).

(iv) Let \(U^r_{\text{IA}}(f_iE_i) = \langle f,E \rangle \). Then \(E = \prod_{\text{IA}}(f_iE_i) \) and \(f(x) = \Lambda_{\text{IA}A}(f_iE_i) \) for all \(x \in E \). Since \(f(x)(u) = (\Lambda_{\text{IA}A}(f_iE_i)(u)) \geq (\Lambda_{\text{IA}A}(f_iE_i)(b)) = \text{fuzzy soft} \text{ left} \text {LA}-(m,n)-\Gamma\text{-ideal of } S \).

(v) \(\Lambda_{\text{IA}}(f_iE_i) \),

(vi) \(V_{\text{IA}}(f_iE_i) \),

(vii) \(\prod_{\text{IA}}(f_iE_i) \) are fuzzy soft left (right) \(\text{LA}-(m,n)-\Gamma\text{-ideal of } S \).
\[f((x_i)_{i \in \Lambda}) (u) = (\bigvee \text{finite } \lambda_{ij} f(x_i)(x_j))(u) = \bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f(x_i)(x_j))(u) = \bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f(x_j)(x_i))(u) \geq \bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f(x_i)(x_j)) \geq (\bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f(x_i)(x_j)))(b) = (\bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f(x_i)(x_j)))(b) = f((x_i)_{i \in \Lambda}) (b) \]

Therefore \(\prod_{i \in \Lambda} (f_i, E_i) \) is a fuzzy soft left \(LA-(m,n)\)-\(\Gamma \)-ideal of \(S \).

Proofs are similar for fuzzy soft right \(LA-(m,n)\)-\(\Gamma \)-ideals of \(S \).

Theorem 3.9 Let \(\{(f_i, E_i) \mid i \in \Lambda \} \) be a family of fuzzy soft generalized \(LA-(m,n)\)-\(\Gamma \)-bi-ideal \(S \). Then

(i) \(\cap_{i \in \Lambda} (f_i, E_i), \) if \(\cap_{i \in \Lambda} E_i \neq \emptyset \),

(ii) \(\cap_{i \in \Lambda} (f_i, E_i) \),

(iii) \(\lambda_{i \in \Lambda} f_i, E_i \),

(iv) \(\prod_{i \in \Lambda} (f_i, E_i) \) are fuzzy soft generalized \(LA-(m,n)\)-\(\Gamma \)-bi-ideals of \(S \).

Proof. Let \(a, b \in S \) and \(u \in (a^{m} B) \Gamma c^{n} \).

(i) Let \(\cap_{i \in \Lambda} (f_i, E_i) = (f, E) \). Then \(E = \cap_{i \in \Lambda} E_i \) and
\[f(x) = \lambda_{i \in \Lambda} f_i(x) \text{ for all } x \in E. \]
Since
\[f(x)(u) = (\lambda_{i \in \Lambda} f_i(x))(u) = \lambda_{i \in \Lambda} f_i(x)(u) \geq \lambda_{i \in \Lambda} f_i(x)(a) \wedge f_i(x)(c) = \lambda_{i \in \Lambda} f_i(x)(a) \wedge \lambda_{i \in \Lambda} f_i(x)(c) = (\lambda_{i \in \Lambda} f_i(x)(a)) \wedge (\lambda_{i \in \Lambda} f_i(x)(c)) = f(x)(a) \wedge f(x)(c) \]
therefore \(\cap_{i \in \Lambda} (f_i, E_i) \) is a fuzzy soft generalized \(LA-(m,n)\)-\(\Gamma \)-bi-ideals of \(S \).

(ii) Let \(\cap_{i \in \Lambda} (f_i, E_i) = (f, E) \). Then \(E = \cap_{i \in \Lambda} E_i \) and
\[f((x_i)_{i \in \Lambda}) (u) = (\bigvee \text{finite } \lambda_{ij} f_i(x_j))(u) = \bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f_i(x_j))(u) = \bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f_i(x_j))(u) \geq \bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f_i(x_j)) \geq (\bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f_i(x_j)))(b) = (\bigvee \text{finite } \lambda_{ij} (\lambda_{ij} f_i(x_j)))(b) = f((x_i)_{i \in \Lambda}) (b) \]

Therefore \(\prod_{i \in \Lambda} (f_i, E_i) \) is a fuzzy soft generalized \(LA-(m,n)\)-\(\Gamma \)-bi-ideals of \(S \).
Theorem 3.13 Let \((f_i, E_i)\) be a family of fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideal of \(S\). Then

(i) \(\bigcap_{i \in \Lambda} f_i E_i\) if \(\bigcap_{i \in \Lambda} E_i \neq \emptyset\),

(ii) \(\bigcap_{i \in \Lambda} f_i E_i\),

(iii) \(\bigcup_{i \in \Lambda} f_i E_i\),

(iv) \(\bigcup_{i \in \Lambda} f_i E_i\),

(v) \(\bigcap_{i \in \Lambda} f_i E_i\),

(vi) \(\bigcap_{i \in \Lambda} (f_i E_i)\),

(vii) \(\bigcap_{i \in \Lambda} (f_i E_i)\) are fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideals of \(S\).

Proof. Let \(a, b, c \in S\) and \(u \in (a^m \Gamma b)\Gamma c^n\).

(i) Let \(\bigcap_{i \in \Lambda} f_i E_i = (f E)\). Then \(E = \bigcap_{i \in \Lambda} E_i\) and \(f(x) = \bigcap_{i \in \Lambda} f_i(x)\) for all \(x \in E\). Since \(f(x)(u) = (\bigcap_{i \in \Lambda} f_i(x))(u) = \bigcap_{i \in \Lambda} f_i(x)(u) \geq \bigcap_{i \in \Lambda} f_i(x)(b) = (\bigcap_{i \in \Lambda} f_i(x))(b) = f(x)(b)\), therefore \(\bigcap_{i \in \Lambda} f_i E_i\) is a fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideal of \(S\) if \(\bigcap_{i \in \Lambda} E_i \neq \emptyset\).

(ii) Let \(\bigcap_{i \in \Lambda} f_i E_i = (f E)\). Then \(E = \bigcap_{i \in \Lambda} E_i\) and \(f(x) = \bigcap_{i \in \Lambda} f_i(x)\) for all \(x \in E\). Since \(f(x)(u) = (\bigcap_{i \in \Lambda} f_i(x))(u) = \bigcap_{i \in \Lambda} f_i(x)(u) \geq \bigcap_{i \in \Lambda} f_i(x)(b) = (\bigcap_{i \in \Lambda} f_i(x))(b) = f(x)(b)\), therefore \(\bigcap_{i \in \Lambda} f_i E_i\) is a fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideal of \(S\).

(iii) Let \(\bigcap_{i \in \Lambda} f_i E_i = (f E)\). Then \(E = \bigcap_{i \in \Lambda} E_i\) and \(f(x) = \bigcap_{i \in \Lambda} f_i(x)\) for all \(x \in E\). Since \(f(x)(u) = (\bigcap_{i \in \Lambda} f_i(x))(u) = \bigcap_{i \in \Lambda} f_i(x)(u) \geq \bigcap_{i \in \Lambda} f_i(x)(b) = (\bigcap_{i \in \Lambda} f_i(x))(b) = f(x)(b)\), therefore \(\bigcap_{i \in \Lambda} f_i E_i\) is a fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideal of \(S\).

(iv) Let \(\bigcup_{i \in \Lambda} f_i E_i = (f E)\). Then \(E = \bigcup_{i \in \Lambda} E_i\) and \(f(x) = \bigcup_{i \in \Lambda} f_i(x)\) for all \(x \in E\). Since \(f(x)(u) = (\bigcup_{i \in \Lambda} f_i(x))(u) = \bigcup_{i \in \Lambda} f_i(x)(u) \geq \bigcup_{i \in \Lambda} f_i(x)(b) = (\bigcup_{i \in \Lambda} f_i(x))(b) = f(x)(b)\), therefore \(\bigcup_{i \in \Lambda} f_i E_i\) is a fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideal of \(S\).

(v) Let \(\bigcup_{i \in \Lambda} f_i E_i = (f E)\). Then \(E = \bigcup_{i \in \Lambda} E_i\) and \(f(x) = \bigcup_{i \in \Lambda} f_i(x)\) for all \(x \in E\). Since \(f(x)(u) = (\bigcup_{i \in \Lambda} f_i(x))(u) = \bigcup_{i \in \Lambda} f_i(x)(u) \geq \bigcup_{i \in \Lambda} f_i(x)(b) = (\bigcup_{i \in \Lambda} f_i(x))(b) = f(x)(b)\), therefore \(\bigcup_{i \in \Lambda} f_i E_i\) is a fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideal of \(S\).

(vi) Let \(\bigcap_{i \in \Lambda} f_i E_i = (f E)\). Then \(E = \bigcap_{i \in \Lambda} E_i\) and \(f(x) = \bigcap_{i \in \Lambda} f_i(x)\) for all \(x \in E\). Since \(f(x)(u) = (\bigcap_{i \in \Lambda} f_i(x))(u) = \bigcap_{i \in \Lambda} f_i(x)(u) \geq \bigcap_{i \in \Lambda} f_i(x)(b) = (\bigcap_{i \in \Lambda} f_i(x))(b) = f(x)(b)\), therefore \(\bigcap_{i \in \Lambda} f_i E_i\) is a fuzzy soft LA-\((m,n)\)-\(\Gamma\)-interior ideal of \(S\).

4. Conclusions

In this paper, we introduce the definitions of some certain fuzzy soft concepts in an LA-\((m,n)\)-\(\Gamma\)-semigroup and investigate some algebraic properties of fuzzy soft sets in LA-\((m,n)\)-\(\Gamma\)-semigroups. To extend this work, one could define fuzzy soft LA-\((m,n)\)-\(\Gamma\)-quasi, -prime and -semiprime ideals of an LA-\((m,n)\)-\(\Gamma\)-semigroup and examine algebraic properties of them.

Acknowledgements

The authors are very grateful to Dr. Sultan Yamak, professor at Karadeniz Technical University, and the reviewers for their valuable suggestions which have improved the presentation of this paper.

References

