Fuzzy Soft LA-(m,n)-Γ-ideals in LA-Γ-semigroups

Canan Akın

Department of Mathematics, Giresun University, 28100, Giresun, Turkey

ABSTRACT

In this paper, we introduce some certain fuzzy soft algebraic notions of generalized concepts in LA- Γ -semigroups and study some properties of their families.

Keywords: (Fuzzy) Soft Sets; LA-F-semigroup; (Fuzzy) LA-(m,n)-F-ideals

1. Introduction

In^[25], Zadeh introduced the notion of fuzzy subset. The notion of a fuzzy ideal in Γ -ring was first introduced by Jun and Lee^[10]. The concept of an LA-semigroup (also known as AG-groupoids) was defined by Kazim and Naseeruddin^[12]. The notion of Γ -semigroup was introduced by Sen^[19,20].

Shah and Rehman^[22], introduced the notion of LA- Γ -semigroup (Γ -AG-groupoid) and discussed some properties of Γ -ideals and Γ -bi-ideals in Γ -AG-groupoids. Moreover in^[23], they defined fuzzy Γ -ideals in a Γ -AG-groupoid and studied some of its properties. Abbasi and Basar^[1], introduced the notion of (m,n) - Γ -ideal of an LA- Γ -semigroup. In^[3], Akın investigated generalizations of some concepts in LA- Γ -semigroup.

Fuzzy soft sets which has drawn a steadily increasing attention of the researchers and has led to remarkable development in some research areas also has been a very dynamic area for the algebraists. In this paper, we study some certain concepts of the fuzzy soft sets in LA-(m,n)- Γ -semigroups.

2. Preliminaries

In this section we recall certain definitions and results in the notion of LA- Γ -semigroups from the references^[1,3,13,14,22,23,25] and we also recall certain definitions in the concept of (fuzzy) soft sets from the references^[2,4-9,11,15-18,24].

2.1 LA-Г-semigroups

Let S and Γ be nonempty sets. We call S to be an LA- Γ -semigroup if there exists a mapping $S \times \Gamma \times S \rightarrow S$, written as (a,γ,b) and denoted by $a\gamma b$ such that S satisfies the identity $(a\gamma b)\alpha c = (c\gamma b)\alpha a$ for all $a,b,c \in S$ and $\gamma, \alpha \in \Gamma$. If S is an LA- Γ -semigroup and A,B \subseteq S, then we denote $A\Gamma B := \{a\gamma b | a \in A, b \in B \text{ and } \gamma \in \Gamma\}$. For a positif integer m, the power of B is defined as follows: $B^m = (...((B\Gamma B)\Gamma B)...)\Gamma B$.

Example 2.1

(i) (^[22], Example 2) Let $\Gamma = \{1,2,3\}$. Define a mapping $\mathbb{Z} \times \Gamma \times \mathbb{Z} \to \mathbb{Z}$ by $a\gamma b = b - \gamma - a$ for all $a,b \in \mathbb{Z}$ and $\gamma \in \Gamma$, where "-" is a usual subtraction of integers. Then \mathbb{Z} is a LA- Γ -semigroup.

(ii) Let $S = (0, +\infty) = \Gamma$. Define a mapping $S \times \Gamma \times S \to S$ by $a\gamma b = \frac{b}{\sqrt{2}}$ for all $a, b \in S$ and $\gamma \in \Gamma$. Then S is a LA- Γ -semigroup.

(iii) Let $S = M_n(\Re) = \Gamma$. Define a mapping $S \times \Gamma \times S \to S$ by $A\gamma B = A^T + \gamma + B$ for all $A, B \in S$ and $\gamma \in \Gamma$. Then S is a LA- Γ -semigroup.

Definition 2.2 Let S be an LA-Γ-semigroup.

(i) An element e of S is called left (right) identity if $e\gamma a = a(a\gamma e = a)$ for all $a \in S$ and $\gamma \in \Gamma$.

(ii) S is called a band if its all elements are idempotent, i.e., $a\gamma a = a$ for all $a \in S$ and $\gamma \in \Gamma$

(iii) S is called a locally associative LA- Γ -semigroup if $(a\gamma a)\alpha a = a\gamma(a\alpha a)$ for all $a \in S$ and $\gamma, \alpha \in \Gamma$.

Copyright © 2020 Canan Akın

doi: 10.24294/ijmss.v1i3.902

EnPress Publisher LLC. This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). http://creativecommons.org/licenses/by-nc/4.0/

Example 2.3 (^[21], Example 2.8.) Let S be a locally associative AG-groupoid (LA-semigroup) defined by the following Cayley table.

•	а	b	С
а	С	С	b
b	b	b	b
С	b	b	b

Let for all $a,b \in S$ and $\alpha \in \Gamma$, define a mapping $S \times \Gamma \times S \rightarrow S$ by $a\alpha b = a \cdot b$. Then S is a locally associative LA- Γ -semigroup.

Lemma 2.4 (^[14], Proposition 60) Let S be a locally associative LA- Γ -semigroup and m be a positif integer. Than $a^m \Gamma b^m = (a \Gamma b)^m$ for all $a, b \in S$.

Proposition 2.5 Let S be an LA-Γ-semigroup.

(i) The left (right) identity in an LA- Γ -semigroup is unique if it exists.

(ii) If S contains a right identity, then it becomes a commutative Γ -semigroup.

(iii) Every LA- Γ -semigroup with left identity satisfy the equalities $a\gamma(b\alpha c) = b\gamma(a\alpha c)$ and $(a\gamma b)\alpha(c\beta d) = (d\gamma c)\alpha(b\beta a)$ for all a,b,c,d \in S and $\gamma,\alpha,\beta \in \Gamma$.

(iv) S is Γ -medial, i.e., $(a\alpha b)\beta(c\gamma d) = (a\alpha c)\beta(b\gamma d)$ for all $a,b,c \in S$ and $\gamma,\alpha,\beta \in \Gamma$ in S.

Definition 2.6 Let S be an LA-Γ-semigroup.

(i) A nonempty subset A of S is called a LA- Γ -subsemigroup of S if ayb \in A for all a,b \in A and $\gamma \in \Gamma$,

(ii) A nonempty subset A of S is called a left (right) Γ -ideal of S if S Γ A \subseteq A (A Γ S \subseteq A). A nonempty subset A of S is called a Γ -ideal of S if it is both a left and a right Γ -ideal of S.

(iii) A nonempty subset A of S is called a generalized Γ -bi-ideal of S if (A Γ S) Γ A \subseteq A.

(iv) An LA- Γ -subsemigroup A of S is called a Γ -bi-ideal of S if (A Γ S) Γ A \subseteq A.

(v) A nonempty subset A of S is called a Γ -interior ideal of S if $(S\Gamma A)\Gamma S \subseteq A$.

Lemma 2.7^[22,23] Let S be an LA- Γ -semigroup. If S is an LA- Γ -semigroup with left identity e, then every right Γ -ideal of S is a left Γ -ideal of S.

2.2 Fuzzy subsets of LA-Γ-semigroups

A function f from a nonempty set S to the unit interval [0,1] is called a fuzzy subset of S. Let f,g be fuzzy subsets of S, then $f \subseteq g$ means that $f(a) \leq g(b)$ for all $a,b \in S$. For $t \in [0,1]$, the set $f_t = \{a \in S | f(a) \geq t\}$ is called a level set of f. Let A be a subset of S, then χ_A is denoted the characteristic function of A defined as, for all $x \in S$,

$$\chi_{A}(x) = \begin{cases} 1 & , x \in A \\ 0 & , x \notin A. \end{cases}$$

For all $(f_{i})_{i \in \Lambda}, (g_{i})_{i \in \Lambda} \in \mathcal{F}(S)$ and $x \in S$

 $(\Lambda_{i\in\Lambda}f_i)(x) = \Lambda_{i\in\Lambda}f_i(x)$ and $(\bigvee_{i\in\Lambda}f_i)(x) = \bigvee_{i\in\Lambda}f_i(x)$. Let f,g be any fuzzy subsets of a LA- Γ -semigroup S and $x \in$ S, then the Γ -product forg is defined by

 $\begin{aligned} &(f \circ_{\Gamma} g)(x) \\ &= \left\{ \begin{array}{c} & \bigvee \limits_{x=a \gamma b} f(a) \wedge g(b) \quad , \ \exists a, b \in S \ and \ \gamma \in \Gamma \ such that \ x = a \gamma b \\ & 0 \qquad , \ otherwise. \end{array} \right. \end{aligned}$

Definition 2.8 Let S be an LA- Γ -semigroup and f be a fuzzy subset of S.

(i) f is called a fuzzy LA- Γ -subsemigroup of S if $f(a\gamma b) \ge f(a) \land f(b)$ for all $a, b \in S$ and $\gamma \in \Gamma$.

(ii) f is called a fuzzy left (right) Γ -ideal of S if $f(a\gamma b) \ge f(b)$ ($f(a\gamma b) \ge f(a)$) for all $a, b \in S$ and $\gamma \in \Gamma$. f is called a fuzzy Γ -two-sided ideal S if it is both a fuzzy left and fuzzy right ideal of S.

(iii) f is called a fuzzy generalized Γ -bi-ideal of S if $f((a\gamma b)\alpha c) \ge f(a) \land f(c)$ for all $a,b,c \in S$ and $\gamma,\alpha \in \Gamma$.

(iv) A fuzzy LA- Γ -subsemigroup f is called a fuzzy Γ -bi-ideal of S if $f((a\gamma b)\alpha c) \ge f(a) \land f(c)$ for all $a,b,c \in S$ and $\gamma,\alpha \in \Gamma$.

(v) f is called a fuzzy Γ -interior ideal of S if $f((a\gamma x)\alpha b) \ge f(x)$ for all $a,b,x \in S$ and $\gamma,\alpha \in \Gamma$.

Lemma 2.9[23] Let S be an LA-Γ-semigroup.

(i) Let $\emptyset \neq A \subseteq S$. Then A is a LA- Γ -subsemigroup of S if and only if the characteristic function χ_A of A is a fuzzy LA- Γ -subsemigroup of S.

(ii Let $\emptyset \neq A \subseteq S$. Then A is a left (right) LA- Γ -ideal of S if and only if the characteristic function χ_A of A is a fuzzy left (right) LA- Γ -ideal of S.

(iii) A fuzzy subset f of S is fuzzy LA- Γ -subsemigroup of S if and only if the level set of f is LA- Γ -subsemigroup of S.

(iv) A fuzzy subset f of S is fuzzy left (right) LA- Γ -ideal of S if and only if the level set of f is left (right) LA- Γ -ideal of S.

2.3 (Fuzzy) LA-(m,n)-Γ-ideals

The following definition introduces some certain concepts of LA-(m,n)- Γ -semigroups.

Definition 2.10^[3] Let S be LA- Γ -semigroup.

(i) For an element $a \in S$ and positive integer m, the power of a is defined as the set $a^m = (...((a\Gamma a)\Gamma a)...)\Gamma a$, where $a^1 = \{a\}$ and $a^2 = a\Gamma a$ (See[14]).

(ii) A nonempty subset A of S is called an LA- (m,n) - Γ -subsemigroup of S if $a^m \Gamma b^n \subseteq A$ for all $a,b \in A$.

(iii) A nonempty subset A of S is called an LA- $(m,n) - \Gamma$ -left (LA- $(m,n) - \Gamma$ -right) ideal of S if $s^m \Gamma a^n \subseteq A$ ($a^m \Gamma s^n \subseteq A$) for all $s \in S, a \in A$. A nonempty subset A of an LA- Γ -semigroup S is called a LA- $(m,n) - \Gamma$ -two sided ideal of S if it is both an LA-(m,n)- Γ -left and an LA-(m,n)- Γ -right ideal of S.

(iv) A nonempty subset A of S is called a generalized LA-(m,n)- Γ -bi-ideal of S if $(a^m \Gamma s)\Gamma b^n \subseteq A$ for all $s \in S, a, b \in A$.

(v) An LA-(m,n)- Γ -subsemigroup A of S is called an LA-(m,n)- Γ -bi-ideal of S if $(a^m\Gamma s)\Gamma b^n \subseteq A$ for all $s \in S, a, b \in A$.

(vi) A nonempty subset A of S is called an LA-(m,n)- Γ -interior ideal of S if $((s_1)^m\Gamma a)\Gamma(s_2)^n \subseteq A$ for all $s_1,s_2 \in S, a \in A$.

The following definition introduces some certain fuzzy concepts of LA-(m,n)- Γ -semigroups.

Definition 2.11^[3] Let f be a fuzzy subset of S.

(i) f is called a fuzzy LA-(m,n)- Γ -subsemigroup of S if f(x) \geq f(a) \land f(b) for all a,b \in S and x \in a^m Γ bⁿ.

(ii) f is called a fuzzy left (right) LA-(m,n)- Γ -ideal of S if f(x) \geq f(b) (f(x) \geq f(a)) for all a,b \in S and x \in a^m Γ bⁿ. f is called a fuzzy LA-(m,n)- Γ -two-sided ideal S if it is both a fuzzy left and fuzzy right ideal of S.

(iii) f is called a fuzzy generalized LA- $(m,n) - \Gamma$ -bi-ideal of S if $f(x) \ge f(a) \land f(c)$ for all $a,b,c \in S$ and $x \in (a^m \Gamma b) \Gamma c^n$.

(iv)A fuzzy LA- Γ -subsemigroup f is called a fuzzy LA- (m,n) - Γ -bi-ideal of S if it is a fuzzy generalized LA-(m,n)- Γ -bi-ideal of S.

(v) f is called a fuzzy LA-(m,n)- Γ -interior ideal of S if $f(x) \ge f(c)$ for all $a,b,c \in S$ and $x \in (a^m \Gamma c) \Gamma b^n$.

Proposition 2.12^[3]Let S be an LA-Γ-semigroup.

(i) A is an LA-(m,n)- Γ -subsemigroup of S if and only if χ_A is a fuzzy LA-(m,n)- Γ -subsemigroup of S.

(ii) A is an left (right) LA-(m,n)- Γ -ideal of S if and only if χ_A is a fuzzy left (right) LA-(m,n)- Γ -ideal of S.

(iii) A is a generalized LA-(m,n)- Γ -bi-ideal of S if and only if χ_A is a fuzzy generalized LA-(m,n)- Γ -bi-ideal of S.

(iv) A is an LA-(m,n)- Γ -bi-ideal of S if and only if χ_A is a fuzzy LA-(m,n)- Γ -bi-ideal of S.

(v) A is an LA-(m,n)- Γ -interior ideal of S if and only if χ_A is a fuzzy LA-(m,n)- Γ -interior ideal of S.

Proposition 2.13[3] Let S be an LA-Γ-semigroup.

(i) f is a fuzzy LA-(m,n)- Γ -subsemigroup of S if and only if all of the nonempty level sets of f is an LA-(m,n)- Γ -subsemigroup of S.

(ii) f is a fuzzy left (right) LA-(m,n)- Γ -ideal of S if and only if all of the nonempty level sets of f is an left (right) LA-(m,n)- Γ -ideal of S.

(iii) f is a fuzzy generalized LA-(m,n)- Γ -bi-ideal of S if and only if all of the nonempty level sets of f is a generalized LA-(m,n)- Γ -bi-ideal of S.

(iv) f is a fuzzy LA- (m,n) - Γ -bi-ideal of S if and only if all of the nonempty level sets of f is an LA-(m,n)- Γ -bi-ideal of S.

(v) f is a fuzzy LA-(m,n)- Γ -interior ideal of S if and only if all of the nonempty level sets of f is an LA-(m,n)- Γ -interior ideal of S.

2.4 Soft sets

Let U be an initial universe set and P be a set of parameters. The power set of U is denoted by P(U) and A is a subset of P. A pair (F,A) is called a soft set over U where F is a mapping given by $F:A \rightarrow P(U)^{[18]}$. The pair (U,P) denotes the collection of all soft sets on U with the attributes from P and is called a soft class^[15].

Definition 2.14^[18] Let (F,A) and (G,B) be two soft sets over U, (F,A) is called a soft subset of (G,B), denoted by (F,A) \subseteq (G,B), if (i) $B \subseteq A$, (ii) $F(x) \subseteq G(x)$ for each $x \in B$.

Definition 2.15^[6,8,9,11] Let $\{(F_i,A_i)|i \in \Lambda\}$ be a family of soft sets in a soft class (U,P). Then

(i) The restricted intersection of the family $\{(F_i, A_i) | i \in \Lambda\}$, denoted by $(\bigcap_r)_{i \in \Lambda}(F_i, A_i)$, is the soft set (F,A) defined as: $A = \bigcap_{i \in \Lambda} A_i$, $F(x) = \bigcap_{i \in \Lambda} F_i(x)$ $(\forall x \in A)$,

(ii) The extended intersection of the family $\{(F_i,A_i)|i \in \Lambda\}$, denoted by $(\bigcap_e)_{i \in \Lambda}(F_i,A_i)$, is the soft set (F,A) defined as: $A = \bigcup_{i \in \Lambda} A_i$, F(x) =

 $\bigcap_{i \in \Lambda(x)} \quad F_i(x) \ (\forall x \in A) \text{ where } \Lambda(x) = \{i | x \in A_i\},\$

(iii) The restricted union of the family $\{(F_i,A_i)|i \in \Lambda\}$, denoted by $(\bigcap_r)_{i\in\Lambda}(F_i,A_i)$, is the soft set (F,A) defined as: $A = \bigcap_{i\in\Lambda} A_i$, $F(x) = \bigcup_{i\in\Lambda} F_i(x)$ $(\forall x \in A)$.

(iv) The extended union of the family $\{(F_i,A_i)|i \in \Lambda\}$, denoted by $(\bigcap_e)_{i\in\Lambda}(F_i,A_i)$, is the soft set (F,A) defined as: $A = \bigcup_{i\in\Lambda} A_i$, $F(x) = \bigcup_{i\in\Lambda(x)} F_i(x)$ ($\forall x \in A$) where $\Lambda(x) = \{i | x \in A_i\}$,

Definition 2.16^[6,8,11,16] Let $\{(F_i,A_i)|i \in \Lambda\}$ be a family of soft sets in a soft class (U,P). Then

(i) The \wedge -intersection of the family $\{(F_i, A_i) | i \in \Lambda\}$, denoted by $\wedge_{i \in \Lambda}(F_i, A_i)$, is the soft set (F,A) defined as: $A = \prod_{i \in \Lambda} A_i$, $H((x_i)_{i \in \Lambda}) = \bigcap_{i \in \Lambda} F_i(x_i)$ $(\forall (x_i)_{i \in \Lambda} \in A)$,

 $\begin{array}{ll} \mbox{(ii) The } \lor \mbox{-union of the family } \{(F_i,A_i)|i\in\Lambda\} \ , \\ \mbox{denoted by } \lor_{i\in\Lambda}(F_i,A_i) \ , \ is the soft set (F,A) \ defined as: \\ A=\prod_{i\in\Lambda} A_i \ , \qquad H((x_i)_{i\in\Lambda})=\bigcup_{i\in\Lambda} F_i(x_i) \\ (\forall(x_i)_{i\in\Lambda}\in A), \end{array}$

(iii) The product of the family $\{(F_i,A_i)|i \in \Lambda\}$, denoted by $\prod_{i\in\Lambda}$ (F_i,A_i), is the soft set (F,A) defined as: $A = \prod_{i\in\Lambda} A_i$, $H((x_i)_{i\in\Lambda}) = \prod_{i\in\Lambda} F_i(x_i)$ $(\forall (x_i)_{i\in\Lambda} \in A)$.

2.5 Fuzzy soft sets

Let U be an initial universe set and P be a set of parameters. F(U) denotes the set of all fuzzy sets of U. A pair (f,E) is called a fuzzy soft set over U, where $f:E \rightarrow F(U)$ is a mapping^[17]. The pair (U,P) denotes the collection of all fuzzy soft sets on U as initial set with the attributes from P and is called a fuzzy soft class^[2].

Definition 2.17^[5] Let (f,E) be a fuzzy soft set over U. For each $\alpha \in [0,1]$, the set $(f,E)_{\alpha} = (f_{\alpha},E)$ is called an α -level set of (f,E), where $f_{\alpha}(a) = f(a)_{\alpha}$ for each $a \in E$. Obviously, $(f,E)_{\alpha}$ is a soft set over U.

Definition 2.18^[17] Let (f,E) and (g,H) be two fuzzy soft sets over U, (f,E) is called a fuzzy soft subset of (g,H), denoted by $(f,E) \cong (g,H)$, if

(i) $E \subseteq H$,

(ii) for each $a \in E$, $f(a) \subseteq g(a)$.

Definition 2.19^[2,16,17] Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft sets in a fuzzy soft class (U, P). Then

(i) The restricted intersection of the family $\{(f_i, E_i) | i \in \Lambda\}$, denoted by $\bigcap_{i \in \Lambda}^r (f_i, E_i)$, is a fuzzy soft set $(f, E), E = \bigcap_{i \in \Lambda} E_i$ and for all $x \in E$, $f(x) = \Lambda_{i \in \Lambda} f_i(x)$.

(ii) The extended intersection of the family

$$\begin{split} &\{(f_i,E_i)|i\in\Lambda\}, \text{ denoted by } \bigcap_{i\in\Lambda}^e(f_i,E_i), \text{ is a fuzzy soft set} \\ &(f,E) \ , \ E=\cup_{i\in\Lambda} \quad E_i \quad \text{ and for all } x\in E \ , \ f(x)=\\ &\Lambda_{i\in\Lambda(x)}f_i(x) \text{ where } \Lambda(x)=\{i|x\in E_i\}, \end{split}$$

(iii) The restricted union of the family $\{(f_i, E_i) | i \in \Lambda\}$, denoted by $\bigcup_{i\in\Lambda}^r (f_i, E_i)$, is a fuzzy soft set (f, E), $E = \bigcap_{i\in\Lambda} E_i$ and for all $x \in E$, $f(x) = \bigvee_{i\in\Lambda} f_i(x)$.

(iv) The extended union of the family $\{(f_i, E_i) | i \in \Lambda\}$, denoted by $\bigcup_{i \in \Lambda}^e (f_i, E_i)$, is a fuzzy soft set (f, E), $E = \bigcup_{i \in \Lambda} E_i$ and for all $x \in E$, $f(x) = \bigvee_{i \in \Lambda(x)} f_i(x)$ where $\Lambda(x) = \{i | x \in E_i\}$.

Definition 2.20^[7,17] Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft sets in a fuzzy soft class $(\overline{U,P})$. Then

(i) The fuzzy \wedge -intersection of the family $\{(f_i,E_i)|i\in\Lambda\}$, denoted by $\wedge_{i\in\Lambda}(f_i,E_i)$, is the soft set (f,E) defined as: $E = \prod_{i\in\Lambda} E_i$, $f((x_i)_{i\in\Lambda}) = \wedge_{i\in\Lambda}f_i(x_i)$ $(\forall(x_i)_{i\in\Lambda}\in E),$

(ii) The fuzzy V-union of the family $\{(f_i, E_i) | i \in \Lambda\}$, denoted by V $_{i \in \Lambda}(f_i, E_i)$, is the soft set (f, E) defined as: $E = \prod_{i \in \Lambda} E_i, f((x_i)_{i \in \Lambda}) = V_{i \in \Lambda} f_i(x_i) (\forall (x_i)_{i \in \Lambda} \in E).$

(iii) The product of the family $\{(f_i, E_i) | i \in \Lambda\}$, denoted by $\prod_{i \in \Lambda} (f_i, E_i)$, is a fuzzy soft set (f, E), $E = \prod_{i \in \Lambda} E_i$ and, $f((x_i)_{i \in \Lambda}) = \bigvee_{J \subseteq \Lambda} (\bigwedge_{j \in J} f_j(x_j))$.

2.6 Fuzzy Soft Sets in Γ-Semigroups

Akram et. al introduce some definitions of algebraic structure of fuzzy soft sets in Γ -semigroups.

Definition 2.21^[4] Let S be an Γ -semigroup and (f,E) be a fuzzy soft set in the fuzzy soft class $(\widetilde{S,P})$.

(i) (f,E) is called a fuzzy soft Γ -subsemigroup of S if f(x) is a fuzzy Γ -subsemigroup of S for all $x \in E$.

(ii) (f,E) is called a fuzzy soft left (right) Γ -ideal of S if f(x) is a fuzzy left (right) Γ -ideal of S for all $x \in E$. (f,E) is called a fuzzy soft Γ -ideal of S if f(x) is both a fuzzy left and fuzzy right Γ -ideal of S for all $x \in E$.

(iii) (f,E) is called a fuzzy soft Γ -bi-ideal of S if f(x) is a fuzzy Γ -bi-ideal of S for all $x \in E$.

(iv) (f,E) is called a fuzzy soft Γ -interior ideal of S if f(x) is a fuzzy Γ -interior ideal of S for all $x \in E$.

3. Main results

In this paper, we consider an LA- Γ -semigroup S as the initial universe and we introduce the fuzzy soft concepts in LA-(m,n)- Γ -semigroups.

Definition 3.1 Let S be an LA- Γ -semigroup and (f,E) be a fuzzy soft set in the fuzzy soft class $(\widetilde{S,P})$.

(i) (f,E) is called a fuzzy soft LA- (m,n) - Γ -subsemigroup of S if f(x) is a fuzzy

LA-(m,n)- Γ -subsemigroup of S for all $x \in E$.

(ii) (f,E) is called a fuzzy soft left (right) LA- (m,n) - Γ -ideal of S if f(x) is a fuzzy left (right) LA- (m,n) - Γ -ideal of S for all $x \in E$. (f,E) is called a fuzzy soft LA-(m,n)- Γ -ideal of S if f(x) is both a fuzzy left and fuzzy right LA-(m,n)- Γ -ideal of S for all $x \in E$.

(iii) (f,E) is called a fuzzy soft generalized LA-(m,n)- Γ -bi-ideal of S if f(x) is a fuzzy generalized LA-(m,n)- Γ -bi-ideal of S for all x \in E.

(iv) (f,E) is called a fuzzy soft LA-(m,n)- Γ -bi-ideal of S if f(x) is a fuzzy LA-(m,n)- Γ -bi-ideal of S for all $x \in E$.

(v) (f,E) is called a fuzzy soft LA-(m,n)- Γ -interior ideal of S if f(x) is a fuzzy LA-(m,n)- Γ -interior ideal of S for all $x \in E$.

Example 3.2 Let μ be a fuzzy LA- (m,n) - Γ -subsemigroup of S. Then (f,[0,1]), defined by $f(\alpha) = \chi_{\mu_{\alpha}}$ for all $\alpha \in [0,1]$, is a fuzzy soft LA-(m,n)- Γ -subsemigroup of S.

Lemma 3.3 Let S be an LA-Γ-semigroup. Then

(i) (f,E) is a fuzzy soft LA-(m,n)- Γ -subsemigroup if and only if all of the nonempty level sets of f is an LA-(m,n)- Γ -subsemigroup,

(ii) (f,E) is a fuzzy soft left (right) LA-(m,n)- Γ -ideal if and only if all of the nonempty level sets of f is a left (right) LA-(m,n)- Γ -ideal,

(iii) (f,E) is a fuzzy soft generalized LA-(m,n)- Γ -bi-ideal if and only if all of the nonempty level sets of f is a generalized LA-(m,n)- Γ -bi-ideal,

(iv) (f,E) is a fuzzy soft LA-(m,n)- Γ -bi-ideal if and only if all of the nonempty level sets of f is an LA-(m,n)- Γ -bi-ideal,

(v) (f,E) is a fuzzy soft LA-(m,n)- Γ -interior ideal if and only if all of the nonempty level sets of f is an LA-(m,n)- Γ -interior ideal.

Proof. Straightforward from Definition 3.1 and Proposition 2.13.

Lemma 3.4 Let S be an LA- Γ -semigroup and A \subseteq E. Then

(i) If (f,E) is a fuzzy soft LA-(m,n)- Γ -subsemigroup, then (f,A) is a fuzzy soft LA-(m,n)- Γ -subsemigroup,

(ii) If (f,E) is a fuzzy soft left (right) LA-(m,n)- Γ -ideal, then (f,A) is a fuzzy soft left (right) LA-(m,n)- Γ -ideal,

(iii) If (f,E) is a fuzzy soft generalized

LA- (m,n) - Γ -bi-ideal, then (f,A) is a fuzzy soft generalized LA-(m,n)- Γ -bi-ideal,

(iv) If (f,E) is a fuzzy soft LA- (m,n) - Γ -bi-ideal, then (f,A) is a fuzzy soft LA-(m,n)- Γ -bi-ideal,

(v) If (f,E) is a fuzzy soft LA-(m,n)-Γ-interior ideal, then (f,A) is a fuzzy soft LA-(m,n)-Γ-interior ideal.

Proof. Straightforward.

Theorem 3.5 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft LA-(m,n)- Γ -subsemigroups of S. Then

(i) $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i})$, if $\bigcap_{i\in\Lambda} E_{i} \neq \emptyset$,

(ii) $\bigcap_{i\in\Lambda}^{e}(f_i,E_i),$

(iv) $\Lambda_{i\in\Lambda}(f_i,E_i)$,

(v) $\prod_{i \in \Lambda} (f_i, E_i)$ are fuzzy soft LA-(m, n)- Γ -subsemigroups of S.

Proof. Let $a, b \in S$ and $u \in a^m \Gamma b^n$.

(i) Let $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i}) = (f,E)$. Then $E = \bigcap_{i\in\Lambda} E_{i}$ and $f(x) = \bigwedge_{i\in\Lambda}f_{i}(x)$ for all $x \in E$. Since $f(x)(u) = (\bigwedge_{i\in\Lambda}f_{i}(x))(u) = \bigwedge_{i\in\Lambda}(f_{i}(x)(u)) \ge \bigwedge_{i\in\Lambda}(f_{i}(x)(a) \land f_{i}(x)(b)) = \bigwedge_{i\in\Lambda}(f_{i}(x)(a)) \land \bigwedge_{i\in\Lambda}(f_{i}(x)(b)) =$

$$\begin{split} &(\wedge_{i\in\Lambda}f_i(x))(a)\wedge(\wedge_{i\in\Lambda}f_i(x))(b)=f(x)(a)\wedge f(x)(b) \quad, \\ & \text{therefore} \quad \bigcap_{i\in\Lambda}^r(f_i,E_i) \quad \text{is a fuzzy soft} \\ & \text{LA-}(m,n)\text{-}\Gamma\text{-subsemigroup of S if } \bigcap_{i\in\Lambda} \quad E_i\neq \emptyset. \end{split}$$

(ii) Let $\bigcap_{i\in\Lambda}^{e}(f_i,E_i) = (f,E)$. Then $E = \bigcup_{i\in\Lambda}$ Ei and $f(x) = \Lambda_{i \in \Lambda(x)} f_i(x)$ for all $x \in E$, where $\Lambda(x) = \{i | x \in I\}$ Since E_i $f(x)(u) = (\Lambda_{i \in \Lambda(x)} f_i(x))(u) =$ $\wedge_{i \in \Lambda(x)}(f_i(x)(u)) \geq \wedge_{i \in \Lambda(x)}(f_i(x)(a) \wedge f_i(x)(b)) =$ $\wedge_{i \in \Lambda(x)}(f_i(x)(a)) \wedge \wedge_{i \in \Lambda(x)}(f_i(x)(b)) =$ $(\Lambda_{i\in\Lambda(x)}f_i(x))(a) \wedge (\Lambda_{i\in\Lambda(x)}f_i(x))(b) = f(x)(a) \wedge f(x)(b) ,$ therefore $\bigcap_{i\in\Lambda}^{e}(f_i, E_i)$ а fuzzy is soft LA-(m,n)-Γ-subsemigroup of S.

(iii) Let $\Lambda_{i\in\Lambda}(f_i, E_i) = (f, E)$. Then $E = \prod_{i\in\Lambda} E_i$ and $f((x_i)_{i\in\Lambda}) = \Lambda_{i\in\Lambda}f_i(x_i)$ for all $x \in E$. Since $f((x_i)_{i\in\Lambda})(u) = (\Lambda_{i\in\Lambda}f_i(x_i))(u) = \Lambda_{i\in\Lambda}(f_i(x_i)(u)) \ge$ $\Lambda_{i\in\Lambda}(f_i(x_i)(a) \land f_i(x_i)(b)) = (\Lambda_{i\in\Lambda}f_i(x_i))(a) \land$ $(\Lambda_{i\in\Lambda}f_i(x_i))(b) = f((x_i)_{i\in\Lambda})(a) \land f((x_i)_{i\in\Lambda})(b)$, therefore

 $\Lambda_{i \in \Lambda}(f_i, E_i)$ is a fuzzy soft LA-(m,n)-Γ-subsemigroup of S.

(iv) Let $\prod_{i \in \Lambda} (f_i, E_i) = (f, E)$. Then $E = \prod_{i \in \Lambda} E_i$ and $f((x_i)_{i \in \Lambda}) = \bigvee_{\substack{J \subseteq \Lambda \\ \text{lisfinite}}} (\Lambda_{j \in J} f_j(x_j)).$

Since

$$\begin{split} f((x_i)_{i\in\Lambda})(u) &= (\bigvee_{\substack{J\subseteq\Lambda\\ J \text{ is finite}}} (\Lambda_{j\in J}f_j(x_j)))(u) \\ &= \bigvee_{\substack{J\subseteq\Lambda\\ J \text{ is finite}}} ((\Lambda_{j\in J}f_j(x_j))(u)) \\ &= \bigvee_{\substack{J\subseteq\Lambda\\ J\subseteq\Lambda}} (\Lambda_{j\in J}(f_i(x)(u))) \\ &\geq \bigvee_{\substack{J\subseteq\Lambda\\ J\subseteq\Lambda}} (\Lambda_{j\in J}(f_i(x)(a) \wedge f_i(x)(b))) \\ &= (\bigvee_{\substack{J\subseteq\Lambda\\ J \text{ is finite}}} (\Lambda_{j\in J}(f_i(x)(a)))) \\ &\wedge (\bigvee_{\substack{J\subseteq\Lambda\\ J \text{ is finite}}} (\Lambda_{j\in J}(f_i(x)(b)))) \\ &= (\bigvee_{\substack{J\subseteq\Lambda\\ J \text{ is finite}}} (\Lambda_{j\in J}(f_i(x))))(a) \\ &\downarrow_{\substack{J \text{ is finite}}} \\ &\wedge (\bigvee_{\substack{J\subseteq\Lambda\\ J \text{ is finite}}} (\Lambda_{j\in J}(f_i(x))))(a) \\ &\downarrow_{\substack{J \text{ is finite}}} \\ &\wedge (\bigvee_{\substack{J\subseteq\Lambda\\ J \text{ is finite}}} (\Lambda_{j\in J}(f_i(x))))(b) \\ &= f((x_i)_{i\in\Lambda})(a) \wedge f((x_i)_{i\in\Lambda})(b) \\ , \text{ therefore } \prod_{i\in\Lambda} (f_i,E_i) \text{ is a fuzzy soft} \\ LA-(m,n)-\Gamma\text{-subsemigroup of S.} \end{split}$$

Example 3.6 Let S be the LA- Γ -semigroup in Example 2.3 (i). Since $a \cdot b \neq b \cdot a$ and $(b\Gamma S)\Gamma(b\Gamma S) \subseteq$ $(b\Gamma b)\Gamma S = b\Gamma S$, $(S\Gamma b)\Gamma(S\Gamma b) \subseteq S\Gamma(b\Gamma b) = S\Gamma b$, then b Γ S and S Γ are two different LA- Γ -subsemigroups of S. By Lemma 2.9, $\chi_{h\Gamma S}$ and $\chi_{S\Gamma h}$ are fuzzy LA- Γ -subsemigroups of S. Let $(f,A), (g,A) \in (S,P)$ be defined by $f(a) = \chi_{b\Gamma S}$ and $g(a) = \chi_{S\Gamma b}$ for all $a \in A$. $(f,A) \cup^{r}(g,A)$ is Thus not a fuzzy soft LA-(1,1)- Γ -subsemigroups of S although (f,A),(g,A) are fuzzy soft LA- (1,1) - Γ -subsemigroups of S. Indeed, $(f(a)\cup^{r}g(a))(x\alpha y) = (\chi_{b\Gamma S}\cup^{r}\chi_{S\Gamma b})(x\alpha y) = 0$ for any $a \in A$, where $x = y = a\alpha b$ for any $\alpha \in \Gamma$. However $(f(a)\cup^r g(a))(x) \wedge (f(a)\cup^r g(a))(y) = 1$ since $(f(a)\cup^{r}g(a))(x) = (\chi_{b\Gamma S}\cup^{r}\chi_{S\Gamma b})(x) = 1.$

Theorem 3.7 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft LA-(m,n)- Γ -subsemigroups of S.

(i) Let $\bigcup_{i \in \Lambda}^{r}(f_{i},E_{i}) = (f,E)$ and let $x \in E$. For all $i,j \in \Lambda$, if $f_{i}(x) \subseteq f_{j}(x)$ or $f_{j}(x) \subseteq f_{i}(x)$, then $\bigcup_{i \in \Lambda}^{r}(f_{i},E_{i})$ is fuzzy soft LA-(m,n)- Γ -subsemigroups of S.

(ii) Let $\bigcup_{i\in\Lambda}^{e}(f_i,E_i) = (f,E)$ and let $x \in E$. For all $i,j \in \Lambda$, if $f_i(x) \subseteq f_j(x)$ or $f_j(x) \subseteq f_i(x)$, then $\bigcup_{i\in\Lambda}^{e}(f_i,E_i)$ is fuzzy soft LA-(m,n)- Γ -subsemigroups of S.

(iii) Let $V_{i \in \Lambda}(f_i, E_i) = (f, E)$ and let $(x_i)_{i \in \Lambda} \in E$. For all $i, j \in \Lambda$, if $f_i(x_i) \subseteq f_j(x_j)$ or $f_j(x_j) \subseteq f_i(x_i)$, then $V_{i \in \Lambda}(f_i, E_i)$ is fuzzy soft LA-(m,n)- Γ -subsemigroups of S. **Proof.** Straightforward.

Theorem 3.8 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft left (right) LA-(m, n)- Γ -ideal of S. Then

(i) $\bigcap_{i \in \Lambda}^{r} (f_i, E_i)$, if $\bigcap_{i \in \Lambda} E_i \neq \emptyset$,

- (ii) $\bigcap_{i\in\Lambda}^{e}(f_i,E_i)$,
- (iii) $\bigcup_{i\in\Lambda}^{r}(f_i,E_i)$,
- (iv) $\bigcup_{i\in\Lambda}^{e}(f_i,E_i)$,

(v) $\Lambda_{i\in\Lambda}(f_i,E_i)$,

(vi) $V_{i\in\Lambda}(f_i,E_i)$,

(vii) $\prod_{i \in \Lambda} (f_i, E_i)$ are fuzzy soft left (right) LA-(m,n)- Γ -ideals of S.

Proof. Let $a,b \in S$ and $u \in a^m \Gamma b^n$.

(i) Let $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i}) = (f,E)$. Then $E = \bigcap_{i\in\Lambda} E_{i}$ and $f(x) = \bigwedge_{i\in\Lambda}f_{i}(x)$ for all $x \in E$. Since $f(x)(u) = (\bigwedge_{i\in\Lambda}f_{i}(x))(u) = \bigwedge_{i\in\Lambda}(f_{i}(x)(u)) \ge \bigwedge_{i\in\Lambda}(f_{i}(x)(b)) = (\bigwedge_{i\in\Lambda}f_{i}(x))(b) = f(x)(b)$, therefore $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i})$ is a fuzzy

soft left LA-(m,n)- Γ -ideal of S if $\bigcap_{i \in \Lambda} E_i \neq \emptyset$.

(ii) Let $\bigcap_{i\in\Lambda}^{e}(f_i,E_i) = (f,E)$. Then $E = \bigcup_{i\in\Lambda} E_i$ and $f(x) = \Lambda_{i\in\Lambda(x)}f_i(x)$ for all $x \in E$, where $\Lambda(x) = \{i | x \in E_i\}$. $E_i\}$. Since $f(x)(u) = (\Lambda_{i\in\Lambda(x)}f_i(x))(u) = \Lambda_{i\in\Lambda(x)}(f_i(x)(u)) \ge \Lambda_{i\in\Lambda(x)}(f_i(x)(b)) =$

 $(\Lambda_{i \in \Lambda(x)} f_i(x))(b) = f(x)(b)$, therefore $\bigcap_{i \in \Lambda}^e (f_i, E_i)$ is a fuzzy soft left LA-(m,n)- Γ -ideal of S.

(iii) Let $\bigcup_{i\in\Lambda}^r(f_i,E_i) = (f,E)$. Then $E = \bigcap_{i\in\Lambda} E_i$ and $f(x) = \bigvee_{i\in\Lambda}f_i(x)$ for all $x \in E$. Since $f(x)(u) = (\bigvee_{i\in\Lambda}f_i(x))(u) = \bigvee_{i\in\Lambda}(f_i(x)(u)) \ge \bigvee_{i\in\Lambda}(f_i(x)(b)) = (\bigvee_{i\in\Lambda}f_i(x))(b) = f(x)(b)$, therefore $\bigcup_{i\in\Lambda}^r(f_i,E_i)$ is a fuzzy

soft left LA-(m,n)- Γ -ideal of S.

(iv) Let $\bigcup_{i \in \Lambda}^{e} (f_i, E_i) = (f, E)$. Then $E = \bigcup_{i \in \Lambda} E_i$ and $f(x) = \bigvee_{i \in \Lambda(x)} f_i(x)$ for all $x \in E$, where $\Lambda(x) = \{i | x \in E_i\}$. Since $f(x)(u) = (\bigvee_{i \in \Lambda(x)} f_i(x))(u) = \bigvee_{i \in \Lambda(x)} (f_i(x)(u)) \ge \bigvee_{i \in \Lambda(x)} (f_i(x)(b)) =$ $(\bigvee_{i \in \Lambda(x)} f_i(x)(b)) = f(x)(b)$, therefore $\bigcup_{i \in \Lambda(x)} (f_i(E_i))$ is a

 $(V_{i \in \Lambda(x)}f_i(x))(b) = f(x)(b)$, therefore $\bigcup_{i \in \Lambda}^e (f_i, E_i)$ is a fuzzy soft left LA-(m,n)- Γ -ideal of S.

(v) Let $\Lambda_{i\in\Lambda}(f_i,E_i) = (f,E)$. Then $E = \prod_{i\in\Lambda} E_i$ and $f((x_i)_{i\in\Lambda}) = \Lambda_{i\in\Lambda}f_i(x_i)$ for all $x \in E$. Since $f((x_i)_{i\in\Lambda})(u) = (\Lambda_{i\in\Lambda}f_i(x_i))(u) = \Lambda_{i\in\Lambda}(f_i(x_i)(u)) \ge$ $\Lambda_{i\in\Lambda}(f_i(x_i)(b)) = (\Lambda_{i\in\Lambda}f_i(x_i))(b) = f((x_i)_{i\in\Lambda})(b)$,

therefore $\Lambda_{i \in \Lambda}(f_i, E_i)$ is a fuzzy soft left LA-(m,n)- Γ -ideal of S.

 $\begin{array}{ll} (\textbf{vi}) \ \ Let \ \ \ \ V_{i\in\Lambda}(f_i,E_i)=(f,E) \ . \ \ Then \ \ E=\prod_{i\in\Lambda} \quad E_i \\ \text{and} \ \ f((x_i)_{i\in\Lambda})= \lor_{i\in\Lambda}f_i(x_i) \quad \ for \ \ all \ \ x\in E \ . \ \ Since \\ f((x_i)_{i\in\Lambda})(u)=(\lor_{i\in\Lambda}f_i(x_i))(u)=\lor_{i\in\Lambda}(f_i(x_i)(u)) \geq \\ \lor_{i\in\Lambda}(f_i(x_i)(b))=(\lor_{i\in\Lambda}f_i(x_i))(b)=f((x_i)_{i\in\Lambda})(b) \quad , \end{array}$

therefore $V_{i\in\Lambda}(f_i,E_i)$ is a fuzzy soft left LA-(m,n)- Γ -ideal of S.

 $\begin{array}{lll} (\textbf{vii}) \quad \text{Let} & \prod_{i \in \Lambda} & (f_i, E_i) = (f, E) & . & \text{Then} & E = \\ \prod_{i \in \Lambda} & E_i \ \text{and} \ f((x_i)_{i \in \Lambda}) = \lor \ _{J \subseteq \Lambda} & (\Lambda_{j \in J} f_j(x_j)). \ \text{Since} \end{array}$

$$\begin{split} f((x_i)_{i \in \Lambda})(u) &= (\vee_{J \subseteq \Lambda} (\Lambda_{j \in J} f_j(x_j)))(u) \\ \stackrel{J \mathrel{\scriptstyle is}}{=} \bigvee^{J \mathrel{\scriptstyle is}} \int^{finite}_{J \subseteq \Lambda} ((\Lambda_{j \in J} f_j(x_j))(u)) \\ &= \vee^{J \mathrel{\scriptstyle is}} \int^{finite}_{J \subseteq \Lambda} (\Lambda_{j \in J} (f_j(x_j)(u))) \\ &\geq \vee^{J \mathrel{\scriptstyle is}} \int^{finite}_{J \subseteq \Lambda} (\Lambda_{j \in J} (f_i(x)(b))) \\ &= (\bigvee^{J \mathrel{\scriptstyle is}} \int^{finite}_{J \subseteq \Lambda} (\Lambda_{j \in J} (f_i(x)(b)))) \\ &= (\vee^{J \mathrel{\scriptstyle is}} \int^{finite}_{G \land I \in J} (\Lambda_{j \in J} (f_i(x))))(b) \\ &= f(\int^{J \mathrel{\scriptstyle is}}_{X \mid i \in \Lambda} (h) \\ &= f(\int^{J \mathrel{\scriptstyle is}}_{X \mid i \in \Lambda} (h) \\ \end{split}$$

, therefore $\prod_{i \in \Lambda} (f_i, E_i)$ is a fuzzy soft left LA-(m, n)- Γ -ideal of S.

Proofs are similar for fuzzy soft right LA-(m,n)- Γ -ideals of S.

Theorem 3.9 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft generalized LA-(m, n)- Γ -bi-ideal S. Then

(i) $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i})$, if $\bigcap_{i\in\Lambda} E_{i} \neq \emptyset$,

(ii) $\bigcap_{i\in\Lambda}^{e}(f_i,E_i)$,

(iii) $\Lambda_{i\in\Lambda}(f_i,E_i)$,

(iv) $\prod_{i \in \Lambda} (f_i, E_i)$ are fuzzy soft generalized LA-(m,n)- Γ -bi-ideals of S.

Proof. Let $a,b,c \in S$ and $u \in (a^m \Gamma b) \Gamma c^n$.

(i) Let $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i}) = (f,E)$. Then $E = \bigcap_{i\in\Lambda} E_{i}$ and $f(x) = \bigwedge_{i\in\Lambda}f_{i}(x)$ for all $x \in E$. Since $f(x)(u) = (\bigwedge_{i\in\Lambda}f_{i}(x))(u) = \bigwedge_{i\in\Lambda}(f_{i}(x)(u)) \ge \bigwedge_{i\in\Lambda}(f_{i}(x)(a) \land f_{i}(x)(c)) = \bigwedge_{i\in\Lambda}(f_{i}(x)(a)) \land \bigwedge_{i\in\Lambda}(f_{i}(x)(c)) = (\bigwedge_{i\in\Lambda}f_{i}(x))(a) \land (\bigwedge_{i\in\Lambda}f_{i}(x))(c) = f(x)(a) \land f(x)(c)$,

therefore $\bigcap_{i \in \Lambda}^{r}(f_i, E_i)$ is a fuzzy soft generalized LA-(m,n)- Γ -bi-ideal of S if $\bigcap_{i \in \Lambda} E_i \neq \emptyset$.

 $\begin{array}{ll} \text{(ii) Let } & \cap_{i\in\Lambda}^{e}(f_{i},E_{i})=(f,E) \ . \ Then \ E=\cup_{i\in\Lambda} \quad E_{i} \\ \text{and } f(x)= \Lambda_{i\in\Lambda(x)}f_{i}(x) \ \text{for all } x\in E, \ \text{where } \Lambda(x)=\{i|x\in E_{i}\} \\ & . \ & \text{Since} \quad f(x)(u)=(\Lambda_{i\in\Lambda(x)}f_{i}(x))(u)=\\ \Lambda_{i\in\Lambda(x)}(f_{i}(x)(u))\geq \Lambda_{i\in\Lambda(x)}(f_{i}(x)(a)\wedge f_{i}(x)(c))=\\ & \Lambda_{i\in\Lambda(x)}(f_{i}(x)(a))\wedge \Lambda_{i\in\Lambda(x)}(f_{i}(x)(c))= \end{array}$

$$\begin{split} &(\wedge_{i\in\Lambda(x)}f_i(x))(a)\wedge(\wedge_{i\in\Lambda(x)}f_i(x))(c)=f(x)(a)\wedge f(x)(c)\ ,\\ &\text{therefore}\ \ \bigcap_{i\in\Lambda}^e(f_i,E_i)\ \ \text{is a fuzzy soft generalized}\\ &\text{LA-}(m,n)\text{-}\Gamma\text{-bi-ideal of S}. \end{split}$$

(iii) Let $\Lambda_{i\in\Lambda}(f_i,E_i) = (f,E)$. Then $E = \prod_{i\in\Lambda} E_i$ and $f((x_i)_{i\in\Lambda}) = \Lambda_{i\in\Lambda}f_i(x_i)$ for all $x \in E$. Since $f((x_i)_{i\in\Lambda})(u) = (\Lambda_{i\in\Lambda}f_i(x_i))(u) = \Lambda_{i\in\Lambda}(f_i(x_i)(u)) \ge$ $\Lambda_{i\in\Lambda}(f_i(x_i)(a) \land f_i(x_i)(c)) = (\Lambda_{i\in\Lambda}f_i(x_i))(a) \land$

$$\begin{split} (\wedge_{i\in\Lambda}f_i(x_i))(c) &= f((x_i)_{i\in\Lambda})(a) \wedge f((x_i)_{i\in\Lambda})(c) \ , \ \text{therefore} \\ \Lambda_{i\in\Lambda}(f_i,E_i) & \text{is a fuzzy soft generalized} \\ LA-(m,n)-\Gamma\text{-bi-ideal of S.} \end{split}$$

(iv) Let $\prod_{i \in \Lambda} (f_i, E_i) = (f, E)$. Then $E = \prod_{i \in \Lambda} E_i$ and $f((x_i)_{i \in \Lambda}) = \bigvee_{j \in \Lambda} (\bigwedge_{j \in J} f_j(x_j))$. Since

$$\begin{split} f((x_i)_{i \in \Lambda})(u) &= (\vee_{J \subseteq \Lambda} (\Lambda_{j \in J} f_j(x_j)))(u) \\ \stackrel{J \text{ is finite}}{=} \bigvee_{J \subseteq \Lambda} ((\Lambda_{j \in J} f_j(x_j))(u)) \\ &= \vee^{J \text{ is finite}} (\Lambda_{j \in J} (f_j(x_j)(u))) \\ \geq \vee^{J \text{ is finite}} (\Lambda_{j \in J} (f_i(x)(a) \wedge f_i(x)(c))) \\ &= (\bigvee_{J \subseteq \Lambda}^{J \text{ is finite}} (\Lambda_{j \in J} (f_i(x)(a)))) \\ \wedge (\vee^{J \text{ is finite}} (\Lambda_{j \in J} (f_i(x)(c)))) \\ &= (\bigvee_{J \subseteq \Lambda}^{J \text{ is finite}} (\Lambda_{j \in J} (f_i(x)(c)))) \\ &= (\bigvee_{J \subseteq \Lambda}^{J \text{ is finite}} (\Lambda_{j \in J} (f_i(x)))) \\ &= (\bigvee_{J \subseteq \Lambda}^{J \text{ is finite}} (\Lambda_{j \in J} (f_i(x)))) \\ &= f(\bigvee_{J \subseteq \Lambda}^{J \text{ is finite}} (\Lambda_{j \in J} (f_i(x))))(c) \\ &= f(\bigvee_{X_J \mid i \in \Lambda}^{J \text{ is finite}} (a) \wedge f((x_i)_{i \in \Lambda})(c) \end{split}$$

, therefore $\prod_{i \in \Lambda} (f_i, E_i)$ is a fuzzy soft generalized LA-(m,n)- Γ -bi-ideal of S.

Theorem 3.10 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft generalized LA-(m, n)- Γ -bi-ideal S. Then

(i) Let $\bigcup_{i \in \Lambda}^{r}(f_i, E_i) = (f, E)$ and let $x \in E$. For all $i, j \in \Lambda$, if $f_i(x) \subseteq f_j(x)$ or $f_j(x) \subseteq f_i(x)$, then $\bigcup_{i \in \Lambda}^{r}(f_i, E_i)$ is fuzzy soft generalized LA-(m, n)- Γ -bi-ideals of S.

(ii) Let $\bigcup_{i\in\Lambda}^{e}(f_i,E_i) = (f,E)$ and let $x \in E$. For all $i,j \in \Lambda$, if $f_i(x) \subseteq f_j(x)$ or $f_j(x) \subseteq f_i(x)$, then $\bigcup_{i\in\Lambda}^{e}(f_i,E_i)$ is fuzzy soft generalized LA-(m,n)- Γ -bi-ideals of S.

(iii) Let $\bigvee_{i \in \Lambda} (f_i, E_i) = (f, E)$ and let $(x_i)_{i \in \Lambda} \in E$. For all $i, j \in \Lambda$, if $f_i(x_i) \subseteq f_j(x_j)$ or $f_j(x_j) \subseteq f_i(x_i)$, then $\bigvee_{i \in \Lambda} (f_i, E_i)$ is fuzzy soft generalized LA-(m,n)- Γ -bi-ideals of S.

Proof. Straightforward.

Theorem 3.11 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft LA-(m, n)- Γ -bi-ideal of S. Then

(i)
$$\bigcap_{i \in A}^{r} (f_{i}, E_{i})$$
, if $\bigcap_{i \in A} E_{i} \neq \emptyset$,

(ii) $\bigcap_{i\in\Lambda}^{e}(f_i,E_i)$,

(iii) $\Lambda_{i\in\Lambda}(f_i,E_i)$,

(iv) $\prod_{i \in \Lambda} (f_i, E_i)$ are fuzzy soft LA-(m,n)- Γ -bi-ideals of S.

Proof. Straightforward from Theorem 3.5 and Theorem 3.9.

Theorem 3.12 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft LA-(m, n)- Γ -bi-ideal of S. Then

(i) Let $\bigcup_{i \in \Lambda}^{r} (f_i, E_i) = (f, E)$ and let $x \in E$. For all $i, j \in \Lambda$, if $f_i(x) \subseteq f_j(x)$ or $f_j(x) \subseteq f_i(x)$, then $\bigcup_{i \in \Lambda}^{r} (f_i, E_i)$ is fuzzy soft LA-(m, n)- Γ -bi-ideals of S.

(ii) Let $\bigcup_{i \in \Lambda}^{e}(f_i, E_i) = (f, E)$ and let $x \in E$. For all $i, j \in \Lambda$, if $f_i(x) \subseteq f_j(x)$ or $f_j(x) \subseteq f_i(x)$, then $\bigcup_{i \in \Lambda}^{e}(f_i, E_i)$ is fuzzy soft LA-(m, n)- Γ -bi-ideals of S.

(iii) Let $V_{i \in \Lambda}(f_i, E_i) = (f, E)$ and let $(x_i)_{i \in \Lambda} \in E$. For all $i, j \in \Lambda$, if $f_i(x_i) \subseteq f_j(x_j)$ or $f_j(x_j) \subseteq f_i(x_i)$, then $V_{i \in \Lambda}(f_i, E_i)$ is fuzzy soft LA-(m,n)- Γ -bi-ideals of S.

Proof. Straightforward.

Theorem 3.13 Let $\{(f_i, E_i) | i \in \Lambda\}$ be a family of fuzzy soft LA-(m, n)- Γ -interior ideal of S. Then

- (i) $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i})$, if $\bigcap_{i\in\Lambda} E_{i} \neq \emptyset$,
- (ii) $\bigcap_{i\in\Lambda}^{e}(f_i,E_i)$,
- (iii) $\bigcup_{i \in \Lambda}^{r} (f_i, E_i)$,
- (iv) $\bigcup_{i\in\Lambda}^{e}(f_i,E_i),$
- (v) $\Lambda_{i\in\Lambda}(f_i,E_i)$,
- (vi) $V_{i\in\Lambda}(f_i,E_i)$,

(vii) $\prod_{i \in \Lambda} (f_i, E_i)$ are fuzzy soft LA-(m,n)- Γ -interior ideals of S.

Proof. Let $a,b,c \in S$ and $u \in (a^m \Gamma b) \Gamma c^n$.

(i) Let $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i}) = (f,E)$. Then $E = \bigcap_{i\in\Lambda} E_{i}$ and $f(x) = \Lambda_{i\in\Lambda}f_{i}(x)$ for all $x \in E$. Since $f(x)(u) = (\Lambda_{i\in\Lambda}f_{i}(x))(u) = \Lambda_{i\in\Lambda}(f_{i}(x)(u)) \ge \Lambda_{i\in\Lambda}(f_{i}(x)(b)) = (\Lambda_{i\in\Lambda}f_{i}(x))(b) = f(x)(b)$, therefore $\bigcap_{i\in\Lambda}^{r}(f_{i},E_{i})$ is a fuzzy soft LA-(m,n)- Γ -interior ideal of S if $\bigcap_{i\in\Lambda} E_{i} \neq \emptyset$.

(ii) Let $\bigcap_{i\in\Lambda}^{e}(f_{i},E_{i}) = (f,E)$. Then $E = \bigcup_{i\in\Lambda} E_{i}$ and $f(x) = \bigwedge_{i\in\Lambda(x)} f_{i}(x)$ for all $x \in E$, where $\Lambda(x) = \{i | x \in E_{i}\}$. Since $f(x)(u) = (\bigwedge_{i\in\Lambda(x)} f_{i}(x))(u) = \bigwedge_{i\in\Lambda(x)} (f_{i}(x)(u)) \ge \bigwedge_{i\in\Lambda(x)} (f_{i}(x)(b)) = (\bigwedge_{i\in\Lambda(x)} f_{i}(x))(b) = f(x)(b)$, therefore $\bigcap_{i\in\Lambda(x)} (f_{i},E_{i})$ is a

 $(\Lambda_{i \in \Lambda(x)} f_i(x))(b) = f(x)(b)$, therefore $\bigcap_{i \in \Lambda}^e (f_i, E_i)$ is a fuzzy soft LA-(m,n)- Γ -interior ideal of S.

(iii) Let $\bigcup_{i\in\Lambda}^{r}(f_{i},E_{i}) = (f,E)$. Then $E = \bigcap_{i\in\Lambda} E_{i}$ and $f(x) = \bigvee_{i\in\Lambda}f_{i}(x)$ for all $x \in E$. Since $f(x)(u) = (\bigvee_{i\in\Lambda}f_{i}(x))(u) = \bigvee_{i\in\Lambda}(f_{i}(x)(u)) \ge \bigvee_{i\in\Lambda}(f_{i}(x)(b)) = (\bigvee_{i\in\Lambda}f_{i}(x))(b) = f(x)(b)$, therefore $\bigcup_{i\in\Lambda}^{r}(f_{i},E_{i})$ is a fuzzy soft LA-(m,n)- Γ -interior ideal of S.

 $\begin{array}{ll} (\textbf{iv}) \ \ Let \ \ U^e_{i\in\Lambda}(f_i,E_i)=(f,E) \ . \ \ Then \ \ E=\cup_{i\in\Lambda} \quad E_i \\ \text{and} \ f(x)= \lor_{i\in\Lambda(x)}f_i(x) \ \ for \ all \ x\in E, \ where \ \Lambda(x)=\{i|x\in E_i\} \\ . \ \ \ Since \ \ f(x)(u)=(\lor_{i\in\Lambda(x)}f_i(x))(u)= \\ \lor_{i\in\Lambda(x)}(f_i(x)(u))\geq \lor_{i\in\Lambda(x)}(f_i(x)(b))= \end{array}$

 $({\sf V}_{i\in\Lambda(x)}f_i(x))(b)=f(x)(b)\ ,\ \text{therefore}\ \ {\sf U}^e_{i\in\Lambda}(f_i,E_i)\ \ \text{is a}$ fuzzy soft LA-(m,n)- $\Gamma\text{-interior}\ \text{ideal of S}.$

(v) Let $\Lambda_{i\in\Lambda}(f_i,E_i) = (f,E)$. Then $E = \prod_{i\in\Lambda} E_i$ and $f((x_i)_{i\in\Lambda}) = \Lambda_{i\in\Lambda}f_i(x_i)$ for all $x \in E$. Since $f((x_i)_{i\in\Lambda})(u) = (\Lambda_{i\in\Lambda}f_i(x_i))(u) = \Lambda_{i\in\Lambda}(f_i(x_i)(u)) \ge$ $\Lambda_{i\in\Lambda}(f_i(x_i)(b)) = (\Lambda_{i\in\Lambda}f_i(x_i))(b) = f((x_i)_{i\in\Lambda})(b)$,

therefore $\Lambda_{i \in \Lambda}(f_i, E_i)$ is a fuzzy soft LA-(m,n)- Γ -interior ideal of S.

 $\begin{array}{ll} (\textbf{vi)} \ \ Let \ \ V_{i\in\Lambda}(f_i,E_i)=(f,E) \ . \ Then \ \ E=\prod_{i\in\Lambda} \ \ E_i \\ \text{and} \ \ f((x_i)_{i\in\Lambda})= \lor_{i\in\Lambda}f_i(x_i) \quad \text{for all} \ \ x\in E \ . \ \text{Since} \\ f((x_i)_{i\in\Lambda})(u)=(\lor_{i\in\Lambda}f_i(x_i))(u)=\lor_{i\in\Lambda}(f_i(x_i)(u))\geq \\ \lor_{i\in\Lambda}(f_i(x_i)(b))=(\lor_{i\in\Lambda}f_i(x_i))(b)=f((x_i)_{i\in\Lambda})(b) \quad , \\ \text{therefore} \ \ V_{i\in\Lambda}(f_i,E_i) \ \text{is a fuzzy soft LA-(m,n)-}\Gamma\text{-interior} \\ \end{array}$

ideal of S. (vii) Let $\prod_{i \in \Lambda} (f_i, E_i) = (f, E)$. Then $E = \prod_{i \in \Lambda} E_i$

and
$$f((x_i)_{i \in \Lambda}) = \bigvee_{\substack{J \subseteq \Lambda \\ J \text{ is finite}}} (\Lambda_{j \in J} f_j(x_j))$$
. Since,
 $f((x_i)_{i \in \Lambda})(u) = (\bigvee_{\substack{J \subseteq \Lambda \\ J \text{ is finite}}} (\Lambda_{j \in J} f_j(x_j)))(u)$
 $= \bigvee_{\substack{J \subseteq \Lambda \\ J \subseteq \Lambda \\ J \subseteq \Lambda \\ (\Lambda_{j \in J} (f_j(x_j)(u)))}} (\Lambda_{j \in J} (f_j(x_j)(u)))$
 $= \bigvee_{\substack{J \subseteq \Lambda \\ J \subseteq \Lambda \\ J \subseteq \Lambda \\ (\Lambda_{j \in J} (f_i(x)(b)))}} (\Lambda_{j \in J} (f_i(x)(b)))$
 $= (\bigvee_{\substack{J \subseteq \Lambda \\ J \subseteq \Lambda \\ J \subseteq \Lambda \\ J \subseteq \Lambda \\ (\Lambda_{j \in J} (f_i(x))))}} (h)$
 $= f((x_i)_{i \in \Lambda})(b)$
therefore $\prod_{i \in \Lambda} (f_i E_i)$ is a fuzzy soft

LA-(m,n)- Γ -interior ideal of S.

4. Conclusions

In this paper, we introduce the definitions of some certain fuzzy soft concepts in an LA-(m,n)- Γ -semigroup and investigate some algebraic properties of fuzzy soft sets in LA-(m,n)- Γ -semigroups. To extend this work, one could define fuzzy soft LA-(m,n)- Γ -quasi, -prime and -semiprime ideals of an LA-(m,n)- Γ -semigroup and examine algebraic properties of them.

Acknowledgements

The authors are very grateful to Dr. Sultan Yamak, professor at Karadeniz Technical University, and the reviewers for their valuable suggestions which have improved the presentation of this paper.

References

- Abbasi MY and Basar A. On generalizations of ideals in LA-Γ-semigroups. Southeast Asian Bulletin of Mathematics 2015; 39 : 1-12.
- Ahmad B and Kharal A. On Fuzzy Soft Sets. Advances in Fuzzy Systems 2009; Volume 2009, Article ID 586507, 6 pages, doi:10.1155/2009/586507
- Akın C. Fuzzy LA-(m,n)-Γ-ideals in LA-Γ-semigroups. Advances in Fuzzy Sets and Systems 2017; 22 : 211-223.
- Akram M, Kavikumar J and Khamis A. Fuzzy Soft Gamma Semigroups. Applied Mathematics and Information Sciences 2014; 8(2): 929-934.
- Aygünoğlu Aand Aygün H. Introduction to fuzzy soft groups. Comput. Math. Appl. 2009; 58:1279-1286.
- Çelik Y, Ekiz C and Yamak S. A new view on soft rings. Hacettepe Journal of Mathematics and Statistics 2011; 40 (2): 273-286.
- Çelik Y, Ekiz C and Yamak S. Applications of fuzzy soft sets in ring theory. Annals Fuzzy Mathematics and Informatics 2013; 3 (5): 451-462.

- 8. Feng F, Jun -YB and Zhao -X. Soft semirings. Computers and Mathematics with Applications 2008; 56 : 2621-2628.
- Irfan Ali M, Feng F, Liu X, Min WK and Shabir M. On some new operations in soft set theory. Computers and Mathematics with Applications 2009; 57: 1547-1553.
- 10. Jun YB and Lee CY. Fuzzy Γ-rings. Pusan Kyongnam Math. J. 1981; 84: 264-269.
- Kazanci O, Yilmaz Ş and Yamak S. Soft sets and soft bch-algebrass. Hacettepe Journal of Mathematics and Statistics 2010; 39 (2) : 205-217.
- 12. Kazım MA and Naseeruddin M. On almost semigroups. The Alig. Bull. Math. 1972; 2 :1-7.
- Khan M, Jun YB and Yousafzai F, Fuzzy ideals in right regular LA-semigroups. Hacettepe Journal of Mathematics and Statistics 2015; 44 (3): 569 – 586.
- Khan M, Smarandache F and Anis S. Theory of Abel Grassmann's Groupoids. Educational Publisher, Columbus, 2015.
- Kharal A and Ahmad B. Mappings on soft classes. New Mathematics and Natural Computation 2011; 7 (3): 471-481.
- 16. Maji PK, Biswas R and Roy R. Soft set theory. Computers and Mathematics with Applications 2003; 45 ; 555-562.
- 17. Maji PK, Biswas R and Roy R. Fuzzy soft sets, J. Fuzzy Math. 2001; 9 (3) ; 589-602.
- Molodtsov D. Soft set theory first results. Computers and Mathematics with Applications1999; 37: 19–31.
- Sen MK. On Γ-semigroups. Proceeding of International Symposium on Algebra and Its Applications. Decker Publication, New York, 30, 1981, 1-8.
- Sen MK and Saha NK. On Γ-semigroups I. Bull. Cal. Math. Soc. 1986;78:180-186.
- Shah T and Rehman I. Decomposition of Locally Associative Γ-AG-groupoids. Novi Sad J. Math. 2013; 4, Vol. 43, No. 1; 1-8.
- Shah T and Rehman I. On Γ-ideals and Γ-bi-ideals in Γ-AG-groupoids. International Journal of Algebra 2010; 4 (6): 267-276.
- Shah T and Rehman I and Khan A. Fuzzy Γ-ideals in Γ-AG-groupoids. Hacettepe Journal of Mathematics and Statistics 2014; 43(4): 625-634.
- 24. Yang CF. Fuzzy soft semigroups and fuzzy soft ideals. Computers and Mathematics with Applications 2011; 61 (2); 255-261.
- 25. Zadeh LA. Fuzzy Sets. Inform. and Control1965; 8 : 338-353.