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ABSTRACT
Lattice Boltzmann models for diffusion equation are generally in Cartesian coordinate system. Very few 

researchers have attempted to solve diffusion equation in spherical coordinate system. In the lattice Boltzmann based 
diffusion model in spherical coordinate system extra term, which is due to variation of surface area along radial 
direction, is modeled as source term. In this study diffusion equation in spherical coordinate system is first converted to 
diffusion equation which is similar to that in Cartesian coordinate system by using proper variable. The diffusion 
equation is then solved using standard lattice Boltzmann method. The results obtained for the new variable are again 
converted to the actual variable. The numerical scheme is verified by comparing the results of the simulation study with 
analytical solution. A good agreement between the two results is established.
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1. Introduction
Nowadays the Lattice Boltzmann (LB) method[1-3]

has emerged as a prominent numerical technique for
solving partial differential equations that model various
scientific and engineering problems[2,4]. LB method,
which was initially introduced to solve Navier Stokes
equation[5], has been successfully applied to solve flow,
heat and mass transport problems[1,6,7]. Diffusion
equation is a second order parabolic equation which is
generally appears in the field of heat and mass transport.
Diffusion equation in spherical and cylindrical
coordinate systems has important practical
applications because most of engineering problem are
associated with spherical or cylindrical geometry.
Standard LB method solves diffusion equation in
Cartesian coordinate system. To solve diffusion equation
in spherical coordinate system, researchers have modeled
the extra term that arises due to increase in surface area
along radial direction as source term in the LB
equation[8–10].

In this work, the diffusion equation in spherical
coordinate system is first converted to diffusion equation

which is similar to that in Cartesian coordinate system.
This conversion is done by making a proper substitution
of the actual variable. The diffusion equation in the new
variable is then solved using standard LB method. The
solutions of the LB equation are then converted back to
its original variable. The LB solutions are tested by
solving bench mark problems.

The paper is organized in the following way. In
Section 2, one dimensional diffusion equation in
spherical coordinate system is converted to the form
which is similar to diffusion equation in Cartesian
coordinate system. The LB diffusion model for Cartesian
coordinate system is described in Section 3. The LB
scheme is verified and tested by solving benchmark
problem in Section 4. Finally, conclusions are drawn in
Section 5.

2. Diffusion Equation in Spherical
Coordinate System

The diffusion equation in spherical coordinate
system for a uniform and isotropic material is written as
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where y is the diffusive variable (it may be temperature,
solute concentration etc.), k is called diffusion coefficient,
(r, θ, ϕ) is a point in spherical coordinate. One
dimension form of Eq. (2.1) in radial direction can be
written as
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The second term of the right hand side of the above
equation is due to increase in surface area along radial
direction. Because of this term standard LB method
cannot be used to solve the Eq. (2.2). In the rest of this
Section, Eq. (2.2) is modified to the form of diffusion
equation which is similar to that in Cartesian coordinate
system by substituting the actual diffusive variable (y) by
a new variable of the form

u r,t = ry r,t (2.3)
The derivatives terms in the above equation can also

written in term of the new variable as

∂y(r,t)
∂t

=
1
r
∂u(r,t)
∂t (2.4)

∂y(r,t)
∂r

=
1
r
∂u(r,t)
∂r −

u(r,t)
r2

(2.5)

∂2y(r,t)
∂r2

=
1
r
∂2u(r,t)
∂r2

−
2
r2
∂u r,t
∂r

+
2u r,t
r3

(2.6)

Using the above equations Eq. (2.1) can be written
as

1
r
∂u(r,t)
∂t

=
k
r
∂2u(r,t)
∂r2

−
2k
r2
∂u(r,t)
∂r

+
2ku(r,t)
r3

+
2k
r2
∂u(r,t)
∂r −

2ku(r,t)
r3

(2.7)

Since the last 4 terms of the above equation cancel
out each other, we get the modified equation as
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The above equation is similar to diffusion equation
in Cartesian coordinate system and therefore can

easily be solved using standard LB diffusion model. The
LB solution of Eq. (2.8) is in terms of u(r,t) , which
can be written in terms of y(r,t) using Eq. (2.3).

3. Lattice Boltzmann Diffusion
Model

LB equation which governs the evolution of particle
distribution function is a discrete velocity Boltzmann
equation. The discrete velocity Boltzmann equation is
solved in a uniform domain of lattice nodes. The LB
equation with Bhatnagar-Gross-Crook (BGK) collision
operator can be written as
fi r��+ ei��� ∆t, t + ∆t = fi r��, t + Ωi

BGK r��, t 3.1

Ωi
BGK r��, t =

1
τ
fi
eq r��, t − fi r��, t 3.2

where fi r��, t is particle distribution function at
spatiotemporal coordinate ( r��, t ) along ith direction, ei���
represents particle velocity along ith direction, Ωi

BGK r��, t
is BGK collision operator along ith direction at same
spatiotemporal coordinate, ∆t is time step, τ is relaxation
coefficient, and fi

eq r��, t is particle equilibrium
distribution function (EDF) along ith direction. The EDF
for diffusion process is written as

fi
eq r��, t = wiC r��, t (3.3)

where wi are the weights for particle’s distribution
function along ith direction. For 1-D most commonly
used lattices are D1Q2, D1Q3, for 2-D most commonly
used lattices are D2Q4, D2Q5 and for 3-D, D3Q15,
D3Q19 etc. Here for DnQm lattice n represent the
dimension of the problem and m represent the number of
discrete velocity vectors. Schematic of D1Q3 and D2Q5
lattices are shown in Figure (3.1) and (3.2), respectively.
The values of wi for a D1Q3 lattice are 4/6 for i=0 and
1/6 for i=1 and 2.

Figure 3.1; D1Q3 Lattice.

Figure 3.2; D2Q5 Lattice.

2

3 0 1



3

The EDF defined in Eq. (3.3) follows following
constraints.

i

fi
eq r��, t� = C r��, t (3.4)

i

eijfi
eq r��, t� = 0 (3.5)

i

eijeikfi
eq r��, t� = es2 τ −

1
2
δjk (3.6)

where es is called pseudo sound speed[3]. Particle
velocity directions are connected to the neighboring
lattice points such that there is a free streaming
in between two lattice points. Velocity components for
D1Q3 and D2Q5 lattices are as given in Eq. (3.7) and
(3.8), respectively.
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(3.8)

During the recovery of macroscopic diffusion
equation (2.8) from LB equation (3.1 and 3.2) using
Chapmann-Enskog multiscale expansion technique,
following relationship between lattice diffusion
coefficient and relaxation parameter (τ) is established[8]

� = 2ࡩ� � − ∆�
2

(3.9)

Macroscopic particle density is calculated by
summing over distribution functions as

� ���, � = � �� ���, �� 3.10

The LB equation (3.1 and 3.2) can be solved
numerically by LB algorithm which consists of following
two processes.

Collision process:
In collision process particles distribution function

relaxes towards local equilibrium distribution function
and it can be described by the following equation
��
∗ ���, � + ∆� = �� ���, � + Ω�

�녨ਧ ���, � (3.11)
where ��

∗ ���, t + ∆� is the post collision particle’s
distribution function, the values of collision operators as
same as given in Eq. (3.2).

Streaming process:
In this process, particles move from one lattice point

to nearest lattice point along the direction of the lattice
velocity. Computationally this process is just memory
swapping. Algorithm of this process can be written as

�� ���+ ����� ∆�, � + ∆� = ��
∗ ���, � + ∆� 3.12

Additional bounce-back boundary conditions are
imposed at obstacle sites and along boundary walls at
which particles reverse its direction after collision with
obstacles or boundary walls.

4. Numerical Examples
The developed LB scheme is verified and

validated by solving following benchmark problems.
4.1 Diffusion of solute from the surface to
the center of a sphere

This test problem models the diffusion of solute
from the surrounding environment to a cementitious
facility of spherical shape. Since the surrounding media
is very large, constant supply of solute at the surface of
the facility is a reasonable assumption. This process
can be mathematically modeled as a radial diffusion
equation (2.2) with following initial and boundary
conditions.
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� � = 0,� = 0
� � = �,� = �0

(4.1)

In terms of the new variable, �(�,�) as given in Eq.
(2.2), the above initial and boundary conditions can be
written as
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(4.2)

Closed form solution of the problem can be written
as
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The LB simulation is carried out in lattice unit with
101 lattice points. The physical lattice length is 0.1 m.
Following input parameters are used in the simulation.
The concentration profile of solute inside the spherical
object is calculated and the results are compared with
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analytical solution. Graphical plots of spatial profile of
solute concentration after 365, 1000 and 3000 days are
shown in the Table 1.
Parameter Value

Radius (a) of the sphere 10 m

Inlet concentration (C0) 1.0 mg/l

Diffusion coefficient (D) 1.0 × 10−8 m2/s

Simulation time 365, 1000 and 3000 days

Relaxation parameter (τ) 1.0

Physical lattice length (dr) 0.1 m

Table 1. Various parameters used in the simulation

Figure 4.1; Spatial profile of solute concentration after 365,
1000 and 3000 days.

5. Conclusions
One dimensional radial diffusion equation in

spherical coordinate system is solved using standard LB
equation. The extra term in the governing radial diffusion
equation is not modeled as source term, rather the
diffusion equation is modified using a proper variable
and the resultant equation is exactly similar to that in
Cartesian coordinate system. The results show that the
scheme is capable to simulate the radial diffusion
equation very accurately.
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