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ABSTRACT
This paper is devoted to the discussion of dynamical properties of anisotropic dark energy cosmological model of

the universe in a Bianchi type-V space time in the framework of scale covariant theory of gravitation formulated by
Canuto et al. (phys.Rev.Lett.39:429,1977). A dark energy cosmological model is presented by solving the field
equations of this theory by using some physically viable conditions. The dynamics of the model is studied by computing
the cosmological parameters, dark energy density, equation of state (EoS) parameter, skewness parameters, deceleration
parameter and the jerk parameter. This being a scalar field model gives us the quintessence model of the universe which
describes a significant dark energy candidate of our accelerating universe. All the physical quantities discussed are in
agreement with the recent cosmological observations.
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1. Introduction
Scalar-tensor theories of gravitation in which ,in

addition to the metric tensor field, a scalar field has been
introduced have a significant role to play in modern
cosmology. In spite of the fact that Einstein’s theory of
gravitation , even today, is considered to be the precise
and successful theory of gravitation, it does not fully
explain certain concepts like Mach’s Principle,
cosmological problems and dark energy. Hence
alternative theories of gravitation like scalar-tensor
theories and other modified theories of
gravitationhave been proposed from time to time. The
most significant among the scalar-tensor theories of
gravitation are Brans-Dicke[1] and Saez-Ballester[2]

theories of gravitation.Brans-Dicke theory advocates
variation of gravitational constantG[3,4] while
Saez-Ballester theory suggests a possible way to solve
the ‘missing mass’problem in non-flat FRW cosmologies.
These two theories are attracting several researchers in
modern cosmology.Canutoet al.[5,6] formulated a scale
covariant theory of gravitation by associating the
mathematical operation of scale transformation with the
physics of different dynamicalsystems to measure space
time distances. They obtained the generalized Einstein's

field equations invariant under scale transformations and
studied several astrophysical tests. This theory is aviable
alternative to general relativity which allowsa natural
interpretation of the possible variation ofthe gravitational
constant. In this theory, Einstein field equations are valid
in gravitational units whereas physical quantities are
measured in atomic units. In the two systems of units the
metric tensor components are related by a conformal
transformation

2 k
ij ijg (x )g 

, i, j=1,2,3,4
(1)

Here the barred quantities denote gravitational units
and unbarred quantities refer to atomic units and
 (0< < ) is the scalar gauge function which in its
more general expression is function of all space-time
coordinates. Thus using the conformal transformation of
the type given by Eq.(1), Canuto et al.[5,6] transformed the
usual Einstein equations into

ij ij ij ij ij
1R g R f ( ) 8 G( )T ( )g
2

        

(2)
where

2 k ,k
ij i; j ,i , j ij ;k ,kf 2 4 g ( )         

(3)
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Here semicolon denotes covariant differentiation
and comma indicates ordinary differentiation with
respect to the coordinates

kx .The other symbols have
their usual meaning. In our discussion we take the
cosmological constant 0  . The above equations
have been written in a form such that their form remains
invariant under arbitrary coordinate as well as scale
transformation. A particular feature of this theory is that
no independent equation for  exists as in the other
scalar-tensor theories. One has to go outside the theory in
order to specify the form of  and its relationship with
G. The speculations that have been considered for this
gauge function are ( Cannuto et al.[6])

0

t(t) ,
t


 

   
 

11,
2

   

(4)

Where 0t is a constant. But the form
1
2t ~

(5)
is the one most favored to fit observation (Cannuto and
Goldman[7]). Inspired by the importance of modified
theories of gravitation in cosmology, several researchers
are attracted to scale covariant theory of gravitation and
have investigated some interesting Bianchi type
cosmological models in the presence of different
physical sources[8–19].

The recent scenario of modern cosmology is that
our universe is in a state of accelerated expansion. This
fact has been confirmed by the cosmological
observations of type1a Supernova[20–22]. It has been
suggested that the existence of a large negative pressure
dubbed as dark energy (DE) is responsible for this
cosmic acceleration. Two approaches have been mostly
used to clarify this situation. One of these approaches is
dark energy models and the other approach is the
modified theories of gravitation. Scalar-tensor theories of
gravitation, scale covariant theory of gravitation[5,6]

provide the most natural generalization of general
relativity by incorporating additional fields like scalar
fields. Field equations, in these theories, become even
more complex than in Einstein’s theory of gravitation.
However, these scalar fields play a vital role in the

discussion of dark energy cosmology.
It is a well established fact that the present day

universe is described by the homogeneous and isotropic
Friedman-Robertson-Walker (FRW) model. However,
the recent experimental data and the theoretical
arguments support the existence of considerable amount
of anisotropy at the early stages of evolution of the
universe which evolves into an isotropic one. Hence
it becomes very much necessary to study the universe
and DE models with anisotropic back ground. It is well
known that Bianchi type models are the models with
homogeneous and anisotropic background. Hence many
authors have studied Bianchi models in alternative
theories of gravitation. Here, we confine ourselves to the
Bianchi models studied in scale covariant theory of
gravitation. Zeyauddin and Rao[23]obtained Bianchi type
cosmological model in scale covariant theory of
gravitation using a variable deceleration parameter while
ShriRam et al.[24] investigated Bianchi type cosmological
model with perfect fluid source. Reddy[25] presented a
higher dimensional Kaluza-Klein perfect fluid model
while Raju et al[26] obtained a spherically symmetric five
dimensional cosmological model in this theory. Pradhan
et al.[27] and Prasad et al.[28] discussed bulk viscous string
cosmological models in this theory. Reddy and Kumar[29]

obtained Kaluza-Klein DE model whileKatore et al.[30]

and Singh and Sharma[31] and Dasu Naidu et al.[32] have
found Bianchi DE cosmological models in this particular
theory of gravitation. However, anisotropic DE model in
Bianchi space-time has not, so far, been investigated in
this theory of gravitation.

Keeping in view the above discussion, the objective
of this work is to investigate spatially homogeneous and
anisotropic DE cosmological model in this theory of
gravity. This work is organized in the following format.
The next section deals with the metric and derivation of
explicit field equations of the theory. In sec.3, we present
the DE model by solving the field equations using some
physically valid conditions. In sec.4 we determine the
dynamical parameters of the model and discuss their
physical significance in the universe. Finally, Sec.5
contains concluding remarks.

2. Basic Equations of Scale
covariant theory
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Here we obtain the explicit field equations of scale
covariant theory of gravitation in the background of
Bianchi type-V space-time. We consider spatially
homogeneous and anisotropic Bianchi type-V metric in
the form

2 2 2 2 2mx 2 2 2 2ds dt a dx e (b dy c dz )   
(6)

Where a,b,c are functions of cosmic time t and m is a
positive constant which can be set equal to unity for
simplicity.

The energy momentum tensor for anisotropic DE
fluid is given by

ij i j ijT ( p )u u g p     
(7)

where  is the DE density and p is the pressure of DE
fluid. This can be parameterized as

i
j x y zT diag(1, , , ) diag[1, , ( ), ( )]                 

(8)
Here

p




 


(9)
is theEoS parameter of DE ,  and  are the skewness

parameters which are the deviations from  along y
and z directions respectively.

Using co moving coordinates the field equations (2)
and (3) for the metric (6) with the help of Eqs.(7)-(9)
can be , explicitly, written as

2

2 2

a b a c b c 3 a b c 3 8 G
a b a c b c a a b c

           



              
   
 

(10)
2

2 2

b c b c 1 a a b c2 8 G
b c b c a a a b c

           

 

                  
    
 

(11)
2

2 2

a c a c 1 b a b c2 8 G ( )
a c a c a b a b c

           

 

                    
    
 

(12)
2

2 2

a b a b 1 c a b c2 8 G ( )
a b a b a c a b c

           

 

                    
    
 

(13)

2a b c 0
a b c

  

  
(14)

Here an overhead dot denotes differentiation with
respect to cosmic time t.

In this theory of gravitation the energy conservation
equation which is a consequence of the field equations is
given by ( Canuto et al.[5])

i
;i

G( p)u 3p 0
G

  
         

  
 

(15)
For the case ofanisotropic DE fluid Eq.(15), with

the help of Eqs.(6)-(9), takes the form

a b c G(1 ) 3 0
a b c G

     


     

                  
    
   

(16)
Now we shall define some dynamical parameters

which are significant in the discussion of cosmology and
in solving the above field equations.

The spatial volume V and the average scale factor
A(t) for the space-time(6) are given by

3V A (t) (abc) 
(17)

The expansion scalar , the mean anisotropy

parameter hA and shear scalar
2 are defined as

1 2 33H 3(H H H ) 3     

a b c
a b c

   
  
 
 

(18)
23

i
h

1

H H1A
3 H

 
  

 


(19)
2 ik 2

ik h
1 3A H
2

    

(20)
where H is the mean Hubble parameter and

iH ,i 1,2,3 are the directional Hubble parameters
3. Anisotropic Dark energy model

Here we solve the field equations of this theory
using some physically valid conditions and present the
anisotropic DE model .

Integration of Eq.(14) gives us
2

1a k bc
(21)

where 1k is a constant of integration which can be set
equal to unity with out loss of any generality so that we
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have
2a bc

(22)
Now the field equations (10)-(14) and (16) are a

system of five independentequations[since
conservation equation(16) is a consequence of the field
equations] in seven unknowns a(t), b(t),
c(t), , , ,     [in view of the fact G=G(  ) and
Eq.(5)].Hence to find an exact solution we need two
more conditions. We use the following physically
significant conditions:
(i) The shear scalar  is proportional to scalar
expansion  which leads to a relationship between
the metric potentials( Collins et al.[33]) so that we can
take

kb c
(23)

where k 1 is a positive constant and preserves
anisotropy character of the space-time (6).The physical
reason for this assumption is warranted from the
observation of the velocity redshift relation for
extragalactic sources which suggest that the Hubble
expansion of the universe may achieve isotropy when

 is constant(Kantowski and Sachs[34]).
(ii) We consider the average scale factor, following
Akarsu et al.[35], in the form

1
t3

0A(t) (abc) A t e  
(24)

where  and  are non negative constants and 0A
is the present value of the scale factor. The physical
interpretation for the above proposed law is that it gives
the time varying deceleration parameter which describes
the transitioning universe Also, Eq.(24) is called the
hybrid expansion law because when 0  , we have
power law and when  =0 we get exponential law
cosmology. This has been extensively used in
literature[36–40].

Now using Eqs.(17) and (22)-(24) we obtain the
metric potentials as

a(t)  t
0A t e 

,
2k

t k 1
0b(t) (A t e )   ,

2
t k 1

0c(t) (A t e )  
(25)

and the scalar field in the model is given by Eq.(5).
Using Eq.(25) , we can write Bianchi typemetric in the
form

4k 4
2 2 t 2 2 2x t 2 t 2k 1 k 1

0 0 0ds dt (A t e ) dx e [(A t e ) dy ((A t e ) dz ]         
4k 4

2 2 t 2 2 2x t 2 t 2k 1 k 1
0 0 0ds dt (A t e ) dx e [(A t e ) dy ((A t e ) dz ]         

(26)
Thus Eq.(26) along with Eq.(5) describes the

anisotropic DE model in Bianchi type-V space-time.

4. Dynamical properties of
cosmological parameters

This section deals with the determination and
discussion of the physical parameters of the
cosmological model represented by the metric given by
Eq.(26). For this purpose we use Eqs.(17)-(20) and
Eqs.(25)

Spatial volume of the universe is
t 3

0V (A t e ) 
(27)

This shows that spatial volume of the universe
increases with the increase in cosmic time which tells us
that our model is an expanding model. Also at the initial
epoch, i.e., at t=0, it vanishes. Hence the universe
evolves from zero volume.
The scalar expansionof the model is

t3
t

     
 

(28)
This shows that  of the model diverges at t=0 and
it becomes constant for infinitely large values of t.
The shear scalarof the model becomes

2 2
2 t k 1

t k 1
            

(29)
This shows that the shear of the model diverges at

the initial epoch and will be constant for large values of
cosmic time t. It can be seen that shear vanishes for k=1
and in this case the model becomes shear free.

The average anisotropy parameter of our model is
determined as

2

h
2 k 1A
3 k 1

    
(30)

It can be seen that for our model average anisotropy
is constant It can, also, be observed that when k=1,

hA 0 .Hence, in this case, we observe , in view of
Eqs.(29) and (30), the universe is isotropic and shear
free.

The average Hubble parameter is found to be
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tH
t

    
 

(31)
This diverges for t=0 and attains constant value

as t .
Other physically significant parameters which are

useful to study the behavior of the universe are the
following

The deceleration parameter q which is defined and
determined as

2

d 1q 1 1
dt H ( t)

          
(32)

It is well known that for the positive and negative
values of , the model decelerates and accelerates
respectively. It can be observed that

as t ,

dHq 1, 0
dt

  
which gives us the greatest

value of Hubble parameter and fastest rate of(accelerated)
expansion of the universe. This is in agreement with the
observation of modern cosmologywhich confirm the
accelerated expansion of the universe.

The jerk parameterj(t) is defined and is given as[41]

3 3 2

A 2 3j(t) 1
AH ( t) ( t)



 
   

 
(33)

Jerk parameter is useful in cosmology to describe
models close to CDM . In cosmology it is believed
that the transition of the universe occurs for models with
positive value of jerk parameter and negative value of
deceleration parameter. It may be observed that as
t , that is at late times we have q<0 and j>0 .
Hence for our universe there occurs a smooth transition
from decelerated phase to the present accelerated phase.
This confirms the observational data.

From Eq.(5) we observe that the scalar gauge
function vanishes at the initial epoch and increases with
cosmic time.

From Eqs.(5), (10) and (25) the anisotropic DE 
can be computed as

2 2 2 2 t 2
0

2 2

4( t) (k 4k 1) (k 1) [3( t) 2 6t (A t e )8 G
2(k 1) t

  



         
  


2 2 2 2 t 2

0
2 2

4( t) (k 4k 1) (k 1) [3( t) 2 6t (A t e )8 G
2(k 1) t

  


         

  


(34)
From Eqs.(5),(11), (25) and (34) we obtain The EoS

parameter for our model as

2 2 2 2 t 2
0

2 2 2 2 t 2
0

8( t) (k k 1) (k 1) [ t 3 1 2t (A t e ) ]
4( t) (k 4k 1) (k 1) [3( t) 2 6t (A t e ) ]

  

   

          
            

(35)
From Eqs.(5),(11), (12), (13), (25) and (34) we

find the skewness parameters  and as
2

2 2 2 2 t 2
0

(k 1)[6(k 1)( t) 2 (k 1) 2( t)]
4( t) (k 4k 1) (k 1) [3( t) 2 6t (A t e ) ]  

          
             

(36)
2

2 2 2 2 t 2
0

2(k 1)[( t) (k 1)( t 1)]
4( t) (k 4k 1) (k 1) [3( t) 2 6t (A t e ) ]  

        
             

(37)
From Eq.(34) we observe that the anisotropic DE is

always positive, decrease with the increase in cosmic
time and attains a constant value at late times. It can be
observed from Eq.(35) the EoS parameter is always
negative and varies in the quintessence region which
should be the case since we are dealing with a scalar
field model. It may be observed from Eqs.(36) and (37)
that the skewness parameters decrease with time and will
vanish when k=1so that the universe exhibits isotropy at
late times. Our results confirm the cosmological
observations.

5. Concluding remarks
Anisotropic DE models help to explain the recent

scenario of accelerated expansion of the universe. In
particular DE models in modified theories of gravitation
are being investigated in literature to throw light on this
mysterious concept. Here, we have investigated
anisotropic DE model in Bianchi type-V space-time in
the frame work of scale covariant theory of gravitation[5,6]

which is a modified Einstein’s theory of gravitation.
The basic field equations of this theory have been solved
using physical conditions and presented an exact
cosmological model in the presence of anisotropic DE.
The significant cosmological parameters of the model are
determined and discussed in detail. We have observed
that our model exhibits a smooth transition from early
deceleration to late time acceleration. We also observe
that we have a quintessence model. Our model agrees
with the cosmological observations.
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