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ABSTRACT 

One functional class is described in terms of one-sided modulus of continuity and the modulus of positive (nega-

tive) variation on which there is a uniform convergence of the truncated cardinal Whittaker functions. 
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1. Introduction and Preliminaries
E. Borel and E.T. Whittaker introduced the notion of

a truncated cardinal function, whose restriction on the 

segment [0, π] reads as follows: 

CΩ (f, x) =  ∑
sin(Ωx − kπ)

Ωx − kπ

n

k=0

f (
kπ

Ω
)

= ∑
(−1)k sin Ωx

Ωx − kπ

n

k=0

f (
kπ

Ω
),  (1.1) 

here Ω > 0 and n = [Ω] is integer part Ω ∈ R. The 

function 
sin(Ωx)

Ωx
 called sinc-function. Up to now, a fairly

well-studied problem is the one concerning sinc ap-

proximations of an analytic function on the real axis de-

creasing exponentially at infinity. The most complete 

survey of the results obtained in this direction by 1993 be 

found in
[1]

. 

Sinc approximations have wide applications in 

mathematical physics, in constructing various numerical 

methods and the approximation theory for the functions 

of both one and several variables
[1–7]

, in theory of quad-

rature formulae
[1,8]

, in theory of wavelets or wave-

let-transforms in
[2,9-11]

. In book
[16] 

designated perspective 

directions of development of sinc approximations. 

One test for the uniform convergence on the axis for 

Whitteker cardinal functions were provided in
[12,13]

. An-

other important sufficient condition for convergence of 

sinc approximations was obtained in
[14]

. It was estab-

lished that for some subclasses of functions absolutely 

continuous together with their derivatives on the interval 

(0, π) and having a bounded variation on the whole axis 

R Kotel’nikov series (or cardinal Whitteker functions) 

converge uniformly inside the interval (0, π). In
[15]

 was 

obtained by an upper bound for the best possible ap-

proximations of sincs. 

Unfortunately, while approximating continuous 

functions on a segment by means of (1.1) and many other 

operators, Gibbs phenomenon arises in the vicinity of the 

segment end-points, see, for instance
[18]

. In
[19]

 and
[18]

 

various estimates for the error of approximation of ana-

lytic in a circle functions by sine-approximations (1.1) 

(when Ω = n) were obtained. In papers
[17]

 there were 

obtained estimates for the error of approximations of 

uniformly continuous and bounded on R functions by the 

values of various operators being combinations of sincs. 

In paper
[19]

 sharp estimates were established for the 

functions and Lebesgue constants of operator (1.1) 

(when Ω = n). Works
[20,21]

 were devoted to obtaining 

necessary and sufficient conditions of pointwise and 

uniform in interval (0, π) convergence of values opera-

tors (1.1) (when Ω = n) for functions f ∈ C[0, π]. In
[22]

 

there was constructed an example of continuous function 

vanishing at the end-points of the segment [0, π] for 

which the sequence of the values of operators (1.1) 

(when Ω = n) diverges unboundedly everywhere on the 

interval (0, π). Work
[23]

 was denoted to studying ap-

proximative properties of interpolation operators con-

structed by means of solutions to the Cauchy problems 

with second order differential expressions. Papers
[24,25]

 

were devoted to applications of considered in
[23]

 La-

grange-Sturm-Liouville interpolation processes. 
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In
[26]

 the results of work
[23]

 were applied for studying 

approximative properties of classical Lagrange interpola-

tion processes with the matrix of interpolation nodes, 

whose each row consists of zeroes of Jacobi 

als Pn

an, βn with the parameters depending on n. In the 

works
[27–29]

 of construction of new operators sinc ap-

proximations. They allow you to uniformly approximate 

any continuous function on the segment. 

In the present work we follow the lines of publica-

tions
[30–40]

. We functional class is described on which 

there is a uniform convergence of the truncated cardinal 

Whittaker functions for in terms of one-sided modulus of 

continuity and the modulus of positive (negative) varia-

tion. 

  Fix ρλ = o (
√λ

ln λ
)  as λ → +∞,  let h(λ) ∈

 R, and for each nonnegative λ let qλ be arbitrary func-

tion in the ball Vρλ
[0, π] of radius ρλ in the space of 

functions with bounded variation vanishing at the origin, 

so that 

V0
π[qλ] ≤  ρλ,         ρλ = o (

√λ

ln λ
),       

as λ → ∞,          qλ(0) = 0.                                  (1.2) 

For a potential qλ ∈ Vρλ
[0, π], where λ → +∞ the 

zeros of solution of the Cauchy problem 

                                       

{
y′′ + (λ − qλ(x))y = 0,

y(0, λ) = 1,   y′(0, λ) = h(λ),
                (1.3)                                   

or, provided that h(λ) ≠ 0 

  V0
π[qλ] ≤  ρλ,         ρλ = o (

√λ

ln λ
),     

as 

 λ → ∞, qλ(0) = 0, λ → ∞,   qλ(0) = 0, h(λ) ≠ 0,    
(1.4) 

the zeros of Cauchy problem 

  {
y′′ + (λ − qλ(x))y = 0,

y(0, λ) = 1,   y′(0, λ) = h(λ),
             (1.5)                                     

which lie in [0,π] and are numbered in ascending 

order, will be denoted by 

0 ≤ x0, λ < x1, λ < ⋯ < xn( λ),  

λ ≤ π     (x−1,λ < 0, xn( λ)+1,λ > π).            (1.6)  

 (Here  x−1,λ < 0, and xn( λ)+1,λ > π are the zeros of 

the extension of solution of the Cauchy problem (1.3) or 

(1.5) corresponding to some extension of function qλ 

outside [0, π] having similar bounds for the variation). 

In
[23]

 the properties of the Lagrange type approxi-

mation investigated. The operators which include the 

solution of the Cauchy problem of the form (1.5) or (1.6) 

and the continuous function which bind 

Sλ(f, x)

= ∑
y(x, λ)

y′(xk,λ,λ)(x − xk,λ,)
f(xk,λ)

n

k=0

= ∑ Sk,λ(x)f(

n

k=0

xk,λ);                               (1.7) 

it interpolates 𝑓 at the nodes {xk,λ}
k=0

n
 . 

Let С0[0, π] =  {f: f ∈ C[0, π], f(0) = f(π) = 0}.  

When approximation using sinc approximations 

(1.1) function  f ∈  C[0, π]  \С0[0, π] near the endpoints 

of the Gibbs phenomenon occurs. This problem can be 

solved with the help of the reception that was used in the 

construction of the operator
[23]

, formula (1.9) 

Tλ(f, x)

= ∑

y(x, λ)

y′(xk,λ,λ)(x − xk,λ,)
{f(xk,λ) −

f(π) − f(0)

π
 xk,λ − f(0)}  

n

k=0

 

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0) 

(1.8) 

where (x , λ )- solution problem Cauchy (1.3) or (1.5) 

and xk,λ- the zeros of the solutions. 

2. Main result 
Unless otherwise stated, suppose that for each λ > 

1, n := [ √λ ], Ω := √λ  and xk,λ  := kπ/√λ   and 

lk,λ(x) :=  
(−1)k sin Ωx

Ωx−kπ
. Let Ω set of real continuous non 

decreasing convex up on [0, b — a], vanishing at zero 

functions ω. Let C(ωl, [a, b]) and C(ωr, [a, b])  is the 

set of elements of C[a, b]   such that for any x and 

x + h (a ≤ x < x + h ≤ b) we have the equalities 

                      f(x + h) − f(x) ≥ −Kfω(h)    

or   f(x + h) − f(x) ≤ Kfω(h),                     

(2.1) 

accordingly. Where ω ∈ Ω. Selecting positive constants 

Kf  may depend only on the function f. In this case the 

function ω (h) is sometimes referred to, accordingly, the 

left-hand or right-hand continuity module. In principle, 

the definition of a unilateral module of continuity 

could be considered any functions ω(h) vanishing at zero, 

continuous on [0, b — a] or [0, ∞). The wording of all 

the results of this work in this case, would remain in 

force. Without loss of generality, in the definition of uni-

lateral modulus of continuity (2.1) can be considered 

ω ∈ Ω.   

Classic modulus of continuity f ∈ C[a, b] denoted 

as usual ω (f, δ) = sup|h|<δ:x,x+h∈[a,b]|f(x + h) − f(x)|. 

The module of continuity of f ∈ C[0, π], if 

a = 0, b = π will denote 
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 ω1  ( f , δ) = sup|h|<δ:x,x+h∈[0,π]|f(x + h) −

f(x)|.Module of change of  f on the interval [a, b] is 

called function defined by the equation 

v(n, f) = supTn
∑|f(tk+1) − f(tk)|,

n−1

k=0

 

where Tn  = {a ≤ t0 < t1 < t2 < ⋯  < tn−1 <

tn ≤ b}, n ∈ N .  

Take a non-negative, non-decreasing convex up 

function of a natural argument to v(n). If a module of 

changes of function f on the interval [a, b], such that 

v(n, f)= O(v (n)) with n → ∞, then we say that f be-

longs to the class V(v ). Here, also, the choice of uni-

formity of the constants o-symbolism can only depend 

on 𝑓. 

By analogy with the positive (negative) change of 

function will be called positive (negative) module of 

change of function f on the interval [a,b], accordingly, 

the function of a natural argument type 

  v+(n, f) = supTn
∑ (n−1

k=0 f(tk+1) − f(tk))+    

and  v−(n, f) = infTn
∑ (n−1

k=0 f(tk+1) − f(tk))−, 

where   z+ =
z+|z|

2
  and z− =

z−|z|

2
    

and Tn  = {a ≤ t0 < t1 < t2 < ⋯  < tn−1 <
tn ≤ b}, n ∈ N.  We say that f belongs to the class of 

V+(v)  or  V−(v)  , if there exists a constant Mf, that for 

any natural n true inequality 

   v+(n, f) ≤  Mfv(n)  or    v−(n, f) ≥ − Mfv(n)   

accordingly. 

  We define two functional classes. The function f 

∈ C(ωl  [a,b]) ∩ V−(v) (f ∈ C(ωr [a,b]) ∩ V+(v)) 

here, 0 < a < b < π,  0 < ε < (b — a)/2, if there are a 

nondecreasing concave function of a natural argument v 

(n) and the function ω ∈ Ω such that 

lim
n→∞ 

m𝑖𝑛1≤m ≤k2−k1−1 {ω (
π

√λ
) ∑

1

k
+ ∑

v(k)

k2

k2−k1−1

k=m+1

m

k=1

}

= 0,                         
(2.2) 

where k1, k2 + 1 — the smallest and largest number 

of nodes xk,λ = kπ/Ω,  falling in the interval [a, b], and  

f ∈ C(ωl, [a, b]) ]) ∩ V−(v) (f ∈ C(ωr [a,b]) ∩ 

V+(v)) . 

The description of the first class contains a re-

striction only on decreasing the function. The description 

of the second class contains a restriction only on the in-

crease of the function. 

Theorem 2.1. If 𝑓 ∈ 𝐶(𝜔𝑙  [𝑎, 𝑏]) ]) ∩ 𝑉−(𝑣) (f 

∈ C(ω𝑟  [a,b]) ∩ 𝑉+(𝑣)), here, 0 < a < b < n, 0 < 𝜀 < 

(b — a)/2, then 

                    lim
Ω→∞

||𝑓 − 𝐶Ω(𝑓, . )||𝐶[𝑎+𝜀,𝑏−𝜀]

= 0.                                    (2.3) 

Where operator 𝐶Ω(𝑓, . ) defined in (1.1). 

Remark 2.2. On the set [0,𝜋] \ [a, b] ratio (1.1) 

can be not performed (See
[22]

). 

We present auxiliary results, which will be used in 

the future. 

Proposition 2.3 (
[23]

, Proposition 9). Let 𝑦(𝑥, 𝜆) be 

the solution of Cauchy problem (1.5) or (1.6) and assume 

that in case of the Cachy problem (1.5) relations (1.2) 

hold, while in the case of (1.6) relations (1.4) hold. If 

𝑓 ∈ 𝐶0[0, 𝜋], then 

lim
𝜆→∞

(𝑓(𝑥)  −  𝑆𝜆(𝑓, 𝑥)  −
1

2
∑(𝑓(𝑥𝑘+1,𝜆)

𝑛−1

𝑘=0

− 𝑓(𝑥𝑘,𝜆))𝑆𝑘.𝜆(𝑥))

= 0,                                         
(2.4) 

For any 0 ≤ 𝑎 < 𝑏 ≤ 𝜋, 0 < 𝜀 < (𝑏 − 𝑎)/2  de-

noted 

𝑄𝜆(𝑓, [𝑎, 𝑏], 𝜀):

=  𝑚𝑎𝑥𝑝1≤𝑝≤𝑝2
| ∑

` 𝑓(𝑥2𝑚+1,𝜆) − 𝑓(𝑥2𝑚,𝜆)

p − 2𝑚

𝑚2

𝑚=𝑚1

|.      (2.5) 

Here the dashes on the summation signs in (2.5) 

mean that are no terms with zero denominator. Where p1, 

p2, m1 and m2 are the indices of the zeros determined by 

the inequalities 

xp1,λ ≤ a + ε < xp1+1,λ,       xp2,λ ≤ b − ε < xp2+1,λ, 

xk1−1,λ < a ≤ xk1,λ,         xk2+1,λ ≤ b < xk2+2,λ, 

𝑚1 = [
𝑘1

2
] + 1,     𝑚2 = [

𝑘2

2
].     

Here [z] denote the integer part z. 

Proposition 2.4. If 𝑓  function 𝑓  ∈ 𝐶[0,n], then 

from a ratio 

                        lim
𝜆→∞

𝑄𝜆(𝑓, [𝑎, 𝑏], 𝜀)  

=  0                                                 (2.6) 

follows (2.3). 

           Proof of Proposition 2.4. We denote 

𝜓𝑘,𝜆  =  𝑓(𝑥𝑘+1, 𝜆) −  𝑓(𝑥𝑘 , 𝜆)     

            𝑘1  ≤  𝑘 ≤   𝑘2;  𝜆 >  0.                           (2.7) 

We take into account that we have the estimate 

|𝜓𝑘,𝜆|= |𝑓(𝑥𝑘+1, 𝜆) −  𝑓(𝑥𝑘 , 𝜆)|≤ 𝜔 (𝑓,
𝜋

√𝜆
)  for all 

k1 ≤ k ≤ k2; λ > 0.    

                             (2.8) 

We fix an arbitrary x ∈ [a + 𝜀,b — 𝜀]. Choose in-
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dex p = p(x, 𝜆), so that x ∈ [𝑥𝑝𝜆,𝑥𝑝+1,𝜆). Then 𝑥 = 

𝑥𝑝𝜆, +
𝑎𝜋

√𝜆
, where a = a(x, 𝜆) ∈ [0,1) 

𝑥 − 𝑥 𝑘,𝜆 =
𝑝 − 𝑘 + 𝑎

√ 𝜆
𝜋. 

From (2.8) for all 𝑥 ∈  [𝑎 +  𝜀, 𝑏 −  𝜀] we have 

the estimate 

|| ∑
(−1)𝑘 𝜓 𝑘,𝜆

𝑝 − 𝑘 + 𝑎
𝑘:𝑘1 ≤𝑘≤𝑘2;

|𝑝−𝑘|≥3;

  − ∑
(−1)𝑘  𝜓 𝑘,𝜆

𝑝 − 𝑘
𝑘:𝑘1 ≤𝑘≤𝑘2;

|𝑝−𝑘|≥3;

|| ≤ 

 

𝜔 (𝑓,
𝜋

√λ
) ∑

𝑎

|𝑝 −  𝑘|(|𝑝 −  𝑘|  −  1)
𝑘:𝑘1 ≤𝑘≤𝑘2;

|𝑝−𝑘|≥3;

    

         ≤  𝜔 (𝑓,
𝜋

√𝜆
).          

(2.9) 

Notice, that if h(λ) = √𝜆, qλ ≡ 0 solution of the 

Cauchy problem (1.5) is y(x, λ) = sin √𝜆𝑥. 

We take into account (2.7). We decompose the sum 

in (2.4) as follows: 

     
1

2
∑ (𝑓(𝑥𝑘+1,𝜆) − 𝑓

𝑘2

𝑘=𝑘1

(𝑥𝑘,𝜆))𝑙𝑘,𝜆 

+
1

2
∑ (𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)) 𝑙𝑘,𝜆(𝑥) =

𝑘∈[0,𝜆−1]\[𝑘1 ,𝑘2]

 

1

2
∑ 𝜓𝑘,𝜆 , 𝑙𝑘,𝜆  (𝑥) +

𝑘:𝑘1 ≤𝑘≤𝑘2 ;
|𝑝−𝑘|≥3;

1

2
∑ 𝜓𝑘,𝜆 , 𝑙𝑘,𝜆  (𝑥)

𝑘:𝑘1 ≤𝑘≤𝑘2 ;
|𝑝−𝑘|<3;

+
1

2
∑ 𝜓𝑘,𝜆 , 𝑙𝑘,𝜆  (𝑥).                            (2.10)

𝑘∈[0,𝜆−1]\[𝑘1 ,𝑘2]

 

Now, using the triangle inequality, of (2.7), (2.9) 

uniformly for 𝑥 ∈ [a+ε,b−ε] the estimate 

|
1

2
∑ (𝑓(𝑥𝑘+1,𝜆) − 𝑓

𝑘2

𝑘=𝑘1

(𝑥𝑘,𝜆))𝑙𝑘,𝜆

−
sin √𝜆𝑥

2𝜋
∑

`(−1)𝑘𝜓 𝑘,𝜆

𝑝 −  𝑘

𝑘2

𝑘=𝑘1

| ≤ 

1

2𝜋
| ∑

(−1)𝑘𝜓 𝑘,𝜆

𝑝 –  𝑘 + 𝑎
− ∑

(−1)𝑘𝜓 𝑘,𝜆

𝑝 –  𝑘
 

𝑘:|𝑝−𝑘|≥3

 

𝑘:|𝑝−𝑘|≥3

| + 

1

2𝜋
∑ |𝜓 𝑘,𝜆𝑙𝑘,𝜆(𝑥)| +

1

2𝜋
𝑘:|𝑝−𝑘|<3

∑
`|𝜓 𝑘,𝜆|

|𝑝 −  𝑘|
𝑘:|𝑝−𝑘|<3

≤
5

𝜋
𝜔 (𝑓,

𝜋

√𝜆
).                      (2.11) 

There are a constant C and number n0 ∈ N inde-

pendent of function 𝑓 ∈ C[0,π], 0 ≤ a < b ≤ π and 0 < ε 

< (b − a)/2, such that for all x ∈ [a + ε,b − ε] and n > n0 

the inequality is fair 

|
1

2
∑ 𝜓 𝑘,𝜆 𝑙𝑘,𝜆(𝑥)

𝑘∈[0,𝑛−1]\[𝑘1 ,𝑘2 ]

| 

≤

𝜔1(𝑓,
𝜋

√𝜆
)

2
  ∑ |𝑙𝑘,𝜆(𝑥)|

𝑘∈[0,𝑛−1]\[𝑘1 ,𝑘2 ]

≤ 

 

𝐶𝜔 1 (𝑓,
𝜋

√𝜆
) 𝑙𝑛

2𝜋

𝜀
. 

Thence, by (2.11) (2.4) we have for all x x ∈ [a + 

ε,b − ε] ratio 

lim
𝑛→∞

(𝑓(𝑥) − 𝐶 Ω(𝑓, 𝑥) −
sin √𝜆𝑥

2𝜋
∑

`(−1)𝑘𝜓 𝑘,𝜆

𝑝 –  𝑘

𝑘2

𝑘=𝑘1

)

= 0.                                              (2.12) 

We estimate the last term in (2.12) by means of ratio 

(2.8) and triangle inequality 

|
sin √𝜆𝑥

2𝜋
∑

`(−1)𝑘𝜓 𝑘,𝜆

𝑝 –  𝑘

𝑘2

𝑘=𝑘1

|  

≤ 2 |
1

2𝜋
∑

`𝜓 2𝑚,𝜆

𝑝 –  2𝑚

𝑚2

𝑚=𝑚1

| + |
1

2𝜋
∑

`𝜓 𝑘,𝜆

𝑝 –  𝑘

𝑘2

𝑘=𝑘1

|

+ 𝑂 (𝜔 (𝑓,
1

√𝜆
)).                     (2.13)  

By the continuity of f there exists a sequence of 

positive integers {𝑙𝑛}𝑛=1
∞ ,   such that 

𝑙𝑛 = 𝑜(𝑛), lim
𝑛→∞

𝑙𝑛 = ∞,    lim
𝜆→∞

𝜔 (𝑓,
1

√𝜆
) ∑

1

𝑘

𝑙𝑛

𝑘=1

= 0,     𝑛 ∶=  [𝜆].                      (2.14) 

We estimate the second sum in (2.13) 

|
1

2𝜋
∑

`𝜓 𝑘,𝜆

𝑝 –  𝑘

𝑘2

𝑘=𝑘1

|  ≤ |
1

2𝜋
∑

`𝜓 𝑘,𝜆

𝑝 –  𝑘
𝑘:|𝑝−𝑘|≤𝑙𝑛

|

+ |
1

2𝜋
∑

`𝜓 𝑘,𝜆

𝑝 –  𝑘
𝑘:|𝑝−𝑘|>𝑙𝑛

|.         (2.15) 

From here and inequalities (2.8) follows 

|
1

2𝜋
∑

`𝜓 𝑘,𝜆

𝑝 –  𝑘
𝑘:|𝑝−𝑘|≤𝑙𝑛

| ≤
1

2𝜋
∑ |

`𝜓 𝑘,𝜆

𝑝 –  𝑘
|

𝑘:|𝑝−𝑘|≤𝑙𝑛

≤
1

𝜋
𝜔(𝑓,

𝜋

√𝜆
) ∑

1

𝑘
.           (2.16)

𝑙𝑛

𝑘=1

 

Hence by (2.15) after taking the Abel transform in 

case  k ∈ [k 1 ,k 2 ] : |p − k| > l n we obtain the esti-

mate 
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|
1

2𝜋
∑

`𝜓 𝑘,𝜆

𝑝 –  𝑘
𝑘:|𝑝−𝑘|>l𝑛

|

≤
4‖𝑓‖𝐶[𝑎,𝑏]

𝑙𝑛 + 1

+ 4‖𝑓‖𝐶[𝑎,𝑏] ∑
1

𝑘(𝑘 + 1)
.    

∞

𝑘=𝑙𝑛

  

Hence by (2.14), (2.15) and (2.16) we obtain the 

uniform estimate for all x ∈ [a + ε,b − ε] 

|
1

2𝜋
∑

`𝜓 𝑘,𝜆

𝑝 –  𝑘

𝑘2

𝑘=𝑘1

| = 𝑜(1).                                 (2.17) 

Notice, that if h(λ) =√𝜆, qλ ≡ 0 solution of the 

Cauchy problem (1.5) is y(x,λ) = sin√𝜆x,. Then by (2.4), 

(2.5), (2.12), (2.13), (2.17) and triangle inequality we 

obtain the relation 

    |𝑓(𝑥)  − 𝐶 Ω(𝑓, 𝑥)| 

≤ |𝑓(𝑥) −  𝐶 Ω(𝑓, 𝑥) −
sin √𝜆𝑥

2𝜋
∑

`(−1)𝑘𝜓 𝑘,𝜆

𝑝 –  𝑘

𝑘2

𝑘=𝑘1

| + 

|
1

𝜋
∑

`𝜓 2𝑚,𝜆

𝑝 –  2𝑚

𝑚2

𝑚=𝑚1

| + |
1

2𝜋
∑

`𝜓 2𝑚,𝜆

𝑝 –  2𝑚

𝑘2

𝑘=𝑘1

| + 𝑂 (𝜔 (𝑓,
1

√𝜆
))

≤ 
1

𝜋
𝑄𝜆(𝑓, [𝑎, 𝑏], 𝜀)  +  𝑜(1). 

From which it follows the sufficiency (2.6) for uni-

form convergence (2.3). Proposition 2.4 proved. 

For all 0 ≤ a < b ≤ π, 0 < ε < (b − a)/2 denoted 

𝑄𝜆
∗(𝑓, [𝑎, 𝑏], 𝜀):

= 𝑚𝑎𝑥𝑝 1 ≤𝑝≤𝑝 2 ∑ ` |
𝑓(𝑥2𝑚+1,𝜆) − 𝑓(𝑥2𝑚,𝜆)

𝑝 −  2𝑚
|.    (2.18)

𝑚2

𝑚=𝑚1

 

Proposition 2.5. If function f ∈ C[0,π]], then the 

ratio of 

lim
𝑛→∞

𝑄𝜆
∗(𝑓, [𝑎, 𝑏], 𝜀) = 0                         (2.19) 

implies (2.3). 

Proof. Indeed, by Proposition 2.4 satisfy the condi-

tion (2.19) implies truth of the saying (2.6) and therefore, 

the ratio (2.3). 

Remark 2.6. Propositions 2.4 and 2.5 are analogues 

of known signs of A.A. Pri-valov uniform convergence 

of trigonometric polynomial and algebraic interpolations 

polynomial Lagrange with the matrix of interpolation 

nodes P.L. Chebyshev 
[33]

. 

Proof of the Theorem 2.1 Let the function v and w 

satisfies the condition (2.2) and f ∈ C(𝜔𝑙 l [a,b]) ∩ 

𝑉−(v).We show that the relation (2.19) is true. By virtue 

of the uniform continuity and boundedness of f, for any 

positive ϵ there exist natural numbers v 𝑛1 such that for 

all  λ ≥ 𝑛1  (λ ∈ R) simultaneously take place two 

inequalities 

𝜔 (𝑓,
𝜋

√𝜆
) ∑

1

𝑘
<

ϵ 

6

𝑣

𝑘=1

                       (2.20) 

and 

24‖𝑓‖𝐶[𝑎,𝑏] < ϵν.                (2.21) 

Let λ ≥ n 1. We find po, depending on n, a, b, ε and f 

at which the maximum in the definition (2.18) 

𝑄𝜆
∗(𝑓, [𝑎, 𝑏], 𝜀) = ∑ ` |

𝑓(𝑥2𝑚+1,𝜆) − 𝑓(𝑥2𝑚,𝜆)

𝑝0 − 2𝑚
| .

𝑚2

𝑚=𝑚1

 

Assuming that 

𝑄𝜆
∗∗(𝑓, [𝑎, 𝑏], 𝜀): = ∑ ` |

𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

𝑝0 − 𝑘
| .

𝑘2

𝑘=𝑘1

 

The value of 𝑄𝜆
∗∗(𝑓, [𝑎, 𝑏], 𝜀)  is obtained from 

𝑄𝜆
∗(𝑓, [𝑎, 𝑏], 𝜀) by the addition of non-negative terms, 

therefore is fair the inequality 

𝑄𝜆
∗(𝑓, [𝑎, 𝑏], 𝜀) ≤ 𝑄𝜆

∗∗(𝑓, [𝑎, 𝑏], 𝜀).                 (2.22) 

We divide 𝑄𝜆
∗∗(𝑓, [𝑎, 𝑏], 𝜀) into two terms 

𝑄𝜆
∗∗(𝑓, [𝑎, 𝑏], 𝜀): = ∑ ` |

𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

𝑝0 − 𝑘
| −

𝑘2

𝑘=𝑘1

 

2 ∑ ``
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

𝑝0 − 𝑘
= 𝑆1(𝑝0)

𝑘2

𝑘=𝑘1

+ 𝑆2(𝑝0),          

(2.23) 

where two strokes mean that in the sum are absent 

non-negative summands and with index k = p0. 

First, we estimate the first sum. Representing it in 

the form 

𝑆1(𝑝0) ∑
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

𝑝0 − 𝑘
𝑘∶ 𝑘 ∈ [𝑘1  ,𝑘2 ],

0 < |𝑝0 – 𝑘|< 𝜈

+ 

∑
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

𝑝0 − 𝑘
𝑘∶ 𝑘 ∈ [𝑘1  ,𝑘2 ],

0 < |𝑝0 – 𝑘| ≥𝜈

= 𝑆1,1(𝑝𝑜) + 𝑆1,2(𝑝𝑜).                   (2.24) 

In the case {k : k  ∈ [𝑘1, 𝑘2],0 < |p 0 − k| ≥ ν} = 

∅ believe that the second term is zero. 

From the inequality (2.20) have 

|𝑆1,1(𝑝0)| ≤  2𝜔(𝑓,
𝜋

√𝜆
) ∑

1

𝑘
<

𝜖

3
.                           (2.25)

𝑣

𝑘=1

 

We now estimate the amount 𝑆1,2(𝑝0). If 𝑝0 such 

that inequalities are fair k1 ≤ p0 — v < p0 < p0 + v ≤ k2, 
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then ratios take place p0 — k1 ≥ ν k2 — p0 ≥ ν. Hence by 

(2.21), after taking the Abel transform we obtain estimate 

|𝑆1,2(𝑝0)| ≤ | ∑
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

𝑝0  −  𝑘

𝑝0−𝑣

𝑘=𝑘1

|

+ | ∑
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

𝑘 − 𝑝0 

𝑘2

𝑘=𝑝0+𝑣

| ≤ 

| ∑
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)

(𝑝0 –  𝑘)(𝑝0  −  𝑘 −  1)

𝑝0−𝑣−1

𝑘=𝑘1

|

+ |
𝑓(𝑥𝑝0−𝑣+1,𝜆) − 𝑓(𝑥𝑘1,𝜆)

𝑝0 − 𝑘1 
| + 

| ∑
𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑝0 + 𝑣,𝜆)

(𝑘 − 𝑝0 )(𝑘 +  1 − 𝑝0)

𝑘2−1

𝑘=𝑝0+𝑣

|

+ |
𝑓(𝑥𝑘2,𝜆) − 𝑓(𝑥𝑝0+𝑣,𝜆

)

𝑘2 − 𝑝0 
| ≤ 

4‖𝑓‖𝐶[𝑎,𝑏] ∑
1

𝑖(𝑖 +  1)
+

4‖𝑓‖𝐶[𝑎,𝑏]

𝑣
≤

8‖𝑓‖𝐶[𝑎,𝑏]

𝑣

∞

𝑖=𝜈

<
𝜖

3
.           

(2.26) 

Similarly we prove (2.26), if p0 would be so, that 

will be inequality  𝑝0 −ν < k 1 ≤ 𝑝0< 𝑝0+ ν ≤ k 2 or 

inequality k 1 ≤ 𝑝0− ν < 𝑝0≤ k 2 < 𝑝0+ ν. Of the possible 

variant remained only when 𝑝0- v < k1 < 𝑝0 < k2 < 𝑝0 

+ v. In this situation, we have |S1,2(𝑝0)| = 0. 

From (2.24), (2.25) end (2.26) we obtain inequality 

                  |𝑆1(𝑝0)| ≤
2˜ 𝜖

3
                                 (2.27) 

for all λ ≥ n 1 . 

Let’s move on to the study of the properties of the 

sum S2(p0). Take any integer m :1  ≤ m  ≤ k2 — k1 — 2 

and represented S2(p0) in the form 

0 ≤  𝑆2 (𝑝 0 ) =  −2 

∑
``𝑓(𝑥𝑘+1,𝜆  )  −  𝑓(𝑥𝑘,𝜆  )

|𝑝0 − 𝑘|
−

𝑘∶ 𝑘 ∈ [𝑘 1 ,𝑘 2 ],
|𝑝0 − 𝑘| ≤ 𝑚

 

2 ∑
``𝑓(𝑥𝑘+1,𝜆  )–  𝑓(𝑥𝑘,𝜆  )

|𝑝0 − 𝑘|
𝑘∶ 𝑘 ∈ [𝑘 1 ,𝑘 2 ],

|𝑝0 – 𝑘|> 𝑚

= 𝑆2,1(𝑝0) + 𝑆2,2(𝑝0).       (2.28) 

Function  f ∈ C(𝜔𝑙  [a,b]), therefore by defini-

tion (2.1) we have relation 

𝑓(𝑥𝑘+1,𝜆) −  𝑓(𝑥𝑘,𝜆 ) ≥  −𝐾𝑓 𝜔 (
𝜋

√𝜆
). 

Therefore 

0 ≤  𝑆2,1 (𝑝 0 ) =  −2 

∑
``𝑓(𝑥𝑘+1,𝜆  )  −  𝑓(𝑥𝑘,𝜆  )

|𝑝0 − 𝑘|
≤

𝑘∶ 𝑘 ∈ [𝑘 1 ,𝑘 2 ],
|𝑝0 − 𝑘| ≤ 𝑚

 

4𝐾𝑓 𝜔 (
𝜋

√𝜆
) ∑

1

𝑘

𝑚

𝑘=1

.                                    (2.29) 

We estimate the amount 𝑆2,2 (𝑝 0 ). 

0 ≤  𝑆2,2 (𝑝 0 ) =  −2 

∑
``𝑓(𝑥𝑘+1,𝜆  )  −  𝑓(𝑥𝑘,𝜆  )

|𝑝0 − 𝑘|
≤

𝑘∶ 𝑘 ∈ [𝑘 1 ,𝑘 2 ],
|𝑝0 − 𝑘|> 𝑚

 

2 ∑
−(𝑓(𝑥𝑘+1,𝜆  ) −  𝑓(𝑥𝑘,𝜆  ))−

𝑝0 − 𝑘

𝑝0 – 𝑚−1

𝑘=𝑘 1

+ 2 ∑
−(𝑓(𝑥𝑘+1,𝜆  ) −  𝑓(𝑥𝑘,𝜆  ))−

𝑘 − 𝑝0

𝑘 2

𝑘=𝑝0+𝑚+1

.           (2.30) 

Note that 𝑝0 — m < k1 or p0 + m > k2, then in 

(2.30) disappears respectively, the first or second term. In 

case that 𝑝0 — m < k1 < k2 < p0 + m, sum S2,2(p0) in 

(2.28) absent. Take into account that f ∈ V (v) . We 

will apply Abel’s transformation in estimate (2.30) 

0 ≤ 𝑆2,2(𝑝0) ≤ 

2 (
∑ −(𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆))−

𝑝0−𝑚−1
𝑘=𝑘1

𝑝0 − 𝑘1

+ ∑
∑ −(𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆))−

𝑝0−𝑚−1
𝑗=𝑘

(𝑝0 − 𝑘)(𝑝0 − 𝑘 + 1)

𝑝0−𝑚−1

𝑘=𝑘1+1

+
∑ −(𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆))−

𝑝0−𝑚−1
𝑘=𝑝0+𝑚+1

𝑘2 − 𝑝0

+ ∑
∑ −(𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆))−

𝑘
𝑗=𝑝0 +𝑚+1

(𝑝0 − 𝑘)(𝑝0 − 𝑘 − 1)

𝑘2−1

𝑘=𝑝0+𝑚 +1

) ≤ 

2 (

((𝑝0 − 𝑘1) − 𝑚 − 1)𝐾𝑓 𝜔(
𝜋

√𝜆
)

(𝑝0 − 𝑘1)

+ 𝑀𝑓 ∑
𝑣(𝑘 − 𝑝0 −  𝑚)

(𝑝0 −  𝑘)(𝑝0  −  𝑘 −  1)

𝑘2−1

𝑘=𝑝0+𝑚+1

) ≤ 

2𝑀𝑓 ( ∑
𝑣(𝑘 −  𝑚)

𝑘(𝑘 +  1)

𝑝0−𝑘1−1

𝑘=𝑚+1

+ ∑
𝑣(𝑘 −  𝑚)

𝑘(𝑘 +  1)

𝑘2−𝑝0−1

𝑘=𝑚+1

)

+ 4𝐾𝑓 𝜔(
𝜋

√𝜆
)

≤ 4𝑀𝑓 ∑
𝑣(𝑘)

 𝑘2
+ 4𝐾𝑓 𝜔 (

𝜋

√𝜆
) .

𝑘2−𝑘1−1

𝑘=𝑚+1

 

Hence (2.28), (2.29) and (2.30) we have 
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0 ≤ 𝑆2(𝑝0) ≤ 4𝐾𝑓 𝜔 (
𝜋

√𝜆
) ∑

1

𝑘

𝑚

𝑘=1

+ 4𝑀𝑓 ∑
𝑣(𝑘)

 𝑘2
+ 4𝐾𝑓 𝜔 (

𝜋

√𝜆
) .

𝑘2−𝑘1−1

𝑘=𝑚+1

 

Conditions (2.2), due to the non-negativity of both 

summands, equivalent to 

lim
𝑛→∞

𝑚𝑖𝑛1≤𝑚≤𝑘 2 −𝑘 1 −1 max {𝜔 (
𝜋

√𝜆
) ∑

1

𝑘

𝑚

𝑘=1

, ∑
𝑣(𝑘)

 𝑘2

𝑘2−𝑘1−1

𝑘=𝑚+1

 }

= 0. 

Therefore exists an n2 ∈ N,n 2 ≥ n 1, that for avery 

λ ≥ n 2there are  m : 1 ≤m ≤ k 2 − k 1 − 1for which the 

inequality 

                                                                                       

0 ≤ 𝑆2(𝑝0) ≤
𝜖

3
.                             (2.31) 

As result of by (2.22), (2.23), (2.24), (2.27) and 

(2.31) we get that for any  ϵ> 0 exists an n2 ∈ N, that 

for every λ > n 2 > n 1  there exists an m : 1 ≤ m ≤k 2 − k 

1 − 2, that performed the inequalities 

𝑄𝜆
∗(𝑓, [𝑎, 𝑏], 𝜀) ≤ 𝑄𝜆

∗∗(𝑓, [𝑎, 𝑏], 𝜀) < 𝜖 

Now Theorem 2.1 follows from Proposition 2.5. 

 To prove the theorem 2.1 if f ∈ C(𝜔𝑟 l [a,b]) ∩ 

𝑉+(v) is sufficient to note that if f ∈ C(𝜔𝑟 l [a,b]) ∩ 

𝑉+(v), then —f ∈ C(𝜔𝑙 l [a,b]) ∩ 𝑉−(v)  and opera-

tor C Ω (f, . ) — linear. Theorem 2.1 proved. 

Remark 2.7. In the case when f ∈ C(ωl l [a,b]) ∩ 

V (v) or f ∈ C(ωr l [a,b]) ∩ V (v)  (v is the ma-

jorant classic module change v(n, f)) in
[33]

 proved that the 

conditions of the form (2.2) are sufficient for the uniform 

convergence of trigonometric interpolation processes and 

sequences of classical Lagrange interpolation polynomi-

als with the matrix of interpolation nodes P.L. Cheby-

shev. 

The paper
[34]

 set uniform convergence of trigono-

metric Fourier series for the 2π —periodic, functions of 

the class f ∈ C(ω  l [a,b]) ∩ V (v)), where functions  

ω(f,δ) are majorants classical modulus of continuity 

ш(f, b) and module changes v(n, f). 

Remark 2.8. From Theorem 2.1 it follows that if f1 

∈  C(ω1
r [[a,b]) ∩ V

+
(v1), and f2 ∈  C(ω2

r [[a,b]) ∩ 

V
-
(v2), and the two pairs of functions (vi,ωi), where i = 1, 

2, satisfy the relation (2.2), that, although a linear com-

bination of f = af1 + βf2 can non-belong to any of classes, 

however because of the linearity of the operator C Ω (f,·), 

will have the relate (2.3). 

Remark 2.9. Each of the classes of functions: 

Dini-Lipschitz limn→∞ ω (f,
1

n
) ln n  =0 (see

[20]
, Corol-

lary 2), and satisfying the condition of Krylov (continu-

ous function of bounded variation), is a subset of func-

tional class, described by the terms (2.2). 

Remark 2.10. If f  ∈ C[0,π] there are the relations 

𝑣  +(𝑛, 𝑓)  ≤  𝑣(𝑛, 𝑓) ≤ 2(𝑣  +(n, 𝑓) + ‖𝑓‖𝐶[0,𝜋], 

−𝑣  −(𝑛, 𝑓) ≤  𝑣(𝑛, 𝑓) ≤ 2(−𝑣  −(𝑛, 𝑓) + ‖𝑓‖𝐶[0,𝜋], 
Corollary 2.11. From Theorem 2.1 follow that 

limn→∞ ωl (f,
1

n
) ln n  =0 or limn→∞ ωr (f,

1

n
) ln n  =0 

ensure fairness (2.3). 

Corollary 2.12. If a non-decreasing, concave func-

tion of natural argument v such that 

∑
𝑣(𝑘)

𝑘2
< ∞,                            (2.32)

∞

𝑘=1

 

then for any function  f ∈ C[0,π] ∩ V
±

 (v)is true 

ratio (2.3). 

  Proof. Indeed, from the continuity of f implies the 

existence of a sequence of positive integers 
{𝑚𝑛}𝑛=1

∞ such that lim𝑛→∞ 𝑚𝑛 = ∞  to and 

lim𝑛→∞ 𝜔 (𝑓,
1

𝑛
) ln 𝑚𝑛 = 0  . Therefore, the conver-

gence of series (2.32) ensures that the condition (2.2) for 

any function f, belonging to at one the classes of C[0,π] 

∩ V
+ 

(v) or C[0,π] ∩ V 
− 

(v). The proof is complete. 
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