Design of solar huts

Xinyu Ling, Jinjuan Chen, Zhuoshou Pang

Department of Industrial Engineering, Tianjin University of Architecture, Tianjin, China

Abstract: This problem is a solar hut photovoltaic cell in the attached and overhead two installation methods, the type of photovoltaic cells and array mode and inverter type optimization design issues. In question 1, since the photovoltaic cells are attached to the roof and exterior surfaces, the direction and angle of the battery are uniquely determined by the direction and angle of the attached surface. The problem is translated to optimize the installation of a certain type on a single surface area (array) of photovoltaic cells, so that the total amount of solar photovoltaic power generation as much as possible, and the unit power generation costs as small as possible, which is a multi-objective optimization problem. The problem can be discussed in the ideal environment in a single surface area of the battery installation optimization program, and then the actual environment of the multi-surface optimization. In the solution to Problem 1, the unit on the south of the roof of the battery at the moment to accept the solar energy formula is generated. The definition of and is the moment of direct radiation intensity, for the moment the sun and the south of the roof of the plane where the angle, for the level of horizontal radiation intensity, for the south of the roof and the horizontal angle, the planefor the plane, the center of the heart, the vertical upward direction is the axis of the positive coordinate system, obtained with the sun height angle, the sun azimuth, red angle, angle and the sun when the relationship is generated. The conclusion is only installed in the small roof surface type of battery C11, and the rest of the surface is not installed. 35 years of electricity generation is 77126 degrees, the economic benefits of 16,488 yuan, the recovery period of 21.3 years. In question 2, because the photovoltaic cells in the roof and the external wall surface can be installed overhead, the panel orientation and tilt will affect the efficiency of photovoltaic cells. Therefore, in the optimization scheme of Problem 1, the orientation and inclination of the panel on each surface are further adjusted to calculate the optimum orientation and inclination of the panel on each surface. The problem can be in the ideal weather environment to establish the sun running and the battery board efficiency model, and then the measured environment test. The optimal orientation of the panel is southward, and the optimal angle with the ground plane is 39.89 degrees. The conclusion is only installed in the small roof surface type of battery C11, and the rest of the surface is not installed. 35 years of generating capacity of 82165.2 degrees, the economic benefits of 18,998 yuan, the recovery period of 13 years. In question 3, by the optimization of the above two issues, in the building to meet the requirements of the hut under the design of the various aspects of the cabin and battery installation, and further optimize the total power generation of the hut, economic benefits. The whole model solver is run in MATLAB7.0.

Key words: photovoltaic cell module inverter rated power

1.Problem restatement

In the design of solar huts, the need to build the outer surface of the building (roof and external walls) laying photovoltaic cells, photovoltaic modules produced by the DC power through the inverter into 220V AC power for home use, and the remaining power into the grid. The price of each type of photovoltaic cell is very different, and the actual power generation efficiency or power generation per peak tile is affected by many factors such as solar radiation intensity, light incident angle, environment, geographical distance of the building, the regional climate and weather conditions, installation sites and methods and so on. Therefore, in the design of solar huts, it is important to study the optimal laying of photovoltaic cells on the outer surface of the hut.

Annex 1-7 provides relevant information. Please refer to the data provided in the annex to the following three issues, respectively, to give the outer surface of the cottage photovoltaic cell laying program, so that the whole year the total solar photovoltaic power generation as much as possible, and the unit power generation costs as small as possible, calculate the total amount of electricity generated in the 35year life period of the photovoltaic cells, the economic benefits (the current civil electricity price is 0.5 yuan / kWh) and the investment recovery period.

In the solution of each problem, are required to be equipped with illustrations, given the outer surface of the cabin battery packs to lay out the array graphics and component connection (string, parallel) diagram, but also to give the battery pack packet array capacity and optional reverse variable list of specifications.

In the same surface with two or more types of photovoltaic cell components, the same type of battery panels can be connected in series, and different types of panels cannot be connected in series. On different surfaces, even the same type of battery cannot be string, parallel connection. Attention should be paid to the combination of packet connection and inverter.

Question 1: According to the meteorological data of Datong City, Shanxi Province, only part of the outer surface of the hut (see Annex 2) is laid out by considering the installation method and the PV module is selected. According to the number and capacity of the battery pack, with the corresponding inverter capacity and quantity.

Question 2: The orientation and inclination of the panel will affect the efficiency of the photovoltaic cell. Please select the aerial type to install the photovoltaic cell and reconsider the problem.

Question 3: According to the requirements of the cottage construction given in Annex 7, please re-design a hut for Datong City, ask to draw the outline of the hut and optimize the laying of photovoltaic cells on the outer surface of the designed hut, giving laying and grouping, optional inverter, calculate the corresponding results.

2.Problem analysis

The problem is that a solar cottage photovoltaic cell in the two installation methods, the type of photovoltaic cells and array mode and inverter type optimization design issues.

In question 1, since the photovoltaic cells are attached to the roof and exterior surfaces, the direction and angle of the battery are uniquely determined by the direction and angle of the attached surface. The problem is translated to optimize the installation of a certain type on a single surface area (Array) of photovoltaic cells, so that the total amount of solar photovoltaic power generation as much as possible, and the unit power generation costs as small as possible, which is a multi-objective optimization problem. The problem can be discussed

in the ideal environment in a single surface area of the battery installation optimization program, and then the actual environment of the multi-surface optimization.

In question 2, because the photovoltaic cells in the roof and the external wall surface can be installed overhead, the panel orientation and tilt will affect the efficiency of photovoltaic cells. Therefore, in the optimization scheme of Problem 1, the orientation and inclination of the panel on each surface are further adjusted to calculate the optimum orientation and inclination of the panel on each surface. The problem can be in the ideal weather environment to establish the sun running and the battery board efficiency model, and then the measured environment test.

In question 3, by the optimization of the above two issues, in the building to meet the requirements of the hut under the design of the various aspects of the cabin and battery installation, and further optimize the total power generation of the hut, economic benefits.

3.Symbol description

- Solar elevation angle Sun azimuth Angle
- ningie D 1

Red angle Datong latitude is

The direct direction of the sunlight and the normal angle of the panel

The azimuth of the panel The height of the panel Roof area

3. Model assumptions

3.1 Model assumptions

(1) Do not consider the weather changes, natural disasters and other factors, do not consider the human disturbance factors.

(2) Assume that the energy generated by the solar cottage can be effectively output.

(3) Do not consider the installation of the battery spacing and overhead equipment, wiring, labor hours and other installation costs and costs.

4.Mdel of the establishment and solution

Model one

In the ideal environment, that is, regardless of weather changes, natural disasters and human disturbance and other factors, the establishment of a sun in a year when running, fixed to the tilt and tilt of the panel, the panel received the sum of solar energy of the calculation model.

1, Assuming that the radiation intensity of the sun in the model is fixed, it is assumed that the rays from the sun are parallel and do not take into account the reflection of light;

2, Set the size of the panel (regardless of the thickness);

3, To the diagonal center of the panel as the origin, the sun azimuth and the sun height angle for the polar coordinates of the two directions, the sun height angle is the sun relative to the horizon of the height angle, which is the sun as the geometric center of the disk and the angle of the ideal horizon. The sun azimuth is the angle of the sun in the azimuth, that is, the angle measured clockwise from the north along the horizon. Create a spatial polar coordinate system as shown below

As can be seen from Annex 6, the solar elevation angle is approximated by the following formula:

The sun azimuth angle can also be used to calculate the approximation by the following two formulas,

for the sun's azimuth, for the sun's height angle, for the time angle, for the then sun's declination, for the local geographical latitude (Datong's latitude is).

The normal direction of the panel is set in the coordinate system as, the direction of the sun as is that the light has the wave-particle duality, and the sunlight is regarded as the light quantum state, regardless of the fluctuation factor.

Theorem 1: The efficiency of solar panels to accept solar energy is proportional to the projected area of the panel in the direction of sunlight.

Let the angle between the direct direction of the sunlight and the normal direction of the panel be

Among them

By the projective area formula

The calculation of the model system in 35 years.

In the ideal state, do not consider the cost of the inverter, the efficiency of each battery and the economic results of the calculation of the following table (matlab code see annex), the results from the ideal income from large to small row.

Roof surface battery efficiency

Battery Type The Ideal Benefits (Yuan) After 35 Year-Old Battery Cost (Yuan)The Ideal Income (Yuan)

	Duttery	/05t (1 uun	jine ideu	meonie
B5	13252.66	5	3500.00	9752.66
B2	13578.98	3	4000.00	9578.98
A2	13786.10)	4842.50	8943.60
B6	12605.78	3	3687.50	8918.28
A6	12518.51		4395.50	8123.01
B1	11328.86	3312.50	8016.36	
B7	10686.69)	3125.00	7561.69
A4	11550.17	4023.00	7527.17	
B3	10041.12	2	2625.00	7416.12
B4	10291.13	;	3000.00	7291.13
A3	10203.65	5	2980.00	7223.65
A5	10469.24	Ļ	3650.50	6818.74
A1	9188.75	3203.50	5985.25	
C11	4275.18	480.00	3795.18	
C1	4272.27	480.00	3792.27	
C3	4271.80	480.00	3791.80	
C2	3843.96	432.00	3411.96	
C10	2476.87	278.40	2198.47	
C9	2137.57	240.00	1897.57	
C8	512.60	57.60	455.00	
C7	510.91	57.60	453.31	
C6	341.53	38.40	303.13	
C5	171.75	19.20	152.55	
C4	170.74	19.20	151.54	

East to surface battery efficiency

Battery Type The Ideal Benefits (Yuan) After 35 Year-Old Battery Cost (Yuan)The Ideal Income (Yuan)

	Battery Cost (Yuan)The Ideal	Income (Yua
B5	8564.814864	3500	5064.81486
B2	8775.707524	4000	4775.70752
B6	8146.757568	3687.5	4459.25757
A2	8909.565173	4842.5	4067.06517
B1	7321.520719	3312.5	4009.02072
B3	6489.292243	2625	3864.29224

B7	6906.505489	3125	3781.50549
A6	8090.356356	4395.5	3694.85636
B4	6650.86171	3000	3650.86171
A3	6594.330906	2980	3614.33091
A4	7464.545537	4023	3441.54554
A5	6765.970411	3650.5	3115.47041
A1	5938.424196	3203.5	2734.9242
C11	2762.924438	480	2282.92444
C1	2761.04761	480	2281.04761
C3	2760.743764	480	2280.74376
C2	2484.244003	432	2052.244
C10	1600.730664	278.4	1322.33066
C9	1381.447717	240	1141.44772
C8	331.2778436	57.6	273.677844
C7	330.1854624	57.6	272.585462
C6	220.7218037	38.4	182.321804
C5	110.9979424	19.2	91.7979424
C4	110.3461929	19.2	91.1461929

South to surface battery efficiency

Batt	ery Type	The	Ideal	Benefit	s (Yuan)	After	35	Year-Old
	Battery C	Cost (Y	/uan)T	he Ideal	Income (Y	'uan)		
B5	8682.288	05	3	500	5182.2880)5		
B2	8896.073	269	4	000	4896.0732	.7		
B6	8258.496	769	3	687.5	4570.9967	'7		
A2	9031.766	882	4	842.5	4189.2668	8		
B1	7421.941	146	3	312.5	4109.4411	5		
В3	6578.298	001	2	625	3953.298			
B7	7001.233	655	3	125	3876.2336	6		
A6	8201.321	97	4	395.5	3805.8219	7		
B4	6742.083	521	3	000	3742.0835	2		
A3	6684.777	352	2	980	3704.7773	5		
A4	7566.927	663	4	023	3543.9276	6		
A5	6858.771	028	3	650.5	3208.2710	13		
A1	6019.874	364	3	203.5	2816.3743	6		
C11	2800.820	124	4	80	2320.8201	2		
C1	2798.917	554	4	80	2318.9175	5		
C3	2798.609	54	4	80	2318.6095	54		
C2	2518.317	368	4	32	2086.3173	7		
C10	1622.685	947	2	78.4	1344.2859	5		
C9	1400.395	362	2	40	1160.3953	6		
C8	335.8215	803	5	7.6	278.22158	;		
C7	334.7142	162	5	7.6	277.11421	6		
C6	223.7491	772	3	8.4	185.34917	7		
C5	112.5203	666	1	9.2	93.320366	6		
C4	111.8596	779	1	9.2	92.659677	'9		

West to surface battery efficiency

Battery Type The Ideal Benefits (Yuan) After 35 Year-Old Battery Cost (Yuan)The Ideal Income (Yuan)

B5	8682.28805	3500	5182.28805
B2	8896.073269	4000	4896.07327
B6	8258.496769	3687.5	4570.99677
A2	9031.766882	4842.5	4189.26688
B1	7421.941146	3312.5	4109.44115
B3	6578.298001	2625	3953.298
B7	7001.233655	3125	3876.23366
A6	8201.32197	4395.5	3805.82197
B4	6742.083521	3000	3742.08352
A3	6684.777352	2980	3704.77735
A4	7566.927663	4023	3543.92766
A5	6858.771028	3650.5	3208.27103

A1	6019.874364	3203.5	2816.37436	
C1	1 2800.820124	480	2320.82012	
C1	2798.917554	480	2318.91755	
C3	2798.60954	480	2318.60954	
C2	2518.317368	432	2086.31737	
C1	0 1622.685947	278.4	1344.28595	
C9	1400.395362	240	1160.39536	
C8	335.8215803	57.6	278.22158	
C7	334.7142162	57.6	277.114216	
C6	223.7491772	38.4	185.349177	
C5	112.5203666	19.2	93.3203666	
C4	111.8596779	19.2	92.6596779	

North to surface battery efficiency

Battery Type The Ideal Benefits (Yuan) After 35 Year-Old Battery Cost (Yuan)The Ideal Income (Yuan)

	-		
B5	8775.092	3500	5275.092
B2	8991.163	4000	4991.163
B6	8346.771	3687.5	4659.271
A2	9128.307	4842.5	4285.807
B1	7501.274	3312.5	4188.774
B3	6648.613	2625	4023.613
B7	7076.069	3125	3951.069
A6	8288.985	4395.5	3893.485
B4	6814.149	3000	3814.149
A3	6756.23	2980	3776.23
A4	7647.81	4023	3624.81
A5	6932.084	3650.5	3281.584
A1	6084.22	3203.5	2880.72
C11	2830.758	480	2350.758
C1	2828.835	480	2348.835
C3	2828.524	480	2348.524
C2	2545.235	432	2113.235
C10	1640.031	278.4	1361.631
C9	1415.364	240	1175.364
C8	339.4112	57.6	281.8112
C7	338.2919	57.6	280.6919
C6	226.1408	38.4	187.7408
C5	113.7231	19.2	94.5231
C4	113.0553	19.2	93.8553

As can be seen from the above table, the efficiency of the battery type is constant in each surface. It is best B5, the worst is C4.

Datong measured the environment within 35 years of revenue calculation

The following with Datong year measured data to calculate the surface of the various types of battery efficiency, regardless of the cost of the inverter

Roof surface battery efficiency

Battery Type The Ideal Benefits (Yuan) After 35 Year-Old Battery Cost (Yuan)The Ideal Income (Yuan)

	Dattery Cost (Tuan) The fucal	meome (Tuan)
C11	838.3295751	480	358.329575
C1	837.7601057	480	357.760106
C3	837.6679125	480	357.667913
C2	753.7720507	432	321.772051
C10	485.6954606	278.4	207.295461
C9	419.1603874	240	179.160387
C8	100.5166881	57.6	42.9166881
C7	100.1852365	57.6	42.5852365
C6	66.97165269	38.4	28.5716527
C5	33.67911789	19.2	14.4791179
C4	33.48136335	19.2	14.2813634

4										
	B3	1968.988198	2625	-656.0118	A1	1088.14969	99	3203.5	-2115.3503	
	В5	2598.745556	3500	-901.25444	B6	1492.80204	47	3687.5	-2194.698	
	A3	2000.859144	2980	-979.14086	B2	1608.05007	79	4000	-2391.9499	
	B4	2018.011783	3000	-981.98822	A5	1239.7882	71	3650.5	-2410.7117	
	B7	2095.5795	3125	-1029.4205	A4	1367.79433	36	4023	-2655.2057	
	B1	2221.503878	3312.5	-1090.9961	A6	1482.4671	57	4395.5	-2913.0328	
	B6	2471.898151	3687.5	-1215.6018	A2	1632.57799	94	4842.5	-3209.922	
	B2	2662.734839	4000	-1337.2652						
	A1	1801.843208	3203.5	-1401.6568	Wes	st to surface	batterv e	fficiencv		
	A5	2052.938192	3650.5	-1597.5618	Bat	tery Type 3	5 Years	of The Ide	eal Benefits (Yuan)	Battery
	A4	2264.900626	4023	-1758.0994	Cost (Yu	an) T	The Ideal	Income (Yuan)	5
	A6	2454.784834	4395.5	-1940.7152	Č11	487.527654	4	480	7.527654	
	A2	2703.350075	4842.5	-2139.1499	C1	487.196481	1	480	7.196481	
					C3	487.142866	64	480	7.1428664	
	East	to surface battery e	fficiency		C2	438.353519	92	432	6.3535192	
	Batt	ery Type The Ide	al Benefi	its (Yuan) After 35 Year-Old	C10	282.454508	89	278.4	4.0545089	
		Battery Cost (Yuan)The Idea	l Income (Yuan)	С9	243.761268	81	240	3.7612681	
	C11	618.771236	480	138.771236	C8	58.4551309	98	57.6	0.85513098	
	C1	618.3509105	480	138.350911	C7	58.2623765	5	57.6	0.6623765	
	C3	618.2828627	480	138.282863	C6	38.947132	12	38.4	0.54713212	
	C2	556.3593094	432	124.359309	C5	19.5859740	08	19.2	0.38597408	
	C10	358.4919218	278.4	80.0919218	C4	19.4709706	62	19.2	0.27097062	
	C9	309.3823702	240	69.3823702	B3	1145.05825	51	2625	-1479.9417	
	C8	74.19138863	57.6	16.5913886	A3	1163.59268	89	2980	-1816.4073	
	C7	73.9467442	57.6	16.3467442	B4	1173.56774	46	3000	-1826.4323	
	C6	49.43179096	38.4	11.031791	B7	1218.67698	83	3125	-1906.323	
	C5	24.85856401	19.2	5.65856401	B5	1511.29145	56	3500	-1988.7085	
	C4	24.71260134	19.2	5.51260134	B1	1291.90786	68	3312.5	-2020.5921	
	B3	1453.310603	2625	-1171.6894	A1	1047.85566	62	3203.5	-2155.6443	
	A3	1476.834556	2980	-1503.1654	B6	1437.52378	88	3687.5	-2249.9762	
	B4	1489.494922	3000	-1510.5051	B2	1548.50420	02	4000	-2451.4958	
	B7	1546.74767	3125	-1578.2523	A5	1193.87907	78	3650.5	-2456.6209	
	B5	1918.134643	3500	-1581.8654	A4	1317.14509	96	4023	-2705.8549	
	B1	1639.69248	3312.5	-1672.8075	A6	1427.57159	98	4395.5	-2967.9284	
	B6	1824.508546	3687.5	-1862.9915	A2	1572.12385	51	4842.5	-3270.3761	
	A1	1329.940851	3203.5	-1873.5591						
	B2	1965.365146	4000	-2034.6349	Nor	th to surface	battery	efficiency	1	
	A5	1515.274112	3650.5	-2135.2259	Bat	tery Type 3	5 Years o	of The Ide	eal Benefits (Yuan)	Battery
	A4	1671.723629	4023	-2351.2764	Cost (Yu	an) T	The Ideal	Income (Yuan)	
	A6	1811.877203	4395.5	-2583.6228	C11	563.6804 4	80	83.6804		
	A2	1995.34326	4842.5	-2847.1567	C1	563.2975 4	80	83.2975		
					C3	563.2355 4	80	83.2355		
	Sout	th to surface battery	efficiency	<i>¥</i>	C2	506.8252 4	32	74.8252		
	Batt	ery Type The Ide	al Benef	its (Yuan) After 35 Year-Old	C10) 326.5744 2	278.4	48.1744		
		Battery Cost (Yuan	i)The Idea	l Income (Yuan)	C9	281.8372 2	240	41.8372		
	C11	506.274947	480	26.274947	C8	67.58593 5	57.6	9.98593		
	C1	505.9310392	480	25.9310392	C7	67.36307 5	57.6	9.76307		
	C3	505.8753629	480	25.8753629	C6	45.03075 3	8.4	6.63075		
	C2	455.2098797	432	23.2098797	C5	22.64534 1	9.2	3.44534		
	C10	293.3159594	278.4	14.9159594	C4	22.512371	9.2	3.31237		
	C9	253.1348162	240	13.1348162	B3	1323.9192	2625	-1301.08	1	
	C8	60.70295315	57.6	3.10295315	A3	1345.348 2	2980	-1634.65	2	
	C/	00.50278653	57.6	2.902/8653	B4	1356.881 3	125	-1643.11	У 2	
	C6	40.4447/97/52	58.4	2.04479752	B7	1409.037 3	125	-1/15.96	3	
	CS	20.3391293	19.2	1.1391293	B5	1/47.3583	500	-1/52.64	2	
	C4	20.21970352	19.2	1.019/0352	BI	1493.7063	312.5	-1818.79	4	
	B3	1189.090097	2625	-1435.9099	Al	1211.533 3	203.5	-1991.96	2	
	A3	1208.33/200	2980	-1//1.002/	B6	1002.068 3	008/.5	-2025.43	2	
	Б4 D7	1218.093891	3000	-1/81.3041	B2	1/90.383 4	1000 1650 5	-2209.61	1	
	В/ Df	1203.339749	3123 2500	-1039.4003	AS	1500.300 3	0000.0	-22/0.13	ג ג	
	ы) 1	1309.400302	2212 F	-1730.3730	A4	1522.880 4	1205 5	-2300.11	4 0	
	ום	1541.50004	5512.5	-17/0.7134	A0	1020.2014	1373.3	-2144.93	,	

A2 1817.693 4842.5 -3024.807

Calculated from the actual data, the battery type is better income is C11, C1, C3, C2. Install the battery on the roof surface, the other surface due to the smaller income of each panel, taking into account the higher cost of the inverter, east, south, west and north of the surface is not the installation of the battery.

4.1 Problem (1): According to the meteorological data of Datong City, Shanxi Province, only the attached installation method is selected, the photovoltaic cell module is selected, the part of the outer surface of the hut is laid, and according to the number and capacity of the battery pack, The capacity and quantity of the inverter.

Since the photovoltaic cells are attached to the surface of the roof and exterior walls, the direction and angle of the battery are uniquely determined by the direction and angle of the attached surface. The problem is to optimize the installation of a certain type (array) of photovoltaic battery, so that the total amount of solar photovoltaic power generation as much as possible, and the unit power generation costs as small as possible, which is a multi-objective optimization problem. The problem can be discussed in the ideal environment in a single surface area of the battery installation optimization program, and then the actual environment of the multi-surface optimization.

Consider the viable combination of photovoltaic cells and inverters in the ideal environment (ie, regardless of the influence factors such as climate meteorological changes), where only one type of battery is connected to the same inverter, such as A1 -SN10 indicates that the inverter is SN10 and the battery is A1. Depending on the input voltage and input current of the inverter, the maximum combination of the arrays of the various types of batteries is shown in the following table (part of the data, see Annex *).

Array type

		Battery A	rray (row	* column	Array Po	wer (w)	Array Area
(m ^ 2)	Battery P	rice (yuan	.)	Inverter	Price	(yuan)
		Total Cos	t (yuan)	Compone	ent area (m	n2)	Watts / m2
С	5—	-SN17	6*24	14400	221.76	69120	43750
		112870	221.76	649.35			
С	5—	-SN18	6*24	14400	221.76	69120	54700
		123820	221.76	649.35			
С	5—	-SN10	1*123	12300	189.42	59040	63800
		122840	189.42	649.35			
С	5—	-SN7	1*18	1800	27.72	8640	10200
		18840	27.72	649.35			
С	5—	-SN9	1*61	6100	93.94	29280	35000
		64280	93.94	649.35			
С	5—	-SN16	2*29	5800	89.32	27840	35000
		62840	89.32	649.35			
С	4—	-SN17	5*31	13950	238.70	66960	43750
		110710	23.87	584.42			
С	4—	-SN18	5*31	13950	238.70	66960	54700
		121660	23.87	584.42			
С	4—	-SN16	1*38	3420	58.52	16416	35000
		51416	58.52	584.42			
В	1–	-SN5	1*8	2560	13.08	32000	10200
		42200	13.08	195.70			
А	.5—	-SN5	1*8	2360	13.08	35164	10200
		45364	13.08	180.41			
В	4—	-SN5	1*8	2240	13.02	28000	10200
		38200	13.02	172.11			
А	.1–	-SN10	2*34	14620	86.81	70176	63800
		133976	86.81	168.41			
А	1–	-SN17	14*6	18060	107.24	269094	43750

31284	4 107.24	168.41			
A1—SN18	14*6	18060	107.24	269094	54700
32379	4 107.24	168.41			
A1—SN6	1*19	4085	24.26	60866.5	15000
75866	.5 24.26	168.41			
A1—SN5	1*12	2580	15.32	38442	10200
48642	15.32	168.41			
A1—SN4	1*8	1720	10.21	25628	6900
32528	10.21	168.41			
A1—SN8	2*8	3440	20.43	51256	15300
66556	20.43	168.41			
A1—SN7	2*5	2150	12.77	32035	10200
42235	12.77	168.41			

According to the model and Datong measured data, it can be concluded that only the surface of the small roof installed on the battery type C11, the rest of the surface is not installed. 35 years of electricity generation is 77126 degrees, the economic benefits of 16,488 yuan, the recovery period of 21.3 years

4.2 Problem (2):

First, the best orientation of the panel and tilt calculation method: Method 1 is the use of the problem 1 model, in a variety of orientation using matlab program search the best,

Battery Type 35 Years of The Ideal Benefits (Yuan) Battery Cost (Yuan) The Ideal Income (Yuan)

-	. ()	(1)
	C11	893.0522566	480	413.052257
	C1	892.0380403	480	266.01902
	C3	891.8738455	480	265.936923
	C2	671.2282941	432	239.228294
	C10	432.5081239	278.4	154.108124
	C9	373.2591459	240	133.259146
	C8	89.50934835	57.6	31.9093483
	C7	89.21419329	57.6	31.6141933
	C6	59.63774878	38.4	21.2377488
	C5	29.99099904	19.2	10.790999
	C4	29.81490013	19.2	10.6149001
	B3	1753.369056	2625	-871.63094
	B5	2314.163208	3500	-1185.8368
	A3	1781.749892	2980	-1198.2501
	B4	1797.024187	3000	-1202.9758
	B7	1866.097651	3125	-1258.9023
	B1	1978.232354	3312.5	-1334.2676
	B6	2201.206555	3687.5	-1486.2934
	A1	1604.527711	3203.5	-1598.9723
	B2	2371.145179	4000	-1628.8548
	A5	1828.125889	3650.5	-1822.3741
	A4	2016.876829	4023	-2006.1232
	A6	2185.967276	4395.5	-2209.5327
	A2	2407.312738	4842.5	-2435.1873

The installation method is described later, the conclusion is that the optimal orientation of the panel is southward, and the optimal angle with the ground plane is 39.89 degrees. Install the battery type on the surface of the small roof only C11, the rest of the surface is not installed. 35 years of generating capacity of 82165.2 degrees, the economic benefits of 18,998 yuan, the recovery period of 13 years.

4.3 Problem (3): According to the calculation result of question 2,

the roof surface and the other four sides are as follows:

Six, the results of the model analysis

In the solution to Problem 1, the unit on the south of the roof of the battery at the moment to accept the solar energy formula is

is the moment of direct radiation intensity, for the moment the sun and the south of the roof of the plane where the angle, for the level of horizontal radiation intensity, for the south of the roof and the horizontal angle, the plane for the plane, the center of the heart , The vertical upward direction is the axis of the positive coordinate system, obtained with the sun height angle , the sun azimuth , red angle, angle and the sun when the relationship is as follows

It is concluded that the battery type is only C11 on the surface of the small roof, and the rest surfaces are not installed. 35 years of electricity generation is 77126 degrees, the economic benefits of 16,488 yuan, the recovery period of 21.3 years.

In question 2, because the photovoltaic cells in the roof and the external wall surface can be installed overhead, the panel orientation and tilt will affect the efficiency of photovoltaic cells. Therefore, in the optimization scheme of Problem 1, the orientation and inclination of the panel on each surface are further adjusted to calculate the optimum orientation and inclination of the panel on each surface. The problem can be in the ideal weather environment to establish the sun running and the battery board efficiency model, and then the measured environment test. The optimal orientation of the panel is southward, and the optimal angle with the ground plane is 39.89 degrees.

It is concluded that the battery type is only C11 on the surface of the small roof, and the rest surfaces are not installed. 35 years of generating capacity of 82165.2 degrees, the economic benefits of 18,998 yuan, the recovery period of 13 years.

REFERENCES

[1] Shenzhen He Yueda Co., Ltd. The principle of solar panels, http:

//www/pcol.cn (September 7, 2012)

[2] Yang Guiheng. Solar photovoltaic power generation system and its application, Beijing: Chemical Industry Press, 2011

[3] Chelsea, Zhang Chunming (translation). Solar photovoltaic power

generation system, Beijing: Machinery Industry Press, 2011

[4] Shou Ji-lin. Mathematics and modeling - methods and cases. Xi'an: Xi'an Jiaotong University Press, 1995

[5] Gong Jun. Mathematical modeling and experiment. Nanjing: Hohai University Press, 1998

[6] Jiang Qiyuan. Mathematical Model. Beijing: Higher Education Press, 1993

[7] Zhao Jing. Mathematical modeling and mathematical experiments, Beijing: Higher Education Press, 2000

[8] Wang Xiangdong. Mathematics Experiment. Beijing: Higher Education Press, 2004

[9] Chen Yihua. Mathematical Model. Chongqing: Chongqing University Press, 1995

[10] Zhao Kaihua, Zhong Xihua. Optics. Beijing: Peking University Press, 1982

[11] Bin Chuan Guihong, Zhang Hongmei, Cui Xiaohua. Solar photovoltaic cell and its application. Beijing: Science Press, 2008

[12] Zhang Xing, Cao Renxian. Solar photovoltaic grid-connected power generation and its inverter control. Beijing: Mechanical Industry Press, 2011