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Abstract: It is well known that determining the exact values of crossing number for circulant graphs is very difficult. Even so,

some important results in this field are still proved. D.J. Ma was proved that the crossing number of C(2m + 2, m) is m + 1[8] .

Then such problem for C(n, 3) was further solved [7]. Pak Tung Ho and X. Lin obtained accurate values for the crossover

numbers of C (3m, m) and C (3m + 1, m)[4][5]. In this paper, as a complement, we show that the edges from the principal cycle of

C(9, 3) do not cross each other in an optimal drawing.
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1. Introduction
All the graphs throughout this paper are simple. The terminology and notation are standard and can be found in [1, 10]. Here

we repeat some definitions. A circulant graph G =C(n; S) is the graph with the vertex set V(C(n; S)) = {viI0 < i < n - 1} and the

edge set E(C(n; S)) = {vivjI0 < i < n - 1, 0 < j < n - 1, (i -j) mod n e S}, S C {1, 2, . . . , |n/2|}. When S = {1, k}, for some
integer k, then C(n; S) will be simplified to C(n, k). For C(n, 3), the cycle Cn = (v0 , v1 , . . . , vn-1 , v0 ) is called the principal

cycle. It is clear that most types of circulant graphs are nonplanar.

A drawing of a graph is a representation in the plane such that its vertices are represented by distinct points and its edges by

simple continuous arcs connecting the corresponding point pairs. A drawing is good if it satisfies: (i) no edge crosses itself; (ii) no

two edges cross more than once; (iii) no more than two edges cross at a common point; (iv) no edge crosses a vertex. A crossing is the

common internal point of two edges. The crossing number of G, written Cr(G) , is the minimum number of crossings among all the

good drawings of G in the plane. An optimal drawing of G is a good drawing whose number of crossings equals to Cr(G) . Obviously,

G is planar if and only if Cr(G) = 0. And thus the crossing number is considered as an important topological measure for graphs.

For a graph, computing the crossing number is NP-complete [2]. Therefore, the exact values of crossing numbers are known only for

very restricted classes of circulant graphs. As far as we know, earlier results on this subject can be found [3]. Then H. Ren et al. [8]

proved that the crossing number of C(2m + 2, m) is m + 1. And such problem for C(n, 3) was further solved[7]. Meanwhile, it was

verified that the exact value of crossing number of C(3m, m) is m, when m > 3 [5]. In 2007, this result was extended to C(3m + 1,

m) [4]. It is showed that Cr(C(3m + 1, m)) = m + 1 for m > 3. Even though these exact numbers are confirmed, the specific

positions of these crossing points are still unknown. Moreover, little work can be found on this topic. In this paper, such position

problem of crossing point in C(9, 3) will be studied. In fact, the similar research for generalized Petersen graphs and Cartesian

products is also presented in many papers. The interested reader may refer to [11, 12, 13] for more details.

The removal number of G, denoted by h(G), is the smallest non-negative integer h such that removing some h edges from G

results in a planar subgraph of G. Easy to see that removing Cr(G) edges from an optimal drawing of G also yields a planar

subgraph. Thus Cr(G) > h(G). In [7] , it was proved that Cr(G) = h(G) = 3, if G = C(9, 3). It is a nice conclusion, because it
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implies that no edge is crossed twice in an optimal drawing of C(9, 3). However, where the three crossing points lie is not confirmed.

That is, two distinct optimal drawings of C(9, 3) may have distinct crossing points. Whether such crossing points share some

property is still unknown. In this paper, we show that no crossing in C(9, 3) is the result of a crossing between two edges which are

from the principal cycle.

2. Basic lemmas and main result
In this part, we first introduce the preliminaries and the necessary lemmas for C(9, 3). Obviously, C(9, 3) maybe

partitioned into the principal cycle C9 together with three vertex- disjoint subcycles c(0) = (v0 , v3 , v6 , v0 ), c(1) = (v1 , v4 , v7 , v1 )

and c(2) = (v2 , v5 , v8 , v2 ). In fact, the edges (vi, vj), where i + 3 = j (mod 9) for i = 0, 1, . . . , 8, are also called chords of C9 . For

the convenience of the following discussion, we should color C(9, 3). Specifically, the edges in the principal cycle C9 are assigned

blue color, and the chords are assigned red color. If a red edge crosses a red edge, we define this crossing as r - r crossing. The r - b

crossing and b - b crossing are similarly defined.

Lemma 2.1 ( [7]) For the circulant graph G = C(9, 3), h(G) = Cr(G) = 3.

As the discussion in introduction, a corollary of lemma 2.1 can be easily obtained as following.

Lemma 2.2 Let D be an optimal drawing of C(9, 3) . Then no edge is crossed twice.

Besides lemma 2.2, there is another obvious result needed to be mentioned.

Lemma 2.3 If p = (u,v, w) and q = (x,y, z) are any two cycles of length 3 in C(9, 3), then there is an automorphism θ such

that θ(u), θ(v), θ(w) are x,y, z, respectively.

This result in lemma 2.3 is easy to verify, but plays an important role in the proof of the following main result.

Theorem 2.4 Let D be an optimal drawing of C(9, 3). Then D has no b - b crossing.

Obviously, theorem2.4is a useful result because it gives the possible edges which destroy the planarity of C(9, 3). Furthermore,

theorem 2.4’s result also provides a facility for the research of topological structure of C(9, 3).

3. Proof of Theorem 2.4
Proof of Theorem 2.4. The proof is by reductio ad absurdum. Suppose that there exists at least one b - b crossing in D .

Obviously, lemma 2.1 implies that D has at most three b - b crossings. Let {v0 , v1 , . . . , v8 } be the vertex set of C(9, 3). The

procedure will be partitioned into three cases. The following proof will use Jordan Curve Theorem.

Case 1. The optimal drawing D has three b - b crossings.

Then the principal cycle is divided into four parts (see figure 1). We may define such four parts as sections which are denoted

by si(1 < i < 4) respectively. Furthermore, there exists a line (or a curve) l cutting every section into two halves (upper side and

lower side).

Fig. 1. Four sections of the principal cycle

By lemma 2.2, each side of si(i = 2, 3) contains at least one vertex (otherwise there is an edge which is crossed twice). And

each sj(j = 1, 4) also contains at least one vertex, otherwise there is an edge which crosses itself and the drawing is not good. As

a result, there are three vertices left. So we solve this problem through analyzing the positions of the remaining three vertices. For
convenience, in the following discussion, we assume that v0 lies on s1. Note that there is no r - r crossing or r - b crossing in this

case.

Since the three remaining vertices need to be distributed among four sections, at least one of the sections remains without
additional vertices. If it is one of {s1 , s4 }, without loss of generality, say s4 , then figure 2(b) depicts the distribution of some

vertices. Now v0 needs to be joined to one of {vi, vi+1, vi+2}. If v0 joins to vi, then (v0 , vi) crosses (v1 , vi+1). Moreover, ifv0
joins to vi+1, then (v0 , vi+1) crosses (v1 , vi+2). Finally, ifv0 joins to vi+2, then one of {(v0 , vi+2), (v1 , vi)} must cross (v2 ,
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vi+1). All the possibilities produce an additional crossing, a contradiction.

Fig. 2.

Thus, each of s1 and s4 must contain at least one of the remaining vertices. Then we can further claim that at least one remaining

vertices does not lie on s1 and s4. Otherwise, one of s1 and s4 , say s1 , contains three vertices. And then the distribution of vertices is

shown in figure 3. Obviously, (v0 , v6 ) crosses (v1 , v7 ) which yields a contradiction.

Fig. 3.
By the analysis above, the specific vertex-distribution is shown as figure 2(a). v0 needs to be joined to one of {vi-1 , vi, vi+1}.

If v0 joins to vi-1 , then (v0 , vi-1 ) crosses (v1 , vi). Moreover, ifv0 joins to vi+1, then (v0 , vi+1) crosses (v1 , vi+2 ).

Finally, ifv0 joins to vi, then one of {(v0 , vi), (v1 , vi+1)} must cross (v2 , vi-1 ). The additional crossings make it impossible that

case 1 holds.

Case 2. The optimal drawing D has two b - b crossings.
In this case,the principal cycle is divided into three sections s1 , s2 , s3 . Similar to the last case, there is at least one vertex on each

side of s2 , and each of {s1 , s3 } has no less than one vertex. Here, we should notice that there may be a r - b crossing in case 2. It

means that some chord crosses an edge of principal cycle. Without loss of generality, let r0 = (v0 , v3 ) be this chord if such r -b

crossing does exist. By lemma 2.3, we first determine the location of the vertices of c(0). Before the detailed analysis, we still
assume that v0 lies on s1 , and then all the vertices of c(0) lying on s3 cannot happen. In fact, it is also impossible that all the

vertices of c(0) lie on s1 . Otherwise, s1 has at least seven vertices and s2 has at most one. Therefore, we only discuss the three

possible cases: the vertices of c(0) lie on s1 , s2 or s1 , s3 or s1 , s2 , s3 .

Subcase 2.1 The vertices of c(0) lie on s1 , s2 .
Claim 1 v3 can not lie on s1 .

Proof of Claim 1. If v3 also lies on s1 , then v6 lies on s2 . And thus both two sides of s2 are the possible sides where v6
locates. We first consider that v6 lies on the upper side of s2. Then the vertex-distribution is as shown in figure 4(b). On the one

hand, if there exists a r - b crossing in D, then, according to the front assumption, this r - b crossing lies on r0 = (v0 , v3 ). As

a result, the remaining chords should be drawn without any more crossing. Obviously, it is a contradiction, since (v0 , v6 ) crosses

(v2 , v5 ). On the other hand, such r - b crossing does not exist, then (v0 , v6 ) crosses (v2 , v5 ) and (v1 , v4 ). Thus this drawing has at

least four crossings. It is also a contradiction.
Furthermore, when v6 lies on the lower side of s2 , the vertices v4 , v5 and v6 in figure 4(b) should be replaced by v6 ,v7 and

v8 , respectively.Applying the same way above, we can also get contradictions.

Fig. 4. The vertex-distribution for claim 1 and claim 2
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Claim 1 implies that v3 lies on s2 . However, the exact position of v3 is still uncertain. Therefore, we assume that v3 lies on

the lower side of s2 in the following discussion for subcase 2.1. Note that if v3 lies on the upper side of s2 , then we may use the

same way to solve this problem. Next we need to study the position of v6 .

Claim 2 v6 can not lie on s1 .

Proof of Claim 2. If v6 also lies on s1 , then the possible vertex-distribution is shown in figure 4(a). It is determined by

the order in the subscripts of vertex. Similarly, if D has no r - b crossing, then (v0 , v3 ) crosses (v5 , v8 ) and (v4 , v7 ). It is a

contradiction that this drawing has at least four crossings. We now treat the case that r0 = (v0 , v3 ) has a r - b crossing. The order

in the subscripts of vertex implies that v1 lies on the left part of v3 . Specifically, if v1 lies on s1 , then (v1 , v4 ) needs to cross

(v5 , v8 ). It is another crossing, a contradiction. And if v1 lies on s2 , then (v1 , v4 ) crosses (v2 , v8 ). It is the fourth crossing which

contradicts with the front hypothesis. □
Claim 2 further presents that v6 lies on s2 too. So the following process will be divided into two cases. First, v3 and v6 lie on

the same side of s2 (as shown in figure 5(a)). As a result, the position of c(0) is confirmed. It is straightforward that (v0 , v6 ) crosses

(v4 , v7 ). This implies that D has no r - b crossing. Then we easily check that there is at least one crossing which is produced by

two chords of {(v3 , v6 ), (v4 , v7 ), (v5 , v8 )}. This results in at least four crossings in D which is a contradiction.

Fig. 5.
Therefore, we only need to consider the final case that v6 lies on the upper side of s2 . The specific vertex-distribution is

shown in figure 5(b). Easy to find that s3 contains at least one of {v4 , v5 }. Thus we may assume that v4 lies on s3 . Moreover,

by the order in the subscripts of vertex, v1 ’s position is on the left part of v3 . v7 also lies on the left part of v6. Here, it is

necessary to say that the exact positions of v1 and v7 are still uncertain. Similar to the proof above, we first suppose that (v0 , v3 )

has no r -b crossing. The following discussion will proceed through analyzing v1 ’s exact position.

(i) If v1 lies on s1 , then (v0 , v6 ) crosses (v1 , v4 );

(ii) If v1 lies on s2 and v7 lies on s2 , then (v0 , v6 ) crosses (v4 , v7 );

(iii) If v1 lies on s2 and v7 lies on s1 (as shown in figure 5(b)), then (v2 , v8 ) crosses (v1 , v4 ).

All the three crossings have been found in each case above. Easy to see it is impossible to add the remaining chords without

getting additional crossings. It is a contradiction. Not only that, the final subcase that D has no r - b crossing can be also solved

through the similar discussion according to (i) - (iii). The proof for subcase 2.1 ends.
Subcase 2.2 The vertices of c(0) lie on s1 , s3 .

The discussion for this subcase is almost the same to that in subcase 2.1. Therefore, we will briefly highlight the important

point of this proof.
Claim 3 It does not happen that both v3 and v6 lie on s3 .

Proof of Claim 3. If such situation happens, then the positions of {v3 , v4 , v5 , v6 } can be determined as shown in figure 6(a).

Since vj needs to connect one of {v4 , v5 } to form the chord rj, there exists no r - b crossing on r0 = (v0 , v3 ), otherwise (v0 , v6 )

and rj can not be drawn without an additional crossing. Furthermore, vi also needs to connect one of {v4 , v5 } to form a chord,

denoted by ei. Then (v0 , v3 ) crosses ei. The analysis above shows this drawing has at least four crossings. It is a contradiction.
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Fig. 6. The vertex-distribution for Subcase 2.2.
By Claim 3, v3 and v6 lie on s1 , s3 , respectively. Without loss of generality, suppose that v3 lies on s1 and v6 lies on s3 .

Figure 6(b) presents the specific vertex-distribution. Then vi needs to connect one of {v1 , v2 } to form the chord ri. Similarly, vj

also needs to connect one of {v1 , v2 } to form a chord, denoted by ej. Now we easily check that drawing ri , ej, (v0 , v6 ) and (v3 ,

v6 ) yields at least two crossings whether r0 = (v0 , v3 ) has a r - b crossing or not. It is a contradiction, and thus the proof for

subcase 2.2 is over.
Subcase 2.3 The vertices of c(0) lie on s1 , s2 , s3 .

For convenience, let v3 be on s2 and v6 be on s3. Obviously, it is also possible that v3 lies on s3 and v6 lies on s2 , but the proof

techniques for such two cases are the same. Thus the following discussion focuses on the former case. By the order in the subscripts of
vertex, the upper side of s2 contains at least one of {v7 , v8 }, and then further let v7 be that one.

Claim 4 It does not happen that both v1 and v4 lie on s2 .

Proof of Claim 4. If such situation happens, then the exact positions of vertices can be determined except for {v5 , v8 } (see

figure 7(a)). v5 is on v4 → v6 segment and v8 is on v7 → v0 segment. We first treat the case that the drawing D has a r - b

crossing on r0 = (v0, v3). Then (v0, v6 ) and (v3 , v6 ) can be drawn as in figure 7(a). As a result, (v1, v7) and (v4 , v7 ) have to lie in

the interior of s2 , otherwise such two chords cross (v0 , v6 ) which yields additional crossings. Observe the structure and easily find

that (v2 , v5 ) must cross one of {(v0 , v6 ), (v3 , v6 ), (v4 , v7 )}. It denies the possibility that r0 = (v0 , v3 ) has the r - b crossing.

Furthermore, checking all the possible positions of v8 shows that one of {(v2 , v8 ), (v5 , v8 )} also contains a crossing. This

crossing, together with that on (v2 , v5 ), may result in a contradiction. □

Claim 4tellsusan important fact that at least one of {v1 , v4 } does not lie on s2 . Without loss of generality, suppose that v1
lies on s1. The specific vertex distribution is shown as figure 7(b). Similarly, the crossing between (v1, v4 ) and (v0, v6 ) ensures that

there is no r - b crossing on r0 = (v0 , v3 ) in D. Then r0 = (v0, v3 ) can be drawn as that in figure 7(b). Moreover, v4 has to

join to v7 in the interior of s2 to avoid crossing (v0, v6 ). Now we check all the possible drawing of (v2, v5 ) and find that there must

be a crossing on (v2 , v5 ). Therefore, we get another two crossings besides two b - b crossings, a contradiction. The proof for subcase

2.3 ends.

Up to now, all the proof of case 2 have been finished.

Fig. 7. The vertex-distribution for subcase 2.3.

Case 3. The optimal drawing D has one b - b crossing.
The principal cycle is divided into two sections, denoted by s1 , s2. Obviously, there must be a section of {s1 , s2 } which has at

least five vertices. Thus it is reasonable to assume that s1 contains at least five vertices. We study case 3 from the aspect of the number

of vertices which lie on s1. Here, we still need to notice that there may be r - b crossings in this case. As the discussion in case 2,

suppose that v0 lies on s1. In the following discussion, we will give the detailed proof for the subcase that s1 contains five vertices.

The other subcases can be also treated by almost the same way.
A possible vertex-distribution that s1 contains five vertices is shown in figure 8. If D has no r - b crossing, then (v3 , v6 )

may be drawn as figure 8. It is not hard to see that (v3 , v6 ) crosses (v1 , v7 ) and (v2 , v8 ). However, lemma 2.2 tells that one edge

can not be crossed twice in D. To avoid this contradiction, there must be at least one edge of {(v3 , v6 ), (v1 , v7 ), (v2 , v8 )} which

needs to change the drawing. It means that at least one of {(v3 , v6 ), (v1 , v7 ), (v2 , v8 )} has a r - b crossing.
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Fig. 8. The vertex-distribution for case 3.
Claim 5 (v3 , v6 ) has a r - b crossing.

Proof of Claim 5. This proof is also by reductio ad absurdum. If (v3 , v6 ) has no r - b crossing, then at least one of {(v1 ,

v7 ), (v2 , v8 )} crosses an edge of principal cycle to avoid crossing with (v3 , v6 ) (see figure 8). Obviously, it is impossible that both

(v1 , v7 ) and (v2 , v8 ) have r - b crossings. Otherwise, the drawing of (v0 , v6 ) and (v2 , v5 ) may yield the fourth crossing. Thus we

further assume that (v1 , v7 ) has a r - b crossing but (v2 , v8 ) does not. Then (v3 , v6 ) still crosses (v2 , v8 ), and (v0 , v6 ) crosses

(v2 , v5 ). It is a contradiction. □

Claim 5 has shown that D has ar - b crossing on (v3 , v6 ). In fact, we can further claim that D has another r - b crossing.

Otherwise, (v2 , v5 ) crosses (v0 , v6 ) and (v1 , v7 ) which contradicts with lemma 2.2. So (v2 , v5 ) have to crosses an edge of principal

cycle to avoid crossing with (v0 , v6 ) and (v1 , v7 ). It is essential to explain why this r - b crossing can not lie on (v0 , v6 ) or (v1 ,

v7 ). Because if one chord of {(v1 , v7 ), (v0 , v6 )} has a r -b crossing, then the crossing between (v2 , v5 ) and the other chord of

{(v1 , v7 ), (v0 , v6 )} becomes the fourth one, a contradiction. So far, the three crossings of D have been found. However, (v2 , v8 )

still crosses (v4 , v7 ) which yields an additional crossing. Thus D can not have one b - b crossing when s1 contains five vertices.

The remaining subcases that s1 contains 6, 7 or 8 vertices may be also verified through the same way. The proof for case 3 is over.

In summary, all the discussion above verifies the result of main theorem.

References
[1] Bondy JA, Murty USR, Graph Theory with Applications, Macmilan Ltd. Press, New York (1976).

[2] Garey MR, Johnson DS, Crossing number is NP-complete, Slam J. Alg. Disc.Math. 1 (1983), 312-316.

[3] Hao RX, Liu YP, New upper bounds on crossing number of circular graph, OR Transactions 3 (1999), 1-6.

[4] Pak Tung Ho, The crossing number of the circular graph C(3k + 1, k), Discrete Math. 307 (2007), 2771-2774.

[5] Lin X, Yang Y, Lv J, Hao X, The crossing number of C(mk, k), Graphs Combin. 21 (2005), 89-96.

[6] Lu JJ, Ren H, Ma DJ, On the crossing number of C(m, 3), J. Sys. Sci Math. Scis. 24(4) (2004), 504-512.

[7] Lu JJ, WuYR, Ren H, Crossing number of certain circular graphs, Journal of East China Normal University 2 (2005), 16-22.

[8] Ma DJ, Ren H, Lu JJ, The crossing number of the circular graph C(2m + 2, m), Discrete Math. 304 (2005), 88-93.

[9] McQillan D, Richter RB, On the crossing numbers of certain generalized Petersen graphs, Discrete Math. 104 (1992),

311-320.

[10]Mohar B and Thomassen C, Graphs on Surfaces, Johns Hopkins Univ. Press, 2001.

[11] Richter RB, Salazar G, The crossing number of P(N, 3), Graphs Combin. 18 (2002), 381-394.

[12] Salazar G, On the crossing numbers of loop networks and generalized Petersen garaphs, Discrete Math. 302 (2005), 243-253.

[13] Sz´ekely LA, A successful concept for measuring non-planarity of graphs: the crossing number, Discrete Math. 276 (2004),

331-352.

* Corresponding author

This work is supported by the National Science Foundation of China (No.12201396)

Pak Tung Ho and X. Lin the exact values of the crossing numbers of C (3m, m) and C (3m + 1, m) are obtained.




