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Abstract: In this paper we propose a multi-target linear shrinkage estimator of the
precision matrix by shrinking the inverse of the sample covariance matrix directly,
which is a generalization of the single-target linear shrinkage estimator. The explicit
expression of the weights of multi-target linear shrinkage estimator is derived when
the ratio of the dimension p and the sample size n tends to a positive constant c ∈
(0, 1). The numerical simulation and an empirical analysis of financial market data
are provided to compare the multi-target linear shrinkage estimator with some other
estimators of the precision matrix proposed in the literature. The computation results
show the improvement of the multi-target linear shrinkage estimator.

Keywords: frobenius norm; linear shrinkage estimator; multiple target matrices; precision
matrix

1. Introduction
The estimation of a large covariance matrix and its inverse matrix, known as the precision

matrix, is central to statistical learning theory and econometrics and has been receiving growing
attention from both researchers and practitioners. For example, principal component analysis
and factor analysis involve covariance matrix estimation, while Fisher linear discriminant
analysis needs precision matrix estimation. Moreover, to implement the mean-variance
portfolio in practice, the accuracy in estimating the covariance structure of returns and its
precision matrix is vital. As pointed out in Elton et al. [1] and Markowitz [2], a suitable
precision matrix estimator leads to a good estimation for different types of optimal portfolios.

Various methods have been proposed to estimate the covariance matrix and the precision
matrix in high-dimensional setting from different directions. Bodnar et al. [3] reviewed
the recent advances in the shrinkage-based estimation for high-dimensional covariance and
precision matrices. See also, e.g., Bodnar et al. [4]; Fan et al. [5]; Fan et al. [6]; Friedman et
al. [7]; Ikeda et al. [8]; Kuismin et al. [9]; Ledoit and Wolf [10,11]; Liu and Tang [12]; van
Wieringen and Peeters [13]; Wang et al. [14]; and Wang et al. [15].

For the estimation of precision matrix, one direction is to construct linear shrinkage
estimate of the covariance matrix, and then use its inverse as the estimator of the precision
matrix. The shrinkage estimator shrinks the eigenvalues of the sample covariance matrix and
forms a linear combination of the sample covariance matrix and a pre-chosen target matrix, see,
e.g., Dey and Srinivasan [16], Ledoit and Wolf [17,18]. Another approach is to shrink directly
the inverse of the sample covariance matrix itself, instead of shrinking the sample covariance
matrix and then inverting it. When both the sample size n and the dimension p tend to infinity
but their ratio tends to a positive constant, Bodnar et al. [19] proposed a direct single target
shrinkage estimator for the precision matrix.

Most of the linear shrinkage estimates in the literature use single target matrix. However,
the performance of the estimator strongly depends on the choice of the target matrix (cf. Engel et
al. [20] and Gray et al. [21]). In order to incorporate uncertainty about the target choice, Gray et
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al. [21] proposed a multi-target linear shrinkage estimator for the covariance matrix that allows
for shrinkage of the sample covariance matrix towards multiple targets simultaneously. The
multi-target estimator is less sensitive to target misspecification and leads to equal or improved
estimates compared to single-target linear shrinkage estimators, see also Bartz et al. [22] and
Lancewicki and Aladjem [23]. However, to the best of our knowledge, we have not found
any multi-target shrinkage estimation methods for the precision matrix in the literature. The
explicit expression of the shrinkage weights and the theoretical properties of the multi-target
linear shrinkage estimation of precision matrix, when both the sample size n and the dimension
p tend to infinity, are still unavailable.

Inspired by the works of Bodnar et al. [19] and Gray et al. [21], this paper considers the
linear shrinkage estimation of the precision matrix based on multiple shrinkage target matrices.
This multi-target shrinkage estimator forms a linear combination of the inverse of the sample
covariance matrix and multiple general shrinkage target matrices. In Section 2, we derive the
explicit expression of the weights of the multi-target linear shrinkage estimator in the case of
p/n → c ∈ (0, 1). In Section 3, numerical simulation and an empirical analysis of portfolio
optimization are provided to compare the multi-target linear shrinkage estimator with some
other estimators for the precision matrix proposed in the literature. The simulation results show
the improvement of the multi-target linear shrinkage estimator. The proofs of the theorems are
placed in the appendix.

2. Multi-target linear shrinkage estimator
The following notations are used throughout the paper. Let n be the sample size, p = p(n)

is the number of the variables. Σ−1
n stands for the true precision matrix, and Σ̂−1

n denotes the
estimator of Σ−1

n . Since the dimension p is a function of the sample size n, we use the subscript
n for the covariance matrix Σn which depends on n via p(n). Let Hn(t) denote the empirical
distribution function of the eigenvalues of Σn.

Let Yn be a p×nmatrix which consists of independent and identically distributed (i.i.d.)
random variables with zero mean and unit variance. The observation matrix is defined as Xn =

Σ
1
2
nYn. Sn denotes the sample covariance matrix, i.e. Sn = 1

nXnX
′
n = 1

nΣ
1
2
nYnY

′
nΣ

1
2
n .

∥A∥2F = tr(AA′) denotes the Frobenius norm of a matrix A, and 1
p∥A∥2F denotes the

normalized Frobenius norm of p× pmatrix A, while ∥A∥tr = tr
[
(AA′)

1
2

]
stands for the trace

norm, and 1
p∥A∥tr is the normalized trace norm. Define the Frobenius norm loss function as

L2
F (Σ̂

−1
n ,Σ−1

n ) = ∥Σ̂−1
n − Σ−1

n ∥2F .
Bodnar et al. [19] proposed a single-target linear shrinkage estimator for the precision

matrix which is a convex combination of the inverse of the sample covariancematrix and a target
matrix and minimizes the Frobenius norm loss. The linear shrinkage estimators are motivated
from Bayes methods which are developed to nonparametric linear estimation by estimating the
regularization parameter ω nonparametrically through the optimal weight. For more details on
the justification, motivation and application of such linear shrinkage estimation, we refer to
Bodnar et al. [19]; Ikeda et al. [8]; Ledoit and Wolf [17]; and Robbins [24].

One of the disadvantage of the single-target linear shrinkage estimation is that the
performance of the shrinkage estimator depends to a great extent on the selection of target
matrix. The choice of target should be guided by the presumed structure of the population
covariance matrix. There is often no single ideal target, and it is difficult to identify a sensible
target. The single-target estimator may be misspecified, because every target has a different
bias-variance trade-off with respect to the unknown population covariance matrix. In order to
reduce the estimation error caused by the improper selection of the target matrix, we consider
using a set of target matrices.

Let Π1, · · · ,Πk be the set of target matrices, where Πi is symmetric, positive definite
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and has uniformly bounded normalized Frobenius norm for i = 1, · · · , k. We propose the
multi-target linear shrinkage estimator Σ̂−1

n of the precision matrix

Σ̂−1
n = (1− ω1 − · · · − ωk)S

−1
n + ω1Π1 + · · ·+ ωkΠk (1)

which minimizes the loss function

L2
F (Σ̂

−1
n ,Σ−1

n ) = ∥(S−1
n − Σ−1

n )− ω1(S
−1
n −Π1)− · · · − ωk(S

−1
n −Πk)∥2F

Here Ω = (ω1, · · · , ωk)
′ is restricted by ωi ≥ 0 for i = 1, · · · , k and ω1 + · · ·+ ωk ≤ 1.

Taking the derivatives of L2
F with respect to ωi, i = 1, · · · , k, and setting them equal to

zero,

∂L2
F (Σ̂

−1
n ,Σ−1

n )

∂ωi

= −2 tr
[ (

(S−1
n − Σ−1

n )− ω1(S
−1
n −Π1)− · · · − ωk(S

−1
n −Πk)

) (
S−1
n −Πi

) ]
= 0

we obtain the optimal weight Ω∗ satisfying

AnΩ
∗ = Bn (2)

where

An =
1

p


tr[(S−1

n −Π1)(S
−1
n −Π1)] · · · tr[(S−1

n −Πk)(S
−1
n −Π1)]

...
. . .

...
tr[(S−1

n −Π1)(S
−1
n −Πk)] · · · tr[(S−1

n −Πk)(S
−1
n −Πk)]


and

Bn =
1

p


tr[(S−1

n − Σ−1
n )(S−1

n −Π1)]
...

tr[(S−1
n − Σ−1

n )(S−1
n −Πk)]


Since S−1

n is a biased estimator of Σ−1
n when p/n → c ∈ (0, 1), the shrinkage estimator

(1) actually balances the trade-off between bias and variance in an effective way. Thus Σ̂−1
n

can be regarded as a maximum likelihood estimator with special ridge penalty terms, where ωi,
i = 1, · · · , k, are the regularization parameters.

To estimate the optimal weight Ω∗, we suggest a method for estimating An and Bn

consistently. The following lemma provides the limits of ∥S−1
n ∥2F and tr(S−1

n Θ) for some
symmetric positive definite matrix Θ. The proof can be found in Theorem 3.2 of Bodnar et al.
[19]. Using this result one can easily obtain the consistent estimator of the weight Ω∗.
Lemma 1. Let p/n → c ∈ (0, 1). Assume that the elements of the matrix Yn have uniformly
bounded 4+ϵmoments, where ϵ > 0,Hn(t) converges to a limitH(t) at all points of continuity
of H , and for n large enough there exists the compact interval [h0, h1] ⊂ (0,+∞) which
contains the support of Hn. Then as n → ∞,

1

p

∣∣∣∣∥S−1
n ∥2F −

( 1

(1− c)2
∥Σ−1

n ∥2F +
c

p(1− c)3
∥Σ−1

n ∥2tr
)∣∣∣∣ a.s.→ 0 (3)
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and for symmetric positive definite matrix Θ which has uniformly bounded trace norm,∣∣∣∣tr(S−1
n Θ)− 1

1− c
tr(Σ−1

n Θ)

∣∣∣∣ a.s.→ 0 (4)

Throughout the paper we assume that the conditions of Lemma 1 are satisfied. These
conditions also ensure that Σ−1

n has uniformly bounded normalized Frobenius norm and
normalized trace norm. Note that we need the condition c < 1 to keep the sample covariance
matrix Sn invertible. The case of c > 1 is very difficult to handle because of the loss of
information as the dimension p is greater than the sample size n (cf. Bodnar et al. [19]).
Although the estimator S−1

n can be replaced by the generalized inverse matrix of the sample
covariance matrix, it is not clear how to estimate the optimal weight consistently. Since the
theory is yet to be developed fully for the c > 1 case, we leave it for future research.

Let A0 = (a0ij)k×k and B0 = (b0i)k, where

a0ij =
1

p(1− c)2
∥Σ−1

n ∥2F +
c

p2(1− c)3
∥Σ−1

n ∥2tr −
1

p(1− c)
tr[Σ−1

n (Πi +Πj)]

+
1

p
tr(ΠiΠj)

and

b0i =
c

p(1− c)2
∥Σ−1

n ∥2F +
c

p2(1− c)3
∥Σ−1

n ∥2tr −
c

p(1− c)
tr(Σ−1

n Πi)

Theorem 1 shows the non-random limit of An and Bn.

Theorem 1. Under the conditions of Lemma 1, we have as n → ∞,

An −A0
a.s.→ 0, Bn −B0

a.s.→ 0

in the sense that each element converges almost surely.

Theorem 1 implies that the asymptotic optimal weight vector Ω0 = (ω01, · · · , ω0k)
′

satisfies
A0Ω0 = B0 (5)

From Equation (5), we have Ω0 = 0 and then Ω∗ tends to 0 in the case of c = 0, which
means that the inverse of the sample covariance matrix is an asymptotically best estimator for
the precision matrix in terms of minimizing the Frobenius norm loss. In contrast if p increases,
the sample covariance matrix becomes ill-conditioned and hence the linear shrinkage estimator
(1) improves the performance of the sample estimator. The impact of this improvement becomes
larger as p approaches n, i.e. as c approaches 1. In this case, each element of Ω0 tends to 1/n
and hence Ω∗ approaches (n−1, · · · , n−1)′.

By Equation (5), to derive the a.s. consistent estimator of Ω0, it suffices to construct
Â0 and B̂0, the a.s. consistent estimators of A0 and B0, which are provided in the following
Theorem 2.
Theorem 2. Under the conditions of Lemma 1, the a.s. consistent estimators ofA0 andB0 are
given by

Â0 = An, B̂0 =
1

p


p
n∥S

−1
n ∥2F + 1

n∥S
−1
n ∥2tr −

p
n tr(S−1

n Π1)
...

p
n∥S

−1
n ∥2F + 1

n∥S
−1
n ∥2tr −

p
n tr(S−1

n Πk)
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Assume that Â0 is invertible. Then we get the estimator Ω̃ of the asymptotic optimal
weight Ω0

Ω̃ = (ω̃1, · · · , ω̃k)
′ = Â−1

0 B̂0 (6)

Since Ω is restricted on ωi ≥ 0 for i = 1, · · · , k and ω1 + · · · + ωk ≤ 1, it is reasonable
to define the a.s. consistent estimators of the shrinkage intensities as follows.

Rewrite the multi-target linear shrinkage estimator (1) as

Σ̂−1
n = (1− β)S−1

n + β
{
(1− α1 − · · · − αk−1)Π1 + α1Π2 + · · ·+ αk−1Πk

}
where β and αi, i = 1, · · · , k − 1 satisfy that 0 ≤ αi, β ≤ 1, and

ω1 + · · ·+ ωk = β, ω1 = (1− α1 − · · · − αk−1)β, ωi = αi−1β (7)

for i = 2, · · · , k. Then we construct the estimators of (α1, · · · , αk−1, β) using Equation (6)
and the relation Equation (7), namely

β̃ = ω̃1 + · · ·+ ω̃k, α̃i = ω̃i+1/β̃, i = 1, · · · , k − 1

Note that 0 ≤ αi, β ≤ 1, we estimate β and αi, i = 1, · · · , k − 1, by β̂ =

max
(
0,min(1, β̃)

)
and α̂i = max

(
0,min(1, α̃i)

)
, i = 1, · · · , k− 1. Using Equation (7) again,

we obtain the estimators

ω̂1 = (1− α̂1 − · · · − α̂k−1)β̂, ω̂i = α̂i−1β̂, i = 2, · · · , k

Now the genuine multi-target linear shrinkage estimator of the precision matrix is given
by

Σ̂−1
n = (1− ω̂1 − · · · − ω̂k)S

−1
n + ω̂1Π1 + · · ·+ ω̂kΠk (8)

Theorems 1 and 2 immediately imply the estimator Ω̂ = (ω̂1, · · · , ω̂k)
′ converges almost

surely to the asymptotic weight vector Ω0 in Equation (5), and thus converges almost surely
to its oracle optimal intensity Ω∗ in Equation (2) as n → ∞. This result is presented in the
following Theorem 3, which implies that the multi-target linear shrinkage estimator in Equation
(8) performs as well as its oracle one.
Theorem 3. Assume that Â0 is invertible. Then, under the conditions of Lemma 1, as n → ∞,

Ω̂− Ω∗ a.s.→ 0

Let

A0
n =

1

p


tr[(Σ−1

n −Π1)(Σ
−1
n −Π1)] · · · tr[(Σ−1

n −Πk)(Σ
−1
n −Π1)]

...
. . .

...
tr[(Σ−1

n −Π1)(Σ
−1
n −Πk)] · · · tr[(Σ−1

n −Πk)(Σ
−1
n −Πk)]


The following theorem shows that the shrinkage intensities tend almost surely to zero

when p/n → c = 0 as n → ∞. This implies that the multi-target linear shrinkage estimator
is asymptotically equivalent to the sample estimator. Bai and Shi [25] showed that the sample
precision matrix is consistent in the case when p/n → 0. This implies that the multi-target
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linear shrinkage estimator Σ̂−1
n is a consistent estimator for the precision matrix in this case.

Theorem 4. Assume that A0
n is invertible and p = o(n). Then, as n → ∞,

Ω̂
a.s.→ 0

Regarding the choice of the target matrices, selecting suitable targets require some
diligence. It is worth mentioning that the theoretical results derived in Theorems 1–4 are
based on the assumption that the target matrices are non-random. However, the data driven
target matrices may result in more accurate estimators, as these target matrices provide more
information about the structure of the precision matrix. Therefore, in practice, one can use the
estimators Π̂1, · · · , Π̂k of the targets to construct the multi-target linear shrinkage estimator of
the precision matrix. The theoretical investigation on the properties of the estimator when using
the estimated targets is not yet available. This topic will be pursued in the future research.

In the absence of prior information, the nine target matrices described in Table 1 in next
section can be included due to their popularity in the literature (e.g. Gray et al. [21]). This is
illustrated in Section 3 using simulations and a real data example. It is also possible to further
enrich the target set with any covariance structures not listed in Table 1. Examples include
Toeplitz, higher-order autoregressive, or latent factor structures, see, e.g., Chen [26] and Ledoit
and Wolf [27].

An overview was given in Schäfer and Strimmer [28], where six types of commonly used
targets were proposed. These targets are included in the following Table 1, denoted as Π̂1

(diagonal, unit variance), Π̂2 (diagonal, common variance), Π̂3 (diagonal, unequal variance),
Π̂4 and Π̂5 (common (co)variance), Π̂6 (unequal variance, constant correlation), and Π̂7, Π̂8

and Π̂9 (decaying correlation). In the literature it is easy to find examples where one of the
above targets is employed, see, e.g., Dobra et al. [29]; Friedman [30]; Hastie et al. [31]; and
Ledoit and Wolf [27,32].

3. Numerical and empirical studies
The purpose of this section is to compare the performance of the proposed approach

with existing ones. We also apply the proposed multi-target linear shrinkage estimator for an
empirical analysis of financial market data.

3.1. Simulation study
In this subsection we investigate the numerical performance of the proposed estimator

through simulation. We generate data as follows. Let di = 0.1 + 10 × Ui, Ui is generated
from the uniform distribution on the interval (0, 1). Let σij be the (i, j)th element of the true
covariance matrix Σ. We consider six types of covariance structures:

(Model 1) σij = didjρ
|i−j|,

(Model 2) σij = ρ|i−j|,

(Model 3) σij = didj{|i− j + 1|2h−2|i− j|2h+|i− j − 1|2h}/2,
(Model 4) σij = {|i− j + 1|2h−2|i− j|2h+|i− j − 1|2h}/2,

(Model 5) Σ =
(Σ1 0

0 Σ2

)
is a block diagonal matrix, where the elements of Σ1 and Σ2

are from (Model 1) and (Model 3), respectively,
(Model 6) Σ is a block diagonal matrix similar to (Model 5), where the elements of the
two blocks are from (Model 2) and (Model 4), respectively.
(Model 2) and (Model 4) correspond to the covariance structures of an autoregressive

process and a fractional Brownian Motion, respectively. (Model 5) and (Model 6) represent
more complex covariance structures. The data x1, ..., xn are generated by xi = Σ

1
2 yi, where

yi = (y1i, ..., ypi)
′. y1i, ..., ypi are mutually independently distributed as

6
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(Case 1) yji ∼ N(0, 1),

(Case 2) yji ∼
√
(m− 2)/mzji, zji ∼ tm,

(Case 3) yji = (zji − τ)/
√
2τ , zji ∼ χ2

τ ,
where tm is a t-distribution withm degrees of freedom and χ2

τ is a chi-square distribution with
τ degrees of freedom. (Case 2) and (Case 3) include heavy-tailed and skewed distributions,
respectively.

Gray et al. [21] listed nine popular target matrices in the literature. We choose them as
the target matrix set of our multi-target linear shrinkage estimator for the precision matrix, see
Table 1 for the set of target matrices.

Table 1. Target matrices.

correlation zero(rij = 0) constant (rij = r̄) decaying(rij = r̄|i−j|)

unit variance (νi = 1) Π̂1 Π̂4 Π̂7

common variance (νi = s̄) Π̂2 Π̂5 Π̂8

unequal variances (νi = sii) Π̂3 Π̂6 Π̂9

Here the target matrix Π̂ = V
1
2RV

1
2 , with V = diag(ν1, ..., νp) a diagonal matrix, R =

(rij)p×p a correlation matrix. sij denotes the (i, j)th element of the sample covariance matrix
Sn, while s̄, r̄ are the averages of the sample variances and correlations, respectively.

To assess the performance of the estimators, we calculate the PRIAL (Percentage Relative
Improvement in Average Loss) presented in Ledoit and Wolf [18]. The PRIAL indicates the
extent to which the MSE of the estimator Σ̂−1

n outperforms in percentage terms the MSE of the
sample precision matrix. Let Σ̂−1

n be an estimator of the precision matrix, the PRIAL is defined
by

PRIAL(Σ̂−1
n ) =

(
1− E∥Σ̂−1

n − Σ−1
n ∥2F

E∥S−1
n − Σ−1

n ∥2F

)
× 100%

which actually measures the relative improvement of an estimator over the sample precision
matrix. Thus, the improvement of the shrinkage estimator over the sample precision matrix will
be measured by how closely this estimator approximates Σ−1

n relative to the sample precision
matrix. The PRIAL being closer to 100% indicates the stronger improvement of an estimator.

In order to investigate the performance of the suggested multi-target linear shrinkage
(MULTI) estimator for the precision matrix, we introduce three benchmark estimators. Since
there exist extensive comparisons of the single-target linear shrinkage estimators and other
estimators given in the statistical literature, see, e.g. Bodnar et al. [19] and Ikeda et al. [8],
here we only compare the multi-target estimator with the single-target estimators.

The first estimator considered is the nonlinear shrinkage estimator “EV” proposed and
studied in Ledoit and Wolf [10,18,33], which is defined as

Σ̂−1
EV = UA∗U ′

where U is an orthogonal matrix whose columns are the eigenvectors of the sample covariance
matrix Sn, A∗ is a diagonal matrix whose elements are real univariate functions which depend
on Sn. The exact formula of A∗ can be found in (4.3) of Ledoit and Wolf [18].

The second one is based on a single-target linear shrinkage estimator (OLSE) of the
covariance matrix provided by Bodnar et al. [34], then the OLSE estimator of the precision
matrix is given by

Σ̂−1
OLSE =

(
Σ̂OLSE

)−1

, Σ̂OLSE = αSn + βΠ

where α = 1 −
1
n∥Sn∥2

tr∥Π∥2
F

∥Sn∥2
F ∥Π∥2

F−(tr(SnΠ))2
, β = tr(SnΠ)

∥Π∥2
F

(1 − α). The third estimator is the
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single-target linear shrinkage (ONE) estimator with k = 1 in Equation (1).
For both linear shrinkage estimators, we choose the target matrix from Table 1. In

simulations we tried each of the shrinkage targets in Table 1. Unsurprisingly, the performance
of both estimators varies across the different scenarios and depends on the choice of shrinkage
target. Overall, the single-target estimators with the best choice of target matrix does not
outperform the suggested multi-target estimator which does not need to choose the suitable
shrinkage target. It appears that the proposed multi-target estimator is less sensitive to
misspecification of the targets.

Now we report the comparison of the performance of the estimators EV, OLSE, ONE and
MULTI. Since the comparisons show no significant difference among the nine shrinkage targets
inTable 1, we only present the results using the target matrix Π̂1 for OLSE and ONE estimators.

Table 2 summarises the simulation results with m = 5, τ = 3, p = 100, ρ = 0.2, 0.8,
h = 0.8, and n = 120, 200, 300, 500, respectively. The PRIALs are approximated by an
average over 1000 simulation runs for each scenario.

It is observed that the multi-target shrinkage estimator performs better than the other three
methods for all six models in almost all scenarios, except for the case of n = 120, where
MULTI and EV have similar performance. Moreover, we conclude that, for all estimators in
each scenario, the relative improvement measure PRIAL decreases when the sample size n

increases. This shows that, when the dimension p is fixed, the performance of the sample
estimator improves as the sample size increases. It is also seen that even if the sample size
n becomes larger, the PRIAL of MULTI estimator is still greater than 95.5%, better than EV
estimator and much better than the other two estimators. In general, EV estimator outperforms
OLSE and ONE estimators, while the performance of MULTI estimator is the best and most
stable one.

On the other hand, the computation results show that the performance of OLSE and
ONE estimators differs greatly for different covariance matrix structures. This reveals that
the correct selection of the shrinkage target is crucial to OLSE and ONE methods. In contrast,
the MULTI estimator achieves a similar performance for all models without having to choose
the correct shrinkage target, especially for (Model 5) and (Model 6) with complex covariance
structures. This demonstrates the robustness of the proposed multi-target method in estimating
the complicated precision matrices compared to single-target shrinkage.

Next, we consider the case of fixing c = p/n = 0.2, 0.4, 0.6, 0.8, where n takes values in
{50 + 20m,m ∈ N} ∩ [50, 500]. Figures 1 and 2 depict the PRIALs of EV, OLSE, ONE and
MULTI estimators for different c values under two covariance matrix structures, respectively.

It can be seen from Figure 1 that the multi-target linear shrinkage estimator has the best
performance for sample size n ≥ 90. When the sample size is less than 90, MULTI still
outperforms other estimators except for the case of c = 0.8. This highlights the multi-target
estimator’s relative benefit in small sample scenarios and provides insights for its applications
with severe data constraints. Moreover, with the increase of sample size n, the PRIAL of
MULTI estimator increases continuously. The PRIAL of OLSE estimator is unstable and having
sudden drops. For (Model 2), the performance of ONE estimator is the worst, which may be
caused by improper selection of shrinkage target. This again shows the importance of using
multiple target matrices in the estimation procedure. Compared with the EV, OLSE and ONE
estimators, the performance of MULTI estimator is the best and the PRIALs are the most stable.
The PRIALs of the EV, OLSE and ONE estimators have relatively large volatility when c = 0.2.

Figure 2 further shows the superiority ofmulti-target linear shrinkage estimator for sample
size n ≥ 90. The simulation results indicate that three direct shrinkage procedures outperform
the OLSE method for (Model 4). It is noted that the PRIAL of the OLSE estimator becomes
smaller as the sample size n increases. The reason may be that the OLSE estimator needs to
first estimate the covariance matrix and then invert the estimator of the covariance matrix to
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obtain the estimator of the precision matrix, while the MULTI, EV and ONE estimators directly
shrink the sample precision matrix.

Table 2. PRIALs of EV, OLSE, ONE and MULTI estimators for six models based on 1000 replications.

Model 1 Model 2

n EV OLSE ONE MULTI EV OLSE ONE MULTI

N(0, 1)

ρ = 0.2

120 100 100 99.7 99.9 100 100 100 100
200 98.9 98.7 98.7 99.8 98.9 98.8 98.7 99.7
300 95.8 95.4 95.4 99.7 95.7 95.4 95.2 99.6
500 89 87.9 87.8 99.2 88 87.1 86.7 99

t5
ρ = 0.2

120 100 100 100 100 100 100 99.9 100
200 99.1 99.1 99.1 99.1 98.9 98.7 98.7 99.3
300 95.9 95.5 95.4 98.8 95.9 95.6 95.5 98.6
500 89.3 88.1 87.7 97.1 89.4 88.6 88.1 97.8

N(0, 1)

ρ = 0.8

120 99.9 99.8 99.5 99.5 99.9 99.7 99.2 99.9
200 96.9 94.8 91.1 99.7 96.8 94.7 90.5 99.9
300 92.3 88.1 79.8 99.5 91.3 86.8 78.2 99.7
500 81.8 73.6 61.3 99.3 80.9 72.3 60.1 99.2

t5
ρ = 0.8

120 99.9 99.9 99.6 100 99.9 99.8 99.6 100
200 97.3 95.6 92 99.6 97.7 96.5 92.7 99.7
300 92.5 88.7 79.6 98.7 93.3 89.7 81 98.9
500 81.3 72.5 59.5 98.6 82.4 75.1 63.7 99

Model 3 Model 4

n EV OLSE ONE MULTI EV OLSE ONE MULTI

N(0, 1)

120 100 99.8 99.9 100 100 99.9 99.7 99.8
200 98.1 92.5 95.7 99.8 97.8 92.3 95.6 99.9
300 94 77.9 89.2 99.4 93.3 77.6 87.8 99.5
500 83.7 48.8 71.5 98.2 83.8 50.9 74.1 98.6

χ2
3

120 99.9 99.7 99.8 100 100 99.8 99.9 100
200 98.1 90.7 96 99.5 98.1 92.1 95.9 99.5
300 93.7 73.5 88.4 98.7 94.2 76.1 88.6 98.7
500 84.7 53.9 73.2 97.8 83.7 53.8 74.1 98

Model 5 Model 6

n EV OLSE ONE MULTI EV OLSE ONE MULTI

N(0, 1)

ρ = 0.2

120 97.5 89.8 89.2 97.8 97.2 87.3 88.9 97.3
200 95.1 83.5 84.6 97.5 95.8 83.4 85.2 97.1
300 90.1 69.7 78.2 97 92.6 70.5 75.9 96.7
500 81.7 44.5 60.7 96.9 80.8 46 63.1 96.2

t5
ρ = 0.2

120 97.2 88.8 89 96.8 97 86.8 87.6 97
200 94.9 81.7 84.9 96.5 94.6 82.5 82.4 96.6
300 90.8 65.1 73.9 96.2 91.9 70.1 72.5 96.5
500 81.2 50.1 55.3 95.5 77.3 44.9 55.4 95.8

Generally speaking, the above simulation evidence reveals that the proposed multi-target
linear shrinkage estimator has better performance than the single-target linear shrinkage

9



Financial Statistical Journal 2024, 7(2), 9912.

estimators. It is a great alternative to the existing estimation methods.

Figure 1. The PRIALs for (Model 2) with ρ=0.8 and y ∼ t5.

Figure 2. The PRIALs for (Model 4) with h = 0.8 and y ∼ N(0, 1).

3.2. Empirical study
The ground breakingwork ofMarkowitz [2]—themean-variance efficient portfolio theory

is one of the key tools for portfolio management. However, one needs to know the unobservable
covariance matrix and precision matrix to implement this framework. Therefore, it is of vital
importance to construct a high-performance precision matrix estimator.

In this subsection we apply the estimator of precision matrix to portfolio optimization
problems. Namely, we use the proposed multi-target linear shrinkage method to estimate the
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weights of a portfolio. We consider a portfolio with p stocks. Denote the expected return
of p stocks as µ = (µ1, ..., µp)

′, the covariance matrix as Σ. Let γ = (γ1, ..., γp)
′ be the

weight of the portfolio, then the return of the portfolio is E(Rp) = γ′µ, the risk (variance) is
Var(Rp) = γ′Σγ. Let 111 = (1, · · · , 1)′p.

The following two popular models are applied to find the efficient frontier of the portfolio
(see, e.g., Amenc and Sourd [35]; Cai et al. [36]; Ding et al. [37]; and Joo and Park [38]):

(I). Global minimum variance portfolio

min
γ

Var(Rp), subject to γ′111 = 1

(II). Maximum expected return portfolio with fixed risk σ2
p

max
γ

E(Rp), subject to Var(Rp) = σ2
p, γ′111 = 1

The solution to Model (I) is

γ∗
1 =

Σ−1111

111′Σ−1111

From Amenc and Sourd [35], the solution of Model (II) is γ∗
2 = (γ∗

21, ..., γ
∗
2p)

′, where

γ∗
2i =

E(Rp)
∑p

j=1 νij(Cµj −A) +
∑p

j=1 νij(B −Aµj)

BC −A2
, i = 1, ..., p (9)

νij is the (i, j)th element of Σ−1, and

A =

p∑
i=1

p∑
j=1

νijµj , B =

p∑
i=1

p∑
j=1

νijµiµj , C =

p∑
i=1

p∑
j=1

νij ,

E(Rp) =
A

C
+

1

C

√
(BC −A2)C

(
σ2
p −

1

C

)
We now consider the portfolio management for the stocks in the China CSI Smallcap

500 index which is a prominent benchmark that measures the performance of 500 mid and
small-cap A-share stocks listed on the Shanghai and Shenzhen Stock Exchanges. In order to
build an efficient portfolio, we use p = 120 randomly selected stocks from the components of
CSI 500 index with a relatively large total market value and a high turnover ratio. Specifically,
the data set contains the daily closing price of the selected 120 stocks from 21 June 2017 to 20
December 2019 with n = 613 observations.

The data are divided into three sets: the training set (the first 240 observations), the
validation set (the next 240 observations) and the test set (the last 133 observations). The
training set is used to estimate the precision matrix, the validation set is utilized to determine
the optimal portfolio weight γ∗, while the test set is applied to evaluate the return and risk of
the portfolios under different methods.

The parameter µ is calculated from the average return of each stock, Σ−1 is estimated by
five methods: the sample precision matrix (S−1), EV estimator, OLSE estimator, single-target
linear shrinkage (ONE) estimator and the multi-target linear shrinkage (MULTI) estimator,
respectively. Among the 120 stocks, the unequal variances and correlations are dominant
structures. Based on the data characteristics, we compute two MULTI estimators, one with
the total nine targets and the other one (MULTI6) obtained when using only six targets Π̂1, Π̂3,
Π̂6, Π̂7 − Π̂9.

Using the estimators µ̂ and Σ̂−1, the portfolio weight vectors for both models can be
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calculated by γ̂∗
1 = Σ̂−1111

111′Σ̂−1111
, and γ̂∗

2 = (γ̂∗
21, ..., γ̂

∗
2p)

′, where γ̂∗
2i, i = 1, ..., p, are obtained by

plugging in these estimators in Equation (9). Now one can compute the expected return and
the risk of a portfolio as well as the CV, where CV is the coefficient of variation, which reflects
the ratio of the square root of the risk to the expected return. Obviously, a smaller value of CV
means the better risk-return trade-off of the portfolio.

The results of the portfolio obtained by Model (I) and Model (II) are shown in Table 3.
Table 3 indicates that in Model (I), the performance of MULTI estimator is the best with the
maximum return, minimum risk and lowest CV. MULTI6 achieves a similar result. EV and
ONE estimators have similar performance. The return obtained by S−1 is the smallest, while
the risk and CV of OLSE estimator are larger than S−1, EV and ONE methods. Meanwhile, in
Model (II), when the investment risk is fixed to be equal to 0.1, theMULTI estimators still result
in the highest expected return and smallest CV. Moreover, the S−1, EV and ONE estimators
have similar results, but the OLSE estimator is the worst.

In both cases, MULTI and MULTI6 have very similar performance. This highlights the
key strength of the proposed multi-target estimator that it is less sensitive to misspecification
of the targets.

Table 3. The results of the portfolio obtained by Models (I) and (II).
S−1 EV OLSE ONE MULTI6 MULTI

Model (I)
return 0.9 1.4 1.8 1.3 4.9 5
risk 2.3 ×10−4 5.5 ×10−4 7.4 ×10−3 5.2 ×10−4 1.7 ×10−4 1.7 ×10−4

CV 1.7 ×10−2 1.7 ×10−2 4.8 ×10−2 1.8 ×10−2 2.7 ×10−3 2.6 ×10−3

Model (II) return 42.4 55 17.5 48.2 133.9 135.1
(with risk = 0.1) CV 7.5 ×10−3 5.8 ×10−3 1.8 ×10−2 6.6 ×10−3 2.4 ×10−3 2.3 ×10−3

In order to further evaluate the performance of the estimators, we randomly divide 613
observations into the training set, validation set and test set with sample size of 240, 240 and
133, respectively. Since the performance of EV and ONE are quite similar, and we are more
interested in comparing the single- and multi-target linear shrinkage methods, we use only
OLSE, ONE and MULTI estimators together with the sample precision matrix to calculate
the return and risk of the portfolios. The procedure is repeated 100 times and the simulation
results are recorded by Figure 3 which shows the density functions of portfolio returns in 100
replications using S−1, OLSE, ONE and MULTI estimators under Model (I) and Model (II)
with the investment risk changing from 0.001 to 0.2, respectively. In Figure 3a represents the
density for Model (I), Figure 3b–f represent the densities for Model (II) with risk = 0.001,
0.005, 0.05, 0.1 and 0.2, respectively.

(a) (b)
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(c) (d)

(e) (f)

Figure 3. The density functions of portfolio returns with 100 realizations.

The simulation evidence in Figure 3 illustrates that the greater the investment risk, the
larger the return, and for both models, the return of the portfolio obtained by using MULTI
estimator is significantly higher than the other estimators. For model (I), the OLSE estimator
is superior to S−1 and ONE estimator. For model (II), the performance of the OLSE estimator
is poor. As the risk increases, the ONE estimator performs better than the sample precision
matrix. Overall, the proposed multi-target linear shrinkage estimator has superior performance
in all cases. Our findings show that the multi-target shrinkage approach is quite useful for
reducing the estimation errors of the precision matrix and increasing the performances of the
portfolios. The proposed method yields more accurate portfolio weights than those of other
methods, resulting in higher returns and lower risks.

4. Conclusions
A new estimation method for the precision matrix is considered in this paper. The

multi-target linear shrinkage estimator by shrinking the inverse of the sample covariance matrix
directly is proposed. This approach generalizes single-target shrinkage methods by allowing
the estimator to incorporate multiple targets. The estimator is applied to the simulated data and
a financial market dataset, and compared with several existing estimators. The computation
results show the improvement of the multi-target linear shrinkage estimator particularly for
high-dimensional problems where choosing a single target matrix might limit performance.

It is clear that a careful analysis on determining the optimal number and the optimal
choice of the target matrices can greatly help in improving the performance of the estimator.
Designing the adaptive methods that automatically select optimal targets based on empirical
data characteristics would be an interesting research topic to explore in the future. Another open
question worth pursuing further is to investigate the multi-target OLSE method which should
also have some nice properties. The multi-target OLSE procedure first creates the multi-target
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linear shrinkage for the sample covariance matrix and thereafter inverts it to obtain the estimator
of the precision matrix. The research of this topic is ongoing.
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Appendix

Proof of Theorem 1. Let an
a.s.∼ bn denotes an − bn

a.s.→ 0. By Lemma 1, we obtain

1

p
∥S−1

n ∥2F
a.s.∼ 1

p(1− c)2
∥Σ−1

n ∥2F +
c

p2(1− c)3
∥Σ−1

n ∥2tr,

1

p
tr(S−1

n Π)
a.s.∼ 1

p(1− c)
tr(Σ−1

n Π),

1

p
tr(S−1

n Σ−1
n )

a.s.∼ 1

p(1− c)
∥Σ−1

n ∥2F

These yield that, as n → ∞,

An −A0
a.s.→ 0, Bn −B0

a.s.→ 0

in the sense that each element converges almost surely.□
Proof of Theorem 2. By Lemma 1, the a.s. consistent estimators of 1

p∥Σ
−1
n ∥tr,

1
p tr(Σ

−1
n Π), and 1

p∥Σ
−1
n ∥2F can be given by

1

p
∥̂Σ−1

n ∥tr =
(1− p/n)

p
∥S−1

n ∥tr (A1)

1

p
̂tr(Σ−1

n Π) =
(1− p/n)

p
tr(S−1

n Π) (A2)

and
1
p ∥̂Σ

−1
n ∥

2

F = (1−p/n)2

p ∥S−1
n ∥2F − 1

pn(1−p/n) ∥̂Σ
−1
n ∥

2

tr

= (1−p/n)2

p ∥S−1
n ∥2F − (1−p/n)

pn ∥S−1
n ∥2tr

(A3)

Hence the a.s. consistent estimator of a0ij is given by

â0ij =
1

p
∥S−1

n ∥2F − 1

pn(1− p/n)
∥S−1

n ∥2tr +
1

pn(1− p/n)3
(1− p/n)2∥S−1

n ∥2tr

− 1

p(1− p/n)
(1− p/n) tr[S−1

n (Πi +Πj)] +
1

p
tr(ΠiΠj)

=
1

p

(
∥S−1

n ∥2F − tr(S−1
n Πi)− tr(S−1

n Πj) + tr(ΠiΠj)
)

Therefore Â0 = An.

Similarly, by Equations (A1)–(A3), the a.s. consistent estimator of b0i is given by

b̂0i =
1

n(1− p/n)2

(
(1− p/n)2∥S−1

n ∥2F − (1− p/n)

n
∥S−1

n ∥2tr
)

+
1

pn(1− p/n)3
(1− p/n)2∥S−1

n ∥2tr −
1

n(1− p/n)
(1− p/n)tr(S−1

n Πi)

=
1

n
∥S−1

n ∥2F +
1

pn
∥S−1

n ∥2tr −
1

n
tr(S−1

n Πi)

Thus

B̂0 =
1

p


p
n∥S

−1
n ∥2F + 1

n∥S
−1
n ∥2tr −

p
n tr(S−1

n Π1)
...

p
n∥S

−1
n ∥2F + 1

n∥S
−1
n ∥2tr −

p
n tr(S−1

n Πk)


□
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Proof of Theorem 4. Note that, in this case, p/n → c = 0 as n → ∞. Then, for i = 1, · · · , k, b̂0i
a.s.∼ b0i = o(1). Hence, B̂0

a.s.→ 0

as n → ∞.

On the other hand, for i, j = 1, · · · , k, the (i, j)th element of An,

1

p
tr[(S−1

n −Πi)(S
−1
n −Πj)]

a.s.∼ a0ij

a.s.∼ 1

p

(
∥Σ−1

n ∥2F − tr[Σ−1
n (Πi +Πj)] + tr(ΠiΠj)

)
=

1

p
tr[(Σ−1

n −Πi)(Σ
−1
n −Πj)]

Thus Â0
a.s.∼ A0

n.

Notice that

1

p
tr[(Σ−1

n −Πi)(Σ
−1
n −Πj)]

≤ 1

p
∥Σ−1

n ∥2F +
(1
p
∥Σ−1

n ∥2F
)1/2{(1

p
∥Πi∥2F

)1/2
+
(1
p
∥Πj∥2F

)1/2}
+
(1
p
∥Πi∥2F

1

p
∥Πj∥2F

)1/2
= O(1)

Then we obtain Â−1
0 = O(1) almost surely. That is, Ω̃ = Â−1

0 B̂0
a.s.→ 0 as n → ∞, This yields Ω̂→0 almost surely.□
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