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Abstract: In this paper, we propose a novel application of classical directional statistics to 

model the cross-correlation of asset volatility in financial networks. The proposed novel 

Circular Volatility Model (CVM) provides a framework for studying the interdependencies of 

financial assets whose returns exhibit periodic behaviors. By extending traditional volatility 

models into a circular framework, we establish new pathways for understanding the cyclicity 

inherent in market dynamics. Our model is rigorously grounded in classical \& directional 

statistics, utilizing von Mises distributions for parameter estimation and novel circular 

covariance structures. We offer formal derivations, maximum likelihood estimates, and a novel 

goodness-of-fit testing framework for this circular model. We establish our methodologies 

using simulation studies. 

Keywords: circular volatility model; von mises distribution; angular data; financial networks; 
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1. Introduction 

In financial markets, asset returns frequently exhibit cyclic behaviors influenced 

by market sentiment, external shocks, and cyclical economic conditions. Traditional 

linear models fail to account for the periodic nature of such phenomena. In contrast, 

circular statistics allow us to model returns and volatility within a framework that 

respects their angular nature. This paper introduces the Circular Volatility Model 

(CVM), which extends the GARCH volatility models into the circular domain. The 

CVM utilizes von Mises distributions for angular data and incorporates circular cross-

correlations between assets in a financial network. 

2. Related works 

The dynamics of financial networks, particularly in the context of cross-

correlated volatility and asset movements, have garnered significant attention in recent 

years. A growing body of literature has explored the interconnectedness of financial 

markets and the implications of this interconnectedness for systemic risk and volatility 

spillovers. 

Addresses modeling and analyzing time series of unit two-dimensional vectors, 

evaluating multiple model classes for feasibility, and recommends a dual-class 

approach using standard time series algorithms, applied to wind direction data analysis 

[1]. 

Explores modeling and analyzing time series of unit two-dimensional vectors, 

recommends a dual-class approach using standard time series algorithms, and 

demonstrates its application to wind direction data [2]. 
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Develops the MF-APCCA method to analyze asymmetric risk transmission 

between cryptocurrencies and global stock markets, showing stronger cross-

correlations between Bitcoin and G7 markets than with E7 markets, with gold 

providing risk-buffering effects [3]. 

Examines dynamic risk resonance across Chinese market sectors, finding time-

varying effects with transportation and utilities as net transmitters, low-frequency 

events exerting prolonged impact, and crises amplifying resonance [4]. 

Uses time and frequency connectedness methods to analyze volatility links 

between 27 emerging markets and seven major cryptocurrencies, finding increased 

global risk spillovers post-COVID-19, with key risk transmitters and limited 

diversification benefits for emerging market portfolios [5]. 

Uses asymmetric multifractal cross-correlation analysis to reveal that gold is the 

most efficient asset, with green stocks as net transmitters of shocks and halal tourism 

stocks and oil as net receivers, while a minimum connectedness portfolio offers strong 

hedging benefits during major economic events [6]. 

Uses spillover index and wavelet approaches to analyze multiscale relationships 

among major cryptocurrencies, finding Monero as a key risk transmitter and Ethereum 

as the main receiver, with enhanced diversification benefits at lower scales in mixed 

portfolios [7]. 

Applies a DCC-GARCH model to analyze volatility connectedness among major 

cryptocurrencies, revealing that low investor sentiment correlates with heightened 

market connectedness and volatility, while high sentiment supports greater 

diversification [8]. 

Examines cryptocurrency integration and contagion during the COVID-19 

pandemic, finding mixed integration levels and no contagion, suggesting 

cryptocurrencies could serve as a good investment during global shocks [9]. 

Applies artificial neural networks to predict Bitcoin price trends using symmetric 

volatility attributes, finding high accuracy and identifying the low price as the primary 

driver for price predictions [10]. 

Explores volatility spillovers between crude oil prices and cryptocurrencies, 

finding bidirectional spillovers between oil and Bitcoin, and unidirectional spillovers 

from oil to Bitcoin Cash and from cryptocurrencies like Ethereum to oil [11]. 

Suggests inefficiency in the Brazilian stock market, evidenced by strong long-

term cross-correlations with foreign markets, fat-tailed log-returns, and successful 

predictions of IBOVESPA futures using a neural network model [12]. 

One of the foundational works in this area is by [13], who developed an analytical 

model to understand contagion in financial networks. They demonstrated that the 

network’s structure significantly influences the probability and impact of contagion, 

highlighting a robust yet fragile characteristic of financial systems where low 

probabilities of contagion can lead to widespread effects during crises. 

 This notion is echoed in the work of [14], who emphasize the importance of 

understanding financial interdependencies to mitigate systemic risks. Their model 

illustrates how organizations’ values are interlinked through various financial 

instruments, which can exacerbate the effects of shocks across the network. This 

approach complements the work of [14], who drew parallels between financial 
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networks and ecological systems, suggesting that complexity can lead to systemic 

vulnerabilities. 

The COVID-19 pandemic has further illuminated the dynamics of financial 

networks [15] analyzed the connectedness among stock markets during this period, 

providing a visualization of pandemic risk that parallels financial risk. Their findings 

suggest that the degree of connectedness can serve as a critical indicator of systemic 

risk, reinforcing the need for robust network analysis in understanding financial 

contagion. 

Similarly, [16] employed a GARCH model to assess risk spillovers between 

crude oil and stock markets during the pandemic, revealing complex 

interdependencies that traditional methods may overlook. 

Research on volatility spillovers has also gained traction, particularly in 

commodity markets. [17] identified a significant shift in the correlation structure 

between commodities and stock markets post-2008 financial crisis, indicating that 

financialization has led to increased risk spillovers. 

Supports this [18] who found that stock market shocks have a pronounced impact 

on agricultural commodity price volatility, particularly following major financial 

disruptions. Their work underscores the growing integration between financial and 

commodity markets, which complicates the dynamics of volatility transmission. 

The role of uncertainty in financial markets has been another focal point of 

research. [19] highlighted that uncertainty is a central node in the volatility 

transmission network, influencing spillovers among various financial markets. 

This aligns with the findings of [20], who explored the interdependence of 

financial markets in South and East Asia, revealing that economic shocks can 

propagate across borders through volatility transmission. 

Moreover, the methodological advancements in analyzing financial networks 

have contributed to a deeper understanding of these dynamics. [21] introduced a 

metapopulation network model to study the spreading of financial risk, emphasizing 

the importance of network structure in understanding risk dynamics. The literature on 

financial networks reveals a complex interplay of interconnectedness, volatility 

spillovers, and systemic risk. The insights gained from these studies underscore the 

necessity for comprehensive models that account for the dynamic nature of financial 

interdependencies. As financial markets continue to evolve, ongoing research will be 

essential to navigate the challenges posed by these interconnected systems. 

The Circular Volatility Model (CVM) proposed in this paper builds upon 

classical and circular statistical frameworks, particularly the von Mises distribution, 

which is pivotal in modeling circular data. The von Mises distribution has been 

extensively utilized in various fields, including bioinformatics and directional data 

analysis, due to its ability to capture the cyclic nature of phenomena [22] and [23]. 

For instance, [23] highlighted the fundamental properties of multivariate von 

Mises distributions, establishing a foundation for analyzing directional data directly 

applicable to financial asset returns that exhibit periodic behaviors. 

In financial markets, herd behavior has been a focal point in understanding 

volatility interdependencies. [24] provided empirical evidence of herd behavior across 

global stock markets, indicating that asset returns often move in tandem during periods 

of high volatility. This phenomenon aligns with the cyclicity that we aim to model in 
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this paper, as it reflects the collective behavior of investors, which can lead to 

synchronized fluctuations in asset prices. 

Similarly, [25] explored the implications of foreign institutional herding in the 

Taiwanese stock market, further supporting the notion that market dynamics are 

influenced by collective investor behavior. 

The theoretical underpinnings of the CVM are further supported by 

advancements in statistical methodologies for directional data. For instance, [26] 

emphasized the importance of the von Mises distribution in antenna design, 

showcasing its versatility in modeling directional phenomena. This adaptability is 

mirrored in financial applications, where asset returns’ cyclic nature necessitates a 

similar modeling approach. 

This research offers a novel methodology for analyzing cyclical behaviors in 

asset returns and volatilities, with rigorous mathematical foundations and wide 

applicability in finance. 

3. Objective and novelty of the research 

The primary objective of this research is to develop a rigorous and 

mathematically sophisticated model that captures the directional dependencies 

between asset returns and volatilities in financial markets. Unlike traditional 

multivariate models that operate in a linear space, our model addresses the periodicity 

of financial data. The novelty of this research lies in: 

• Extending the classical GARCH model into the circular domain. 

• Introducing a new circular cross-correlation measure that captures the angular 

dependencies between assets. 

• Proposing a novel goodness-of-fit test for circular data. 

• Establishing formal parameter estimation techniques using von Mises 

distributions. 

The Circular Volatility Model (CVM) extends the traditional GARCH 

framework into the circular domain, effectively capturing the periodic and directional 

dependencies inherent in financial asset returns. Through rigorous mathematical 

formulation and establishing key statistical properties, the CVM provides a robust tool 

for modeling and analyzing volatility in complex financial networks. This novel 

application of directional statistics to financial markets opens new avenues for 

understanding asset dependencies in complex financial networks. 

4. Preliminaries 

4.1. Circular statistics 

Circular statistics is a branch of statistics that deals with data measured in angles 

or directions. Let θ ∈ [0,2π) represent a circular variable, such as the direction of a 

return in a financial asset. In contrast to linear data, the distance between two angles 

is not Euclidean. For example, the distance between 350° and 10° is 20°, not 340°. 

Circular data must be analyzed using specialized techniques, such as the von Mises 

distribution, which is the circular analog of the normal distribution. 
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4.2. Von mises distribution 

The von Mises distribution is given by: 

𝑓(𝜃; 𝜇, 𝜅) =
𝑒𝜅 𝑐𝑜𝑠(𝜃−𝜇)

2𝜋𝐼0(𝜅)
 

where 𝜇 is the mean direction, 𝜅  is the concentration parameter, and 𝐼0(𝜅)  is the 

modified Bessel function of the first kind. This distribution is used extensively in the 

modeling of angular data because it captures the periodicity inherent in circular 

variables. 

4.3. GARCH model for volatility 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

model, introduced by Bollerslev [27], is a cornerstone in modeling financial time 

series volatility. The GARCH (1,1) model, in its simplest form, is defined as: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2  (1) 

where: 

• 𝜎𝑡
2 is the conditional variance (volatility) at time t. 

• 𝛼0 > 0 is the constant term. 

• 𝛼1 ≥ 0 measures the reaction of volatility to past shocks (ARCH term). 

• 𝛽1 ≥ 0 captures the persistence of volatility (GARCH term). 

• 𝜖𝑡 = 𝑟𝑡 − 𝜇𝑡 is the residual or shock at time 𝑟𝑡 where 𝜇𝑡 is the return and μt is the 

mean return. 

The GARCH (1,1) model effectively captures the volatility clustering observed 

in financial time series, where high-volatility periods tend to cluster together, as do 

low-volatility periods. 

5. Circular volatility model (CVM) 

5.1. Motivation for circular volatility modeling 

Traditional GARCH models operate within a linear framework, assuming that 

returns and volatilities evolve over a linear time scale. However, financial markets 

exhibit periodic and cyclical behaviors influenced by various factors such as trading 

hours, economic cycles, and seasonal effects. To capture these cyclical dynamics, it is 

advantageous to extend the GARCH framework into the circular domain, where 

angular dependencies can be explicitly modeled. 

Circular data, characterized by angles or directions, naturally encapsulate 

periodicity and cyclicity. For instance, intra-day trading patterns may exhibit regular 

cycles corresponding to market opening and closing times. By incorporating circular 

distance into the GARCH model, we can better model and understand the directional 

dependencies and cyclical behaviors inherent in financial data. 

5.2. Model definition 

The Circular Volatility Model (CVM) is designed to extend the traditional 

GARCH (1,1) model into the circular domain, where asset returns are treated as 
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angular data. This is crucial when dealing with financial systems where periodicity 

and cyclic behaviors are present, such as intra-day or quarterly trading cycles. The 

CVM introduces angular cross-correlations between asset volatilities to capture these 

cyclical patterns more accurately. Let {θ𝑖(𝑡)}𝑡∈𝑍  denote the sequence of angular 

returns for asset i, where 𝜃𝑖(𝑡) ∈ [0,2π) . The CVM for asset i is defined by the 

following recursive equation: 

σ𝑖
2(𝑡) = α0 + α1∑𝑤𝑖𝑗

𝑁

𝑗=1

cos (θ𝑖(𝑡) − θ𝑗(𝑡)) + β1σ𝑖
2(𝑡 − 1) (2) 

where: 

• 𝜎𝑖
2(𝑡) is the conditional variance (volatility) of asset i at time t. 

• 𝛼0 > 0 is the intercept term, representing the baseline level of volatility. 

• 𝛼1 ≥ 0 captures the influence of the angular cross-correlations between asset i 

and all other assets j = 1, 2, ..., N. 

• 𝛽1 ≥ 0 is the autoregressive parameter, reflecting the persistence of volatility 

over time. 

• 𝑤𝑖𝑗 ≥ 0 are weights representing the influence of asset j on asset i, satisfying the 

• normalization condition ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 = 1 

• 𝑐𝑜𝑠 (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))  captures the circular (angular) correlation between the 

returns of assets i and j. 

• 𝜃𝑖(𝑡) ∼ von Mises (𝜇𝑖, 𝜅𝑖), indicating that the angular returns follow a von Mises 

distribution with mean direction 𝜇𝑖 and concentration parameter 𝜅𝑖. 

The incorporation of circular distance Δ𝑖𝑗(𝑡) into the GARCH framework allows 

the model to account for the directional alignment between different assets. Unlike the 

traditional GARCH model, which considers only the magnitude of past shocks, the 

CGARCH model integrates directional information, thereby enriching the volatility 

dynamics with cyclical dependencies. 

5.3. Interpretation of model components 

The term cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)) measures the alignment between the directional 

returns of assets i and j. A value close to 1 implies that the assets are moving in the 

same direction, thus contributing positively to the volatility of asset i. Conversely, a 

value near −1 indicates opposing directions, potentially reducing the volatility 

contribution. 

 The weights 𝑤𝑖𝑗  allow for differential influences of various assets on asset i, 

enabling the model to capture complex interdependencies within the financial network. 

Consider two assets, A and B, with angular returns 𝜃𝐴(𝑡) and 𝜃𝐵(𝑡). If their 

angular difference 𝜃𝐴(𝑡)  − 𝜃𝐵(𝑡)  is close to zero, it implies that these assets are 

moving in a synchronized manner, increasing the volatility of asset A due to a positive 

correlation. 

If the angular difference is close to π, the assets move in opposite directions, 

contributing less to the overall volatility. The periodic cosine function handles these 

variations effectively. 
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The parameters 𝛼0, 𝛼1, 𝛽1, 𝜇𝑖, and 𝜅𝑖 provide valuable insights into the behavior 

of asset volatilities: 

1) α0 reflects the baseline volatility level, independent of cross-asset interactions. 

2) α1 captures the impact of angular cross-correlations, revealing how much the 

angular returns of other assets influence the volatility of an asset. 

3) β1 indicates the persistence of volatility over time, similar to the autoregressive 

term in the traditional GARCH model. 

4) 𝜇𝑖  and 𝜅𝑖  describe the distribution of angular returns, where 𝜇𝑖  represents the 

average direction and 𝜅𝑖  represents the concentration of returns around this 

direction. 

These insights are essential for portfolio optimization and risk management, 

especially when assets exhibit periodic or cyclical behaviors. 

6. Parameter estimation using maximum likelihood estimation 

(MLE) 

To estimate the parameters of the Circular Volatility Model (CVM), we employ 

the Maximum Likelihood Estimation (MLE) method. The MLE process enables us to 

derive parameter estimates that maximize the likelihood of the observed data under 

the proposed model. 

6.1. Model specification 

In the Circular Volatility Model, the observed angular returns for asset i at time 

t, denoted by θ𝑖(𝑡) ∈ [0,2π), follow a Von Mises distribution with mean direction μ𝑖 

and concentration parameter κ𝑖 . The conditional variance σ𝑖
2(𝑡) for each asset i is 

governed by the GARCH (1,1) structure extended into the circular domain: 

σ𝑖
2(𝑡) = α0 + α1∑𝑤𝑖𝑗

𝑁

𝑗=1

cos (θ𝑖(𝑡) − θ𝑗(𝑡)) + β1σ𝑖
2(𝑡 − 1) (3) 

where: 

• 𝛼0 > 0 is the baseline level of volatility. 

• 𝛼1 ≥ 0 quantifies the effect of angular cross-correlations with other assets. 

• 𝛽1 ≥ 0 represents the autoregressive effect of past volatility. 

• 𝑤𝑖𝑗 ≥ 0 are weights for the influence of asset j on asset i. 

6.2. Likelihood function construction 

The probability density function (PDF) of the von Mises distribution for each 

angular return 𝜃𝑖(𝑡) is: 

𝑓(θ𝑖(𝑡); μ𝑖 , κ𝑖) =
𝑒κ𝑖 cos(θ𝑖(𝑡)−μ𝑖)

2π𝐼0(κ𝑖)
 (4) 

where: 

1) 𝜇𝑖 is the mean direction for asset i. 

2) 𝜅𝑖 is the concentration parameter, analogous to the precision of the distribution. 
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3) 𝐼0(𝜅𝑖) is the modified Bessel function of the first kind, serving as a normalization 

factor. 

Given observed data θ𝑖(𝑡)}𝑡=1
𝑇 for each asset i and time period T, the likelihood 

function for the CVM is constructed as the product of the individual probabilities for 

each 𝜃𝑖(𝑡): 

𝐿(α0, α1, β1, {μ𝑖}, {κ𝑖}) =∏∏𝑓(θ𝑖(𝑡); μ𝑖, κ𝑖)

𝑇

𝑡=1

𝑁

𝑖=1

 (5) 

6.3. Log-likelihood function 

To facilitate maximization, we take the natural logarithm of the likelihood 

function, yielding the log-likelihood function: 

ℒ(α0, α1, β1, {μ𝑖}, {κ𝑖}) =∑∑(κ𝑖 cos(θ𝑖(𝑡) − μ𝑖) − log(2π𝐼0(κ𝑖)))

𝑇

𝑡=1

𝑁

𝑖=1

 (6) 

Maximizing this log-likelihood with respect to 𝛼0, 𝛼1, 𝛽1, 𝜇𝑖, and 𝜅𝑖 yields the 

MLE estimates for these parameters. 

6.4. Step-by-step MLE process 

To obtain the MLEs, we differentiate the log-likelihood function with respect to 

each parameter, set the derivatives equal to zero, and solve the resulting equations. 

Differentiation with Respect to 𝜇𝑖 

The partial derivative of ℒ with respect to 𝜇𝑖 for each asset i is: 

∂ℒ

∂μ𝑖
=∑κ𝑖

𝑇

𝑡=1

sin(θ𝑖(𝑡) − μ𝑖) (7) 

Setting 
∂ℒ

∂μ𝑖
= 0 gives: 

∑sin(𝜃𝑖(𝑡) − 𝜇𝑖)

𝑇

𝑡=1

= 0 (8) 

This equation can be solved numerically to obtain the MLE μ�̂� for each asset i. 

Differentiation with Respect to 𝜅𝑖 

The partial derivative of ℒ with respect to 𝜅𝑖 is 

∂ℒ

∂κ𝑖
=∑(cos(θ𝑖(𝑡) − μ𝑖) −

𝐼1(κ𝑖)

𝐼0(κ𝑖)
)

𝑇

𝑡=1

 (9) 

where 𝐼1(𝜅𝑖) is the modified Bessel function of the first kind of order 1. Setting 
𝜕ℒ

𝜕𝜅𝑖
=

0 gives: 

∑cos(𝜃𝑖(𝑡) − 𝜇𝑖)

𝑇

𝑡=1

= 𝑇
𝐼1(κ𝑖)

𝐼0(κ𝑖)
 (10) 

Solving this equation numerically provides the MLE 𝜅𝑖. 
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Differentiation with Respect to 𝛼0, 𝛼1 𝑎𝑛𝑑 𝛽1 

For the parameters 𝛼0, 𝛼1 𝑎𝑛𝑑 𝛽1  in the volatility equation, we use iterative 

methods to find the estimates. Given the recursive structure of σ𝑖
2(𝑡), we calculate the 

partial derivatives of ℒ with respect to these parameters, which involve the chain rule 

and the autoregressive terms. 

• Differentiation with respect to 𝛼0: 

∂ℒ

∂α0
=∑∑

∂σ𝑖
2(𝑡)

∂α0

𝑇

𝑡=1

𝑁

𝑖=1

 (11) 

• Differentiation with respect to 𝛼1: 

𝜕ℒ

𝜕𝛼1
=∑∑∑𝑤𝑖𝑗

𝜕 𝑐𝑜𝑠 (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))

𝜕𝛼1

𝑁

𝑗=1

𝑇

𝑡=1

𝑁

𝑖=1

 (12) 

• Differentiation with respect to 𝛽1: 

𝜕ℒ

𝜕𝛽1
=∑∑

𝜕𝜎𝑖
2(𝑡 − 1)

𝜕𝛽1

𝑇

𝑡=1

𝑁

𝑖=1

 (13) 

These derivatives do not have closed-form solutions, so we use numerical 

optimization techniques, such as the Newton-Raphson or Expectation-Maximization 

(EM) algorithm, to obtain the MLE estimates 𝛼0̂, 𝛼1̂, 𝑎𝑛𝑑 𝛽1̂. 

6.5. Numerical optimization 

Given the recursive nature of 𝜎𝑖
2(𝑡)  and the nonlinear relationship between 

parameters, numerical optimization methods are essential for solving the MLE 

equations. We employ an iterative algorithm that alternates between updating {𝜇𝑖}, 

{𝜅𝑖}, α0, 𝛼1, and 𝛽1, with the following steps: 

(1) Initialize α0, 𝛼1, 𝛽1, {𝜇𝑖} and {𝜅𝑖} with reasonable starting values. 

(2) Calculate the conditional variances 𝜎𝑖
2(𝑡)  using the current parameter 

estimates. 

(3) Update each parameter by maximizing the log-likelihood with respect to that 

parameter while holding the others fixed. 

(4) Repeat steps 2–3 until convergence, i.e., until changes in parameter estimates 

fall below a predefined threshold.  

This approach yields the final MLE estimates 𝛼0̂, 𝛼1̂, 𝛽1̂, {μ�̂�}, 𝑎𝑛𝑑 {𝜅�̂�}. 

6.6. Interpretation of estimated parameters 

Once estimated, these parameters provide insights into the behavior of volatility 

and directional dependencies in the financial network: 

• 𝛼0̂: Baseline level of volatility. 

• 𝛼1̂: Influence of angular cross-correlations on volatility. 

• 𝛽1̂: Persistence of volatility over time. 

• 𝜇�̂�: Average directional return of asset i. 
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• 𝜅�̂�:  Concentration of angular returns around 𝜇�̂� , indicating the variability in 

directional movement. 

Together, these estimates enable a comprehensive understanding of the dynamics 

within circular financial data. 

7. Stationarity conditions for CVM 

This section provides a rigorous mathematical answer for the stationarity 

condition of the Circular Volatility Model (CVM). The CVM extends the traditional 

GARCH (1,1) model into the circular domain, accommodating the periodic nature of 

financial asset returns. This formal definition ensures clarity and lays the foundation 

for subsequent theoretical properties and estimations. For details of circular time series, 

we refer to [2] and [28]. 

Theorem 1. (Stationarity of CVM). If the Circular Volatility Model (CVM) defined in 

Equation (3) is strictly stationary, then 𝛽1 < 1  and 𝛼1 ⋅ 𝜆𝑚𝑎𝑥(𝑊) + 𝛽1 < 1  here 

𝜆𝑚𝑎𝑥(𝑊) is the maximum eigenvalue of the weight matrix 𝑊 = [𝑤𝑖𝑗]. 

Proof of Theorem 1. To establish the stationarity of the CVM, we examine the 

conditions under which the model’s conditional variance σ𝑖
2(𝑡) remains stable over 

time. 

Expectation of the CVM Equation: 

Taking expectations on both sides of Equation (3), we have: 

𝐸[𝜎𝑖
2(𝑡)] = 𝛼0 + 𝛼1∑𝑤𝑖𝑗𝐸 [cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))]

𝑁

𝑗=1

+ 𝛽1𝐸[𝜎𝑖
2(𝑡 − 1)] 

Stationarity Assumption: 

Assume that the process is strictly stationary, implying 

𝐸[σ𝑖
2(𝑡)] = 𝐸[σ𝑖

2(𝑡 − 1)] = σ𝑖
2 

Substituting into the above equation: 

𝜎𝑖
2 = 𝛼0 + 𝛼1∑𝑤𝑖𝑗𝐸 [cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))]

𝑁

𝑗=1

+ 𝛽1𝜎𝑖
2 

Solving for 𝜎𝑖
2: 

Rearranging terms: 

𝜎𝑖
2(1 − 𝛽1) = 𝛼0 + 𝛼1∑𝑤𝑖𝑗𝐸 [cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))]

𝑁

𝑗=1

 

Therefore: 

𝜎𝑖
2 =

𝛼0 + 𝛼1∑ 𝑤𝑖𝑗𝐸 [cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))]
𝑁
𝑗=1

(1 − 𝛽1)
 

Ensuring Positive Variance: 

For 𝜎𝑖
2  to be positive and finite, the denominator must satisfy 1 − β1 >

0, 𝑖. 𝑒. , β1 < 1. 
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Boundedness of the Cosine Expectation: 

The expectation 𝐸 [cos (θ𝑖(𝑡) − θ𝑗(𝑡))] is bounded between −1 and 1. Therefore: 

−𝛼1 ×∑𝑤𝑖𝑗

𝑁

𝑗=1

≤ 𝛼1∑𝑤𝑖𝑗𝐸 [cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))]

𝑁

𝑗=1

≤ 𝛼1 ×∑𝑤𝑖𝑗

𝑁

𝑗=1

 

Given that ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 = 1: 

−𝛼1 ≤ 𝛼1∑𝑤𝑖𝑗𝐸 [cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡))]

𝑁

𝑗=1

≤ 𝛼1 

Eigenvalue Condition: 

To ensure that the impact of the cross-correlations does not destabilize the 

volatility process, we impose: 

𝛼1 × 𝜆max(𝑊) + 𝛽1 < 1 

where 𝜆𝑚𝑎𝑥(𝑊) is the largest eigenvalue of the weight matrix W. This condition 

guarantees that the combined influence of cross-correlations and volatility persistence 

is controlled, ensuring stationarity. 

Under the condition 𝛼1 × 𝜆𝑚𝑎𝑥(𝑊) + 𝛽1 < 1, the CVM maintains a stable 

conditional variance, thereby satisfying the criteria for strict stationarity. □ 

8. Circular covariance structure 

In this section, we introduce the novel concept of a circular covariance matrix to 

model the interdependencies between angular returns of financial assets. In traditional 

linear statistics, covariance measures how two variables change together. However, 

when dealing with circular data, such as angles or periodic variables, the standard 

definition of covariance must be adapted to account for the wrapping nature of the 

data, where angles 0° and 360°  represent the same point on a circle. Hence, the 

circular covariance must capture both the angular relationships and the periodicity 

inherent in such data. 

Let 𝜃𝑖(𝑡) and 𝜃𝑗(𝑡) represent the angular returns of assets 𝑖 and 𝑗 at time 𝑡, where 

𝜃𝑖, 𝜃𝑗 ∈ [0,2π). The covariance between two angular returns can be expressed as a 

function of their directional differences. For assets 𝑖 and 𝑗, the circular covariance 

structure is defined as: 

Σθij = κiκj cos(μi − μj) 

where: 

• 𝜅𝑖 and 𝜅𝑗 are the concentration parameters (analogous to precision) of the von 

Mises distributions fitted to 𝜃𝑖(𝑡) and 𝜃𝑗(𝑡), respectively. 

• 𝜇𝑖 and 𝜇𝑗 are the mean directions of the angular returns for assets 𝑖 and 𝑗. 

The circular covariance matrix Σθ for N assets is thus given by: 
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Σθ =

(

 

κ1
2 κ1κ2 cos(μ1 − μ2) ⋯ κ1κ𝑁 cos(μ1 − μ𝑁)

κ2κ1 cos(μ2 − μ1) κ2
2 ⋯ κ2κ𝑁 cos(μ2 − μ𝑁)

⋮ ⋮ ⋱ ⋮
κ𝑁κ1 cos(μ𝑁 − μ1) κ𝑁κ2 cos(μ𝑁 − μ2) ⋯ κ𝑁

2 )

  

Consider a simple example of N = 3  assets. Let the mean directions of the 

angular returns for assets 1, 2, and 3 be 𝜇1 =
π

4
, 𝜇2 =

𝜋

2
 and 𝜇3 =

3𝜋

4
 respectively. 

Furthermore, assume the concentration parameters are 𝜅1 = 2, 𝜅2 = 3, and 𝜅3 = 4. 

The circular covariance matrix Σ𝜃 would be: 

Σθ =

(

 
 
 

4 6 cos (
π

4
−
π

2
) 8 cos (

π

4
−
3π

4
)

6 cos (
π

2
−
π

4
) 9 12 cos (

π

2
−
3π

4
)

8 cos (
3π

4
−
π

4
) 12 cos (

3π

4
−
π

2
) 16 )

 
 
 

 

Simplifying the trigonometric terms, we get: 

Σθ =

(

  
 

4 6 cos (−
π

4
) 8 cos (−

π

2
)

6 cos (
π

4
) 9 12 cos (−

π

4
)

8 cos (
π

2
) 12 cos (

π

4
) 16 )

  
 

 

Given that cos(−θ) = cos(θ), we can substitute the cosine values to obtain: 

Σθ =

(

 
 
 
 

4 6 ×
√2

2
8 ⋅ 0

6 ×
√2

2
9 12 ×

√2

2

8 × 0 12 ×
√2

2
16 )

 
 
 
 

= (
4 3√2 0

3√2 9 6√2

0 6√2 16

) 

This matrix fully represents the circular dependencies between the three assets. 

It is evident that the correlation between assets 1 and 3, for example, is zero because 

the angular separation between them is 
𝜋

2
, which corresponds to orthogonal directions. 

8.1. Properties of the circular covariance matrix 

The circular covariance matrix Σ𝜃 is a fundamental structure for modeling the 

dependencies between angular variables in a financial network. Unlike traditional 

covariance matrices, Σ𝜃  captures the specific properties of circular data, making it 

essential for accurate modeling in systems where periodicity is inherent, such as in 

asset returns that exhibit cyclical behavior. In this section, we elaborate on the key 

properties of Σ𝜃 and provide context-specific insights into its relevance in financial 

applications. 
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8.1.1. Symmetry 

The circular covariance matrix Σ𝜃 retains the symmetry property, a characteristic 

shared with traditional covariance matrices. For assets i and j, the covariance between 

their angular returns is determined by: 

Σθ𝑖𝑗 = κ𝑖κ𝑗 cos(μ𝑖 − μ𝑗) 

where 𝜅𝑖 and 𝜅𝑗 represent the concentration parameters of the von Mises distribution 

fitted to the angular returns 𝜃𝑖 and 𝜃𝑗, and 𝜇𝑖and 𝜇𝑗 are their mean directions. 

Since the cosine function is symmetric, meaning that: 

cos(𝜃𝑖 − 𝜃𝑗) = cos(𝜃𝑗 − 𝜃𝑖) 

it follows that: 

𝛴𝜃𝑖𝑗 = 𝛴𝜃𝑗𝑖  

Thus, Σ𝜃  is a symmetric matrix. This symmetry ensures that the relationships 

between pairs of assets are consistently captured, and this is crucial in financial 

systems where reciprocal dependencies between asset volatilities are common. 

8.1.2. Periodicity 

The periodic nature of circular data is one of its defining features, and this is 

reflected in the covariance structure. The cosine function, cos(𝜃𝑖 − 𝜃𝑗), is inherently 

periodic with a period of 2π. 

This implies that any circular difference (𝜃𝑖 − 𝜃𝑗)  is equivalent modulo 2π , 

meaning: 

cos(𝜃𝑖 − 𝜃𝑗) = cos ((𝜃𝑖 − 𝜃𝑗) + 2𝑘π)  ∀𝑘 ∈ 𝑍 

This property ensures that the covariance between any two assets is invariant 

under rotations of 2π, which is essential for modeling the cyclic behaviors present in 

financial markets. For instance, asset prices may exhibit periodic fluctuations tied to 

daily or quarterly events, and the circular covariance model captures these cycles 

naturally, even if the events repeat at different times. 

8.1.3. Positive semi-definiteness 

An important property of any covariance matrix is positive semi-definiteness, 

which ensures that the variance of any linear combination of variables is non-negative. 

Formally, for any non-zero vector 𝑣 ∈ 𝑅𝑁, the quadratic form: 

𝑣𝑇Σθ𝑣 ≥ 0 

Must hold. For the circular covariance matrix Σ𝜃 this property is preserved due 

to the nature of the cosine function and the structure of the matrix. The positive semi-

definiteness can be understood by examining the fact that for any combination of 

assets 𝑖 and 𝑗, the covariance Σ𝜃𝑖𝑗 = 𝜅𝑖𝜅𝑗 cos(𝜇𝑖 − 𝜇𝑗) is bounded by: 

−κ𝑖κ𝑗 ≤ Σθ𝑖𝑗 ≤ κ𝑖κ𝑗 

Thus, the matrix is guaranteed to be positive semi-definite. In the context of 

financial systems, this ensures that the volatility of any portfolio, modeled as a linear 
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combination of asset volatilities, remains non-negative a critical property for risk 

management and portfolio optimization. 

8.2. Estimation of the circular covariance matrix 

To estimate the circular covariance matrix Σ𝜃 from observed data, we rely on the 

maximum likelihood estimates (MLE) of the von Mises distribution parameters for 

each asset’s angular returns. Let the observed angular returns of asset 𝑖  at times 

(𝑡1, 𝑡2, … , 𝑡𝑇) be denoted by θ𝑖(𝑡1), θ𝑖(𝑡2), … , θ𝑖(𝑡𝑇). The likelihood function for the 

von Mises distribution of these angular returns is given by: 

𝐿(μ𝑖, κ𝑖) =∏
𝑒κ𝑖 cos(θ𝑖(𝑡)−μ𝑖)

2π𝐼0(κ𝑖)

𝑇

𝑡=1

 

where 𝐼0(𝜅𝑖) is the modified Bessel function of the first kind. The log-likelihood is: 

log 𝐿 (μ𝑖 , κ𝑖) =∑(κ𝑖 cos(θ𝑖(𝑡) − μ𝑖) − log(2π𝐼0(κ𝑖)))

𝑇

𝑡=1

 

To find the MLE of the parameters 𝜇𝑖 and 𝜅𝑖, we take the partial derivatives of 

the log-likelihood function with respect to 𝜇𝑖 and 𝜅𝑖 and solve the resulting equations. 

This gives us the estimates μ�̂�𝑎𝑛𝑑κ�̂�, which represent the empirical mean direction and 

concentration parameter for the angular returns of asset 𝑖. 

The circular covariance between assets 𝑖 and 𝑗 is then computed as: 

Σθ𝑖𝑗
̂ = κ𝑖κ�̂�̂ 𝑐𝑜𝑠(μ�̂� − μ�̂�) 

where μ�̂� and μ�̂� are the estimated mean directions, and 𝜇�̂� and 𝜇�̂� are the estimated 

concentration parameters for the angular returns of assets 𝑖 and 𝑗. 

Consider two assets, 𝐴 and 𝐵 , with observed angular returns over 𝑇 =  10 

periods. After fitting the von Mises distributions, suppose we obtain the following 

estimates: 

μ�̂� =
π

4
,  κ�̂� = 2,  μ�̂� =

π

3
,  κ�̂� = 3 

The estimated circular covariance between assets 𝐴 and 𝐵 is then: 

Σθ𝐴𝐵
̂= 2× 3 ⋅ cos (

π

4
−
π

3
) = 6 × 𝑐𝑜𝑠 (−

π

12
) = 6 × cos (

π

12
) 

Using the known value cos (
π

12
) ≈ 0.9659, we compute: 

Σθ𝐴𝐵
̂≈ 6× 0.9659 = 5.795 

This result shows a strong positive correlation between the angular returns of the 

two assets, indicating that they tend to move in similar directions during the observed 

periods. 

8.2.1. Implications for financial networks 

The ability to estimate and interpret circular covariances is critical for 

understanding the dependencies in a financial network. Assets with high positive 

circular covariances tend to exhibit synchronized movements in their angular returns, 
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which may indicate shared underlying factors, such as market sentiment or exposure 

to the same economic events. Conversely, assets with near-zero or negative circular 

covariances may behave independently or in opposition, providing insights for 

diversification strategies. 

By estimating the full circular covariance matrix for a portfolio of assets, 

financial analysts can identify clusters of assets with similar directional movements, 

enabling better portfolio construction and risk management. 

8.3. Applications and illustrations 

The circular covariance structure has crucial applications in financial systems, particularly in 

capturing the interdependencies of asset returns and volatilities within cyclic or periodic 

environments. Below are a few specific applications within the domain of financial networks: 

8.3.1. High-frequency trading and periodic market effects 

In high-frequency trading (HFT), price movements occur over very short time 

intervals, often displaying cyclical patterns due to market microstructures, such as the 

opening and closing of stock exchanges. These periodic behaviors in asset returns can 

be effectively modeled using circular statistics. Specifically, the covariance between 

two assets’ angular returns can highlight how closely their price fluctuations align 

during specific periods of the trading day. 

For example, consider two assets, i and 𝑗, traded on a market with clearly defined 

opening and closing times. The price changes of these assets, measured at intervals 

(𝑡1, 𝑡2, … , 𝑡𝑇), exhibit directional behavior due to the predictability of certain times of 

the day when large trades or high volatility occurs (e.g., opening, lunchtime, and 

closing). Using the circular covariance: 

Σ𝜃𝑖𝑗 = 𝜅𝑖𝜅𝑗 cos(𝜇𝑖 − 𝜇𝑗) 

We can capture the inter-asset dependency based on these recurring periods. For 

example, asset 𝑖 might consistently spike at market opening due to high liquidity, 

while asset 𝑗 follows similar behavior but is more volatile during the closing hours. By 

calculating the circular covariance, we measure how synchronized these price 

movements are over time, which linear methods might miss due to the circular nature 

of time in financial markets. 

In practical terms, this insight could be used by high-frequency traders to 

optimize their algorithms based on the alignment of assets during key times of the day. 

Circular covariance allows traders to better understand interdependencies in 

magnitude, timing, and directional flow. 

8.3.2. Volatility clustering in international markets 

Global financial markets exhibit strong evidence of volatility clustering, where 

periods of high volatility are followed by further high volatility, and similarly for low 

volatility. This clustering often coincides with cyclical events such as national 

elections, central bank meetings, or earnings reports, which happen periodically across 

different time zones and economies. 

In an international context, the circular covariance matrix can provide a more 

nuanced view of these volatility clusters across different markets. Let’s consider two 
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markets, the U.S. stock market and the European stock market. Their volatilities may 

peak at different times during a 24-hour cycle. For example, the U.S. market opens 

after the European market has already been trading for several hours. The circular 

covariance between their volatilities could be calculated as: 

Σθ𝑖𝑗 = κUSκEU cos(μUS − μEU) 

where 𝜇US  and 𝜇EU  are the mean directions representing the typical times of high 

volatility for the U.S. and European markets, respectively, and 𝜅US and 𝜅EU represent 

the concentration of this volatility around these periods. 

For instance, if the U.S. market tends to experience a volatility spike around 9:30 

AM Eastern Time, and the European market around 3:00 PM Central European Time, 

the circular covariance will reflect the phase difference between these events. This 

allows portfolio managers to strategically align their investment strategies based on 

the synchronized behavior of these markets, using circular covariance to measure 

cross-market volatility dependencies. 

8.3.3. Asset correlations during periodic macroeconomic events 

Financial markets are frequently affected by periodic macroeconomic events 

such as central bank interest rate announcements, corporate earnings releases, and 

even seasonal patterns as year-end market closures. These events tend to create 

periodicity in asset returns and volatilities. Traditional linear covariance metrics might 

fail to capture the cyclic nature of how different assets respond to these events. 

For instance, consider the behavior of technology stocks during quarterly 

earnings season. Suppose asset 𝑖 (a large technology firm) tends to have significant 

price movement during earnings announcements in the second week of each quarter. 

Similarly, asset 𝑗 (another firm in the same sector) experiences directional movement 

in the same period, but the peak movement might occur a few days earlier due to 

different release schedules. The circular covariance: 

Σθ𝑖𝑗 = κ𝑖κ𝑗 cos(μ𝑖 − μ𝑗) 

Measures the phase difference between these assets’ responses. The circular 

covariance structure allows investors to understand whether these assets’ volatilities 

tend to synchronize over these periodic events, offering critical insights into how 

correlated movements evolve cyclically over time. 

By applying this method across multiple assets and event windows, fund 

managers can build a portfolio strategy that accounts for the periodic dependencies 

between assets, allowing for better risk management and return optimization. 

8.3.4. Illustration: Synchronization in financial cycles 

To further illustrate the circular covariance structure, consider the following 

hypothetical scenario. Two large financial institutions, A and B, trade two major 

currency pairs, EUR/USD and GBP/USD. Each institution has a trading strategy that 

tends to execute large trades at similar times daily based on global market opening 

hours. 

Let μ𝐴 =
π

3
 represent the typical mean direction of institution A’s trading window, 

and μ𝐵 =
π

2
 represent that of institution B. Let the concentration parameters, κ𝐴 = 5 
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and 𝜅𝐵 = 6, reflect how focused these institutions are in trading at those specific times. 

The circular covariance between their trading times can be calculated as: 

Σθ𝐴𝐵 = 5 × 6 × cos (
π

3
−
π

2
) = 30 × cos (−

π

6
) = 30 ×

√3

2
= 15√3 

This positive covariance indicates a strong synchronization between the two 

institutions’ trading windows, suggesting that their behaviors are highly correlated 

during these periods. Such information could be crucial for other market participants 

anticipating liquidity surges or price impacts due to synchronized institutional trades. 

9. Goodness-of-fit test for circular data 

To test the fit of the Circular Volatility Model, we propose a goodness-of-fit test 

based on a circular chi-squared statistic. The null hypothesis is that the observed 

angular returns follow a von Mises distribution. The test statistic is: 

χ2 =∑
(𝜃�̂� − 𝜇𝑖)

2

𝜎𝑖
2

𝑁

𝑖=1

 

where θ�̂�  is the observed angular return, μ𝑖  is the mean direction, and σ𝑖
2  is the 

volatility. This test provides a rigorous mechanism for assessing the model’s goodness 

of fit. 

10. Simulation study: Circular volatility model and parameter 

estimation 

10.1. Simulation of angular data 

We simulate angular returns for three assets, denoted as θ1(𝑡), θ2(𝑡) and θ3(𝑡), 

at time 𝑡 =  1,2, … . .100, from a von Mises distribution. The true mean directions μ 

and concentration parameters κ for each asset are specified as: 

μ1 =
π

4
,  μ2 =

π

2
,  μ3 =

3π

4
 

κ1 = 2,  κ2 = 3,  κ3 = 4 

10.2. Parameter estimation 

To estimate the mean directions μ  and concentration parameters κ  from the 

simulated angular data, we use the maximum likelihood estimation (MLE) method. 

The estimated parameters are denoted by μ̂ and κ̂ 

The formulae used for parameter estimation are as follows: 

μ̂ = atan2(∑sin(𝜃𝑡)

𝑇

𝑡=1

,∑cos(𝜃𝑡)

𝑇

𝑡=1

) 

κ̂ = function of the mean resultant length 𝑅 = √𝐶2 + 𝑆2 

where 𝐶 and 𝑆 are the averages of cos(𝜃𝑡) and sin(𝜃𝑡), respectively. 

The results are shown in Table 1. 
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Table 1. True vs. estimated parameters of the von mises distribution. 

Asset True 𝝁 Estimated 𝝁 True 𝜿 Estimated 𝜿 

1 0.7854 0.6716 2 1.8597 

2 1.5708 1.5683 3 3.6196 

3 2.3562 2.3778 4 3.6504 

10.3. Circular volatility model 

The volatility of each asset is modeled using a Circular Volatility Model (CVM) 

that extends the GARCH (1,1) model to angular data. The volatility at time 𝑡 for asset 

𝑖 is defined as: 

σ𝑖
2(𝑡) = α0 + α1∑cos (𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)) + 𝛽1𝜎𝑖

2(𝑡 − 1)

𝑁

𝑗=1

 

where α0 = 0.02, α1 = 0.05 𝑎𝑛𝑑 β1 = 0.9 are the model parameters, and 𝑁 = 3 is 

the number of assets. This model captures both the autoregressive nature of volatility 

and the angular correlation between the returns of different assets. 

Figure 1 shows the predicted volatility for each asset over time. 
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Figure 1. Predicted volatility for Asset 1, Asset 2, and Asset 3 over time, with confidence intervals (scaled with 100 

for better visual. 

10.4. Circular histograms (rose plots) 

The circular histograms (rose plots) for the angular returns of each asset provide 

a visual representation of the distribution of angular data. The histograms are shown 

in Figure 2. Each plot illustrates how the respective assets’ angular returns are 

distributed across different angles. 

 
Figure 2. Circular histograms (rose plots) for the angular returns of Asset 1, Asset 2 and Asset 3. 
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10.5. Comparison of true vs. estimated mean directions 

To visually compare the true and estimated mean directions μ for each asset, we 

plot the directions as arrows on a circle originating from the center. The true mean 

directions are shown in red, while the estimated ones are in blue. This visualization 

helps assess how close the estimated 𝜇 values are to the true values. 

Figure 3 shows the circular plot for the true and estimated mean directions. 

 
Figure 3. Comparison of true and estimated mean directions (𝜇) for each asset. 

Red arrows represent true 𝜇, and blue arrows represent estimated 𝜇. 

10.6. Goodness-of-fit test 

he goodness-of-fit of the von Mises distribution for each asset is assessed using 

the Rayleigh test for uniformity. The null hypothesis of the Rayleigh test is that the 

data is uniformly distributed on the circle, and a low 𝑝 − 𝑣𝑎𝑙𝑢𝑒 indicates a good fit to 

the von Mises distribution. 

Table 2 shows each asset’s 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 from the Rayleigh test. 

Table 2. Goodness-of-fit results (rayleigh test). 

Asset p-value Asset p-value 

1 1.70 × 10−20 

2 5.32 × 10−32 

3 4.11 × 10−32 

The extremely low p-values indicate that the angular data for all assets fits the 

von Mises distribution well. 

10.7. Overlay of simulated data, predicted volatility, and confidence 

intervals 

In this subsection, we analyze the overlay of simulated angular returns with the 

predicted volatility generated by the Circular Volatility Model (CVM). Confidence 

intervals around the predicted volatility are also plotted to visually assess the 

variability in the volatility estimates. The confidence intervals are constructed by 
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applying a 15% margin above and below the predicted volatility, giving a visual range 

for uncertainty around the model predictions. 

We simulate the data for three assets and compute the predicted volatility based 

on the CVM model. The confidence intervals are defined as: 

Lower Bound = σpredicted
2 × 0.85 

Upper Bound = σpredicted
2 × 1.15 

This provides a range of possible volatility values that capture the uncertainty in 

the model’s predictions. 

Each plot shows: 

Simulated Data: Represented by a dashed green line corresponding to each asset’s 

actual angular returns. 

Predicted Volatility: Represented by a solid blue line, corresponding to the 

volatility predicted by the CVM model for each asset. 

Confidence Interval: A blue-shaded region displays the uncertainty range of the 

predicted volatility for each asset. 

Figure 4 illustrates each asset’s overlay. 

 
Figure 4. Overlay of simulated data, predicted volatility, and confidence intervals for Asset 1, Asset 2, and Asset 3. 
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The dashed green line represents the simulated angular returns, the solid blue line 

represents the predicted volatility, and the shaded blue area represents the confidence 

interval around the predicted volatility. 

The overlay of simulated data predicted volatility and confidence intervals offers 

valuable insights into the performance of the Circular Volatility Model. For all three 

assets, the predicted volatility closely tracks the underlying angular returns, with the 

confidence intervals providing a meaningful range of uncertainty around the 

predictions. 

10.8. Estimation errors 

To quantify the difference between the true and estimated parameters, we 

compute the error for both μ and κ as: 

Error in 𝜇 = �̂� − 𝜇,  Error in 𝜅 = �̂� − 𝜅 

The errors are shown in Table 3. 

Figure 5 shows bar plots of the errors in 𝜇 and 𝜅 for each asset. 

Table 3. Errors in Estimated parameters. 

Asset Error in 𝝁 Error in 𝜿 

1 −0.1138 −0.1403 

2 −0.0025 0.6196 

3 0.0216 −0.3496 

 
Figure 5. Errors in estimated mean direction (𝜇) and concentration (𝜅) for each asset. 
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10.9. Residual diagnostics using QQ-plots 

In this subsection, we present the QQ-plots for the residuals of the predicted 

volatility for each asset. These plots assess whether the Circular Volatility Model 

(CVM) residuals follow a normal distribution, a key assumption for the model’s 

validity. 

Residuals are the differences between the simulated data and the predicted 

volatility. For this model to be well-calibrated, we expect the residuals to 

approximately follow a normal distribution. If the QQ-plot shows a linear pattern, it 

indicates that the residuals are normally distributed. Deviations from linearity would 

suggest potential problems with the model’s assumptions. 

The QQ-plots for residuals of the three assets are shown in Figure 6. Each plot 

compares the quantiles of the residuals with the theoretical quantiles of a normal 

distribution. 

 
Figure 6. QQ-plots for residuals of the predicted volatility for the three assets. 

The residuals are compared against the theoretical quantiles of a normal 

distribution. Deviations from the diagonal line indicate departures from normality. 

Asset 1 Residual: The QQ-plot for Asset 1 shows that the residuals generally 

follow a normal distribution, as most points lie along the reference line. Some 

deviations can be observed at the tails. This suggests that the model may have over- 

or under-predicted volatility for extreme asset returns values. 

Asset 2 Residuals: The QQ-plot for Asset 2 shows almost no deviations from 

normality and is within an acceptable range. 
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Asset 3 Residuals: Similar to Asset 2, the residuals for Asset 3 ALSO show 

NEGLIGIBLE deviations from normality, except very few in the extreme quantiles. 

These deviations might suggest potential issues with the model for higher volatility 

levels or extreme returns. 

The QQ plots indicate that Assets 2 and 3 residuals are approximately normally 

distributed, supporting the model’s validity for this asset. However, Asset 1 shows 

some deviations from normality, especially in the tails, indicating that the model might 

not fully capture the volatility dynamics for these assets. Further model refinements 

or alternative models could be considered to better capture the behavior of the 

residuals for these assets. 

10.10. Summary of results 

The parameter estimation and volatility modeling results are summarized in 

Table 4, which includes the true and estimated parameters, the estimation errors, and 

the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 from the Rayleigh test. 

Table 4. Summary of results. 

Asset True μ Estimated μ True κ Estimated κ μ Error κ Error 

1 0.7854 0.6716 2 1.8597 −0.1138 −0.1403 

2 1.5708 1.5683 3 3.6196 −0.0025 0.6196 

3 2.3562 2.3778 4 3.6504 0.0216 −0.3496 

10.11. Interpretation of the results 

The results in Table 4 demonstrate the accuracy of the estimated parameters for 

the von Mises distribution. The estimated mean directions μ are close to the true values, 

with small errors for all three assets. The concentration parameters κ are reasonably 

well estimated, although Asset 2 has a slightly larger error for 𝜅. This is likely due to 

the lower concentration of the data in Asset 2 compared to Asset 1 and Asset 3. 

The goodness-of-fit tests, with extremely low 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 , confirm that the 

simulated angular data fits the von Mises distribution well for all three assets. This is 

consistent with the data being generated using a von Mises distribution. 

10.12. Visual assessment 

To further assess the quality of the parameter estimation, we visualize the true vs. 

estimated mean directions using arrows on a circular plot, as shown in Figure 3. This 

plot demonstrates that the estimated mean directions are very close to the true 

directions for all three assets, reinforcing the accuracy of the estimation process. 

Additionally, the predicted volatility over time for each asset is shown in Figure 

1. The volatility predicted by the Circular Volatility Model (CVM) captures the 

cyclical nature of the angular data, and the model appears to perform well for all three 

assets. 

The circular histograms (rose plots) in Figure 2 also provide a clear view of the 

angular distribution of returns for each asset, showing the concentration of angular 

data around the estimated mean directions. 
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10.13. Discussion 

In this study, we simulated angular returns for three assets using the von Mises 

distribution, estimated the distribution parameters using maximum likelihood 

estimation, and modeled the volatility of the assets using a Circular Volatility Model. 

The results demonstrate that the parameter estimation is accurate, as evidenced by the 

low errors in the estimated parameters and the goodness-of-fit tests. The Circular 

Volatility Model also performed well in capturing the volatility patterns in the angular 

data. 

These findings show the utility of the von Mises distribution and CVM in 

analyzing angular data, particularly for applications in finance, biology, and other 

fields where circular data plays a significant role. 

11. Conclusion 

This paper introduces a novel circular volatility model for analyzing cross-

correlated financial networks. The model incorporates directional dependencies 

between asset returns and extends traditional volatility models into the circular domain. 

Using the von Mises distribution, we propose maximum likelihood estimation 

techniques and introduce a circular covariance structure to capture interdependencies 

between assets. A goodness-of-fit test based on the circular chi-squared statistic is also 

proposed. The Circular Volatility Model offers new insights into the periodic behavior 

of financial systems and has potential applications in various fields beyond finance. 

The Circular Covariance Structure offers a powerful tool for analyzing 

interdependencies between assets in financial markets, especially where periodicity 

and cyclic behavior are key drivers of price movements and volatility. By adapting 

traditional covariance to the circular domain, this model provides a more accurate 

representation of cross-asset dynamics and offers novel insights that linear methods 

might overlook. The applications discussed highlight the potential for this model to 

enhance risk management, optimize trading strategies, and improve our understanding 

of market behavior in both national and international contexts. 

12. Future work 

Future research can explore extensions of the CVM, such as incorporating higher-

order circular dependencies, integrating external covariates, or developing Bayesian 

estimation frameworks to further enhance the model’s applicability and robustness in 

diverse financial contexts. Several avenues for future work that can build upon the 

findings of this research: 

• Application to real-world financial data: While the current study focuses on 

simulated data, applying the Circular Volatility Model (CVM) to real-world 

financial data, such as currency exchange rates or asset prices, would provide 

further validation of the model’s practical utility. 

• Extension to multivariate circular models: Future work could explore the 

extension of the CVM to multivariate frameworks, where multiple angular 

variables are analyzed simultaneously. This would enable the modeling of 
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complex dependencies in financial networks or other systems with 

interdependent angular data. 

• Incorporating external covariates: The inclusion of external covariates, such as 

economic indicators or market sentiment, could enhance the predictive power of 

the CVM. Exploring how these covariates influence volatility in angular data 

would be a valuable extension of the current model. 

• Generalization to other domains: Beyond financial networks, the CVM 

framework can be adapted to other fields such as meteorology (e.g., wind 

direction analysis), biology (e.g., animal movement), or geophysics (e.g., 

earthquake directionality). Future research can explore these applications and 

refine the model to address domain-specific challenges. 

• Bayesian approaches: Implementing Bayesian versions of the Circular Volatility 

Model could offer additional insights into parameter uncertainty, providing a 

probabilistic framework that complements the current MLE-based approach. 

Future research can continue to explore and expand the applicability of the 

Circular Volatility Model to different domains, enhancing our understanding of 

circular dynamics and volatility in various contexts. 
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