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ABSTRACT

In this paper we make an empirical analysis of a wide range of claims development trapezoids following Benford’s
law. In particular we determine Benfors’s law for different characteristic factors depending on claims
development triangles/trapezoids. These characteristic factors are the cumulative claims payments, the incremental
claims payments and the individual development factors. For each characteristic factor hypothesis testing is done for
verifying/rejecting Benford’s law.
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1. Introduction and motivation

In this work an empirical statistical analysis is done for an actuarial dataset. Therefore we use Benford’s law for
demonstration. Benford’s law, named for physicist Frank Benford, who worked on the theory in 1938 (cf. Benford™) is
the mathematical theory of leading digits.

In many data sets, the leading digits of numbers are distributed in a specific way, which Benford discovered. This
specific way — the Benford law — is non-linear. In Benford’s distribution it states that, for example, the digit “1” appears
about 30 percent of the time as first digit. On the other hand the digit “9”, as first digit, appears less than 5 percent of
the time (cf Figure 2). An easy to understand example of this behaviour are house numbers: House numbers in
streets begin with the “1”, but not all streets have 20 or up to 90 house numbers. So the digit “1” is the most frequently
used first digit, followed by the “2” and so on.Nowadays, Benford’s law is used for example in:

e  Accounting fraud detection (in 2001 accounting fraud was detected in the Enron Corporation);
e clection data (in 2009 Benford’s law was used to detect fraud in the Iranian elections);
e  genome data.

In this work we analyse a set of claims development trapezoids following Benford’s law. This work is done to
determine the assumption that there exists characteristic triangle/trapezoid-factors following Benford’s law. The basic
idea behind this work is: If an actuary has got the knowledge that specific triangle/trapezoid-factors follow a given
distribution (e.g. Benford distribution) he can check given development triangles/trapezoids against this distribution.
Possible reasons for checking this can be:

e  Determining the plausibility of the given triangle/trapezoid;
e  detecting fraud in the given data (cf. Durtschi et al.% or Diekmann & Jann!*);
e  detecting outliers (this might be helpful for further analysis).

We do not specially focus on one of these items, so the analysis made in this paper is done on a general point of
view. The verification that the given set of development trapezoids, respectively some characteristic factors, follows
Benford’s law is done with hypothesis testing. Therefore, we use the well known Kolmogorow-Smirnow-test (see for
example Govindarajulul!'% pp-182-187]y

Most actuarial science papers deal with very limited datasets for example with only one development triangle (cf.
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Mack!'?), England & Verrall”! or Merz & Wiithrich!!3)) if the paper is a more “theoretical” one. Or they deal with a
larger set of claims development triangles generated with some statistical methods such as bootstrapping for example
(cf. England & Verrall®, Pinheiro et al.'¥ or Heberle et al.l'). In fact these larger “observation”-datasets are not real
datasets — they are mostly generated from a very limited dataset. The use of only one — or especially very limited —
datasets reflects from the fact that larger datasets are not — or even not easily — available for most scientists.

The structure of the paper is as follows. In Section 2 some notation is introduced and Benford’s law is presented.
The characteristic factors, namely the cumulative and incremental claims payments and the individual development
factors are also introduced in Section 2. Section 3 is the detailed empirical analysis with a dataset made available by
GR-NEAM!. At the end a conclusion is given in Section 4.
2. Notation and Benford’s law

For reasons of simplicity we only speak of development “triangles”, but all formulas hold true for development
trapezoids as well.
2.1 Notation

In the following we assume that we have N development triangles and that C;; denotes the cumulative payments
for accident year i €{0, . . ., I} and development year j €{0, . . . , J} for one given development triangle. With this
notation, at time ¢ = / and for a given development triangle, we have observations

O={Cyjli+j<I}. 2.1
Figure 1 shows a given development triangle at time t = I. The upper left part in this triangle is observable, while

the lower right part is unobservable at time t = 1.

accident development year j
year i 0 3 AT N

1]

[

Figure 1; Observable cumulative payments Ci,j for a given development triangle at time = /.
In the following we deal with some characteristic values which are observable or can be computed from the given
sets of different observations O given by the N development triangles. These different characteristic values are:
1. Cumulative claims payments C;; for each triangle fori =0, ..., landj =0, ..., Jwithi+j <L
2. Incremental claims payments Xi,j for each triangle fori =0,...,Tandj =0,...,Jwithi+j < I
3. Individual development factors Fi,j for each triangle fori =0,...,I-land;j=0,...,J — [ withi+j < [-].
Remarks 2.1:
e  The cumulative claims payments C;; (i +j < I) itself have not to be computed since these values are given in the
upper left part of each development triangle (cf. equation (2.1)).
e  The incremental claims payments X;; as well as the individual development factors F;; both generate “new” sets of
observations, one set for every triangle.
e  FEach new set of observations containing the individual development factors Fi; is smaller than the corresponding
set containing C;; or Xj; (see equations (2.4), (2.5) and (2.6))

e The use of exact these three characteristic values is determined through a more or less excessive usage in the
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literature.

Since the cumulative claims payments have to be given in our framework, the incremental claims payments as well
as the individual development factors must be defined. These definitions are given below.

Definition 2.2 (Incremental claims payments for a single development triangle): For a given development triangle

and the corresponding observation set O the incremental claims payments are given by

!c_u ifj=0

Xi:=
5 l('!__, —Cijo1  otherwise (2.2)
fori=0,...,landj=0,...,Jwithi+;j<I.
With Definition 2.2 the cumulative claims payments C;; for each triangle fori=0,...,Iandj=0,...,Jwithi +

</ can be written as

The individual development factors are given in the following definition.
Definition 2.3 (Individual development factors for a single development triangle): For a given development
triangle and the corresponding observation set O the individual development factors are given by

- (-‘!. +1
R 2.3)

fori=0,..., I—1landj=0,..., J—1withi+j<I—- 1.

To analyse the diff erent characteristic factors, i.e. to analyse the cumulative claims payments, the incremental
claims payments as well as the individual development factors, these datasets must be given in three vectors. Therefore,
we write

Ve, Uy, Up

The vector vc contains all observable cumulative claims payments over all development triangles, while vy is the
vector with the computed incremental claims payments and vr is the vector with the computed individual development
factors.

The dimensions of these vectors are:

dim(ve) = ((I+1)(J+1) = 3J(J+ 1)) N 24
dim(vy) = ((I+ 1)(J+1) = 3J(J + 1)) N (2.5)
dim(vr) = (I + 1)(J+1) = 2J(J + 1) = (T + D)) N (2.6)

2.2 Benford’s law

Benford’s law states that in many sources of data the leading digits are distributed in a specifig — non-uniform —
way, the Benford distribution. The Benford distribution can be defined as follows (cf. Benford?)).

Definition 2.4 (Benford distribution): 4 set A & R of real numbers satisfy Benfords law if the probability of the
occurrence of the m-th significant decimal digitd € {0, ..., 9} of every number 0 6=x € A is given by

10m= 1 B4 |

1
P(Dm(z)=d)= 3 logy (1 % MJ

ke=| 10m =2|

Thereby, Du(x) (x # 0) denotes the m-th decimal digit of x counted from the left and started with 1. The brackets b-c
denotes Gaussian-brackets (“‘floor-function”).

Remarks 2.5:
e  For a more detailed explanation of Benford’s law see Berger & HillBl.

e  There is a more general version of Definition 2.4 with a logarithm to a general base B (not to base 10), but in this
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paper we are only working with base 10.
e  Leading zeros are eliminated so that Di(x) 6=0 forall 0 6=x € A.
e Dj(0) is not defined since the occurrence of an 0 at the first position is not possible (that is because of the
elimination of leading zeros).
Example 2.6: Given
V214142 and 7! =0.3183
the operator D,,(x) works as follows:
Dy(V2) = Dy(—v2) = Dy (10v2) = 1, Dy(V2) =4,  Dy(v2) =1,
D7) = Dy(1027Y) = 3, Dy(a 1) =1, Dy(zH =8

In Table 1 and Figure 2 the probabilities described in Definition 2.4 are displayed.

probabilities (%)
digit 1% digits 2" digits 3 digits

0 - 11.97 10.18
1 30.10 11.39 10.14
2 17.61 10.88 10.10
3 12.49 10.43 10.06
4 9.69 10.03 10.02
5 7.92 9.67 9.98
6 6.69 9.34 9.94
7 5.80 9.04 9.90
8 5.12 8.76 9.86
9 4.58 8.50 9.83
B 100.00 100.00 100.00

Table 1. Probabilities (in percent) for the first, second and third digits for the Benford distribution
Benford’s law is often used only for the first and second digits. The reason is that the Benford distribution tends to

the uniform distribution on {0, . . ., 9} exponentially fast if m increases (see Definition 2.4 or Diaconis[*l). prob.
prob.
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Figure 2; Probabilities for the first, second and third digits for the Benford distribution.
3. Empirical analysis

In our empirical analysis we use a dataset made available by GR-NEAM containing cumulative claims
development trapezoids of diff erent property/casualty insurer and re-insurer. All these development trapezoids are “all
lines of business” trapezoids.

After cleaning the dataset — which was in 99% just rejecting development trapezoids with at least one accident year
only containing zeros — we got N = 442 claims development trapezoids. Each of these claims development trapezoids

contains / + I = 25 accident years, beginning in 1987 and ending in 2011, and J + / = /0 development years. An
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example development trapezoid is given in Table 2. Furthermore, we continue using i = 0, . . . , 24, respectively j =
0,...,9. So we are not using the “real” years i = 1987, ..., 2011.
The given dataset contains
dim(ve) = (I+1)(J +1) = 3J(J +1)) N
=(25-10-4-9-10) - 442 =90610

observations of cumulative claims payments. The same quantity of observations is given for the incremental claims
payments Xi; i =0,...,24,j=0,..., 9and N = 442), i.e. dim(vx ) = 90,610. The quantity of observations for the
individual development factors Fi;j (i =0,...,23,j=0,..., 8and N = 442) is given by:

dim(ve) = (I + (I +1) = 3J(J+ 1) = (I +1)) N
= (25- 10-1.9. 10—25) 442 = 79,560

In Table 3 the empirical frequencies for the first three digits of the vectors vc , vx and vr are compared with the

corresponding theoretical frequencies given by the Benford

accident development year j
year i 0 1 2 3 4 5 G 7 8 9

0 36T465 527971 624176 GTTI6T 703192 714530 717752 T1R465 T10822 719773
1 360615 545320 B462T5 GITTRO 721142 731072 T33159 737003 736601 737023
v 399390 622015 735778 TB4505 BO5008 813733 19120 B10384 B10041 B20156
3 440584 TO4845 B25586 BT3B17 01207 BOT340 BO9436 D00247 01128 901373
4 55 TOTS BB0136 1028915 1088000 1104058 1111641 1115078 1115998 1116756 1116950
5 497857 764992 BEBAT] 924559 DIRE03 033479 945950 46455 4670 945191
6 550800 RB14430 921427 D068 973229 OTR664 DR0O833 DE1584 82395 DE2T04
; ¢ 5ORE11 B71903 QBRTHZ 1026622 1039464 1043200 1046212 1048530 1048963 1049228
B GHO803 062172 1078B6E 1120715 1132873 1137810 11392094 1140345 1140457 1140593
9 BEO4L3 940388 1068378 1097987 1112481 1117551 1119460 1120388 1120767 1120915
10 701999 1007601 1118124 1159094 1172886 11TBO60 1179940 1181337 1182220 1182495
11 TEO854 1092060 1204873 1248110 1260777 1265813 1267430 126RR00 1260555 1260026
12 TT6920 1069427 1185378 1226759 1241176 1246444 1248875 1250062 1251023 1251501
13 B15345 1119941 1238465 1281002 1290013 1304600 1306228 1307217 1309205 1300404
14 R39782 1161931 1279122 1327083 1344001 1340389 1352101 1353418 1354340 1354757
15 B3T464 1155526 1277806 13326563 1353085 1360931 1363980 13648556 1365142 1365314
16 TIORGOS 1071472 1186893 1245486 1268734 1276423 1279313 1280708 1281527

17 B13122 1073297 1178935 1236942 1258510 1265235 126TBBE 1269579

18 B1D662 1094312 1207496 1269654 1288589 1207201 1300637

19 B7T9315 1187R15 1300015 1354009 1375006 1383696

20 957476 12451556 1374119 1432848 1460084

21 1012736 1324242 1442820 1501972

22 OTR33E 1288120 1418119

23 1054954 1376934

24 1067352

Table 2. Example of one of the given development trapezoids
distribution (cf. Definition 2.4). Obviously, the empirical and theoretical frequencies are much closer to each other for
the cumulative claims payments C;; and for the incremental claims payments X;; (i =0,...,24,j=0,...,9and N =
442) than for the individual development factors Fi; i = 0, ..., 23,7 =10, ..., 8 and N = 442). Figure 3, 4 and 5
emphasize these observations.

In the next step hypothesis tests are made for the occurred empirical values against their theoretical ones using the
well known Kolmogorow-Smirnow-test (K-S-test) which is almost one of the most popular goodness-of-fit tests. Since
we are using the K-S-test for an underlying discontinuous distribution it is quite more difficult to compute exact
p-values (cf. Gleser™). The R-package “dgo £’ (cf. R Development Core Team!'*land Arnold & Emerson!!!) provides an
exact computation of these p-values for small data-samples and a Monte-Carlo simulation of p-values for larger
data-samples.

We test the null hypothesis

Ho : Femp(x) = Fpenf(x)for all x
against the alternative
Hi : Femp(X) 6= Fpent(x)for some x.
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frequencies (%) for C;;
1% digits 2" digits 3 digits
digit emp. theo. emp. theo. emp. theo.

0 - - 12.00 1197 10.22 10.18
1 2937 3010 1148 11.39 10.15 10.14
2 1777 1761 1088 10.88 10.08 10.10
3 1291 1249 10.39 1043 10.14 10.06
4 0.71 9.69 10.11 10.03 10.29 10.02
D 8.08 7.92 9.63 9.67 9.97 9.98
] T7.04 6.69 0.24 0.34 0.vr 9.9
T 5.75 5.80 3.24 9.04 9.69 9.90
8 506 512 8.69 876 997 9.86
9 431 458 833 850 973 983
frequencies (%) for X;;
1% digits 27 digits 3 digits
digit emp. theo. emp. theo. emp. theo.
0 = - 11.88 1197 10.25 10.18

1 30.59 3010 11.35 11.39 10.15 10.14
2 1763 1761 10.97 10.88 10.20 10.10
3 1248 1249 1043 1043 10.19 10.06
B 0.74 9.69 10.00 10.03 10.03 10.02
G T.74 7.92 9.62  9.67 10.14 9.98
i 6.70 6.69 927 9.34 9.90 9.94
T 5.72 5.80 9.11 9.04 9.54 9.90
8 5.06 5.12 9.01 8.76 9.70 0.86
9 433  4.58 8.36  8.50 9.90 9.83

frequencies (%) for F;;

15t digits 20d digits 3 digits
digit emp. theo. emp. theo. emp. theo.
0 - - 65.40 11.97 30.99 10.18

1 91.70 30.10 10.22 11.39 1444 10.14
2 1.79 17.61 5.82 10.88 10.18 10.10
3 040 1249 435 1043 8.12 10.06
4 0.26 969 282 1003 707 10.02
G 0.17 7.92 1.96 9.67  6.38 9.98
G 0.14 6.69 1.42 934 5.63 9.94
i 0.11 5.80 1.21 9.04 532 9.90
8 0.22 5.12 1.38 876 5.09 9.86
9 5.22 4.58 542 850 6.79 9.83

Table 3. Empirical and theoretical frequencies (in percent) for the first, second and third digits for cumulative claims payments

Cij, for incremental claims payments X;; and for the individual development factors Fj;.



prob. prob.
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T digit digit
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Figure 3; Empirical (bars) and corresponding theoretical Figure 4. Empirical (bars) and corresponding theoretical (line)
(line) frequencies for the first, second and third digits for frequencies for the first, second and third digits for
cumulative claims payments Cj,. incremental claims payments Xj;.
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Figure 5; Empirical (bars) and corresponding theoretical (line) frequencies for the first, second and third digits for the individual

development factors Fj;.



The test criterion is given by:

D = sup |E:lt|Lﬁ{'Il} — Fienil 31')|
=

Table 4 presents the results for the K-S-test, i.e. the values of the test criterion D and the corresponding p-values

are listed. The results are the same than we got at first glance from Figure 3, 4 and 5.

1% digits 2% digits 4 digits
observations D p-value D p-value D p-value
2 0.1111 (1.9991 0.1 (1.9996 0.2 (.7487
X 0.1111 (1.9991 0.1 (1.9996 0.3 (.2705
F 0.6667 L.B19E—-4 0.7 LOSE-5 0.6 5.682E—4

Table 4. Values of test criterion D and corresponding p-values for the Kolmogorow-Smirnow goodness-of-fit test

One can see that the individual development factors Fi; fori =0, .. ., I-1landj=0,..., J—Iwithi+j<I-1
do not fit to the Benford distribution for the first, second and third digits very well. Obviously, for the first digits the
reason for this is quite clear. The fact that most individual development factors have got a leading “1” is because nearly
all increments are larger than zero but not as high as the corresponding cumulative claims payments “near” the
development year (while staying in the same accident year). This results in an individual development factor between 1
and 2. The following equations summarize this.

From equation (2.2) we get (forj > 0):

Cij = Cij—1*%ij
Together with equation (2.3) this becomes to:
F,= ((e_:ri _ Gy ':ri-:'ezjﬂ

Since in our dataset 0 < Xj;+; < C;j holds true formosti =0, ..., [-landj=0,...,J-1withi+;j<I—11it
follows the result seen in the first plot of Figure 5.
4. Conclusion

In the empirical analysis we have seen that Benford’s law is quite good for two out of three characteristic claims
development factors, namely
e the cumulative claims payments C;; fori =0, . . ., landj=0,..., Jwithi +j <[land
e the incremental claims payments Xi,j fori=0,...,landj=0,...,Jwithi+j < L

Of course, this analysis is done with development trapezoids containing “all lines of business” which are middle
to long tailed. Thereby, the results only hold true (in an empirical sense) for this kind of triangles/trapezoids. For other
data, e.g. for short tail lines of business, the same analysis has to be done a second time.

Due to the fact that Benford’s law holds true for some characteristic factors, this result can be used to check a
given development triangle/trapezoid against plausibility, outliers, fraud, etc. Of course, if an actuary detects
inconsistency in a given dataset, he has to do some further research to determine the exact problem in the dataset. In this

case, Benford’s law can be seen as a first tool (among others) to automatically detect problems in a dataset.
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