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ABSTRACT
In this paper we make an empirical analysis of a wide range of claims development trapezoids following Benford’s 

law. In particular we determine Benfors’s law for different characteristic factors depending on claims 
development triangles/trapezoids. These characteristic factors are the cumulative claims payments, the incremental 
claims payments and the individual development factors. For each characteristic factor hypothesis testing is done for 
verifying/rejecting Benford’s law.
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1. Introduction and motivation
In this work an empirical statistical analysis is done for an actuarial dataset. Therefore we use Benford’s law for

demonstration. Benford’s law, named for physicist Frank Benford, who worked on the theory in 1938 (cf. Benford[2]) is
the mathematical theory of leading digits.

In many data sets, the leading digits of numbers are distributed in a specific way, which Benford discovered. This
specific way – the Benford law – is non-linear. In Benford’s distribution it states that, for example, the digit “1” appears
about 30 percent of the time as first digit. On the other hand the digit “9”, as first digit, appears less than 5 percent of
the time (cf Figure 2). An easy to understand example of this behaviour are house numbers: House numbers in
streets begin with the “1”, but not all streets have 20 or up to 90 house numbers. So the digit “1” is the most frequently
used first digit, followed by the “2” and so on.Nowadays, Benford’s law is used for example in:
 Accounting fraud detection (in 2001 accounting fraud was detected in the Enron Corporation);
 election data (in 2009 Benford’s law was used to detect fraud in the Iranian elections);
 genome data.

In this work we analyse a set of claims development trapezoids following Benford’s law. This work is done to
determine the assumption that there exists characteristic triangle/trapezoid-factors following Benford’s law. The basic
idea behind this work is: If an actuary has got the knowledge that specific triangle/trapezoid-factors follow a given
distribution (e.g. Benford distribution) he can check given development triangles/trapezoids against this distribution.
Possible reasons for checking this can be:
 Determining the plausibility of the given triangle/trapezoid;
 detecting fraud in the given data (cf. Durtschi et al.[6] or Diekmann & Jann[5]);
 detecting outliers (this might be helpful for further analysis).

We do not specially focus on one of these items, so the analysis made in this paper is done on a general point of
view. The verification that the given set of development trapezoids, respectively some characteristic factors, follows
Benford’s law is done with hypothesis testing. Therefore, we use the well known Kolmogorow-Smirnow-test (see for
example Govindarajulu[10, pp.182–187]).

Most actuarial science papers deal with very limited datasets for example with only one development triangle (cf.
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Mack[12], England & Verrall[7] or Merz & Wüthrich[13]) if the paper is a more “theoretical” one. Or they deal with a
larger set of claims development triangles generated with some statistical methods such as bootstrapping for example
(cf. England & Verrall[8], Pinheiro et al.[14] or Heberle et al.[11]). In fact these larger “observation”-datasets are not real
datasets – they are mostly generated from a very limited dataset. The use of only one – or especially very limited –
datasets reflects from the fact that larger datasets are not – or even not easily – available for most scientists.

The structure of the paper is as follows. In Section 2 some notation is introduced and Benford’s law is presented.
The characteristic factors, namely the cumulative and incremental claims payments and the individual development
factors are also introduced in Section 2. Section 3 is the detailed empirical analysis with a dataset made available by
GR-NEAM1. At the end a conclusion is given in Section 4.

2. Notation and Benford’s law
For reasons of simplicity we only speak of development “triangles”, but all formulas hold true for development

trapezoids as well.
2.1 Notation

In the following we assume that we have N development triangles and that Ci,j denotes the cumulative payments
for accident year i∈{0, . . . , I} and development year j∈{0, . . . , J} for one given development triangle. With this
notation, at time t = I and for a given development triangle, we have observations

Figure 1 shows a given development triangle at time t = I. The upper left part in this triangle is observable, while
the lower right part is unobservable at time t = I.

Figure 1; Observable cumulative payments Ci,j for a given development triangle at time t= I.
In the following we deal with some characteristic values which are observable or can be computed from the given

sets of different observations O given by the N development triangles. These different characteristic values are:
1. Cumulative claims payments Ci,j for each triangle for i = 0, . . . , I and j = 0, . . . , J with i + j ≤ I.
2. Incremental claims payments Xi,j for each triangle for i = 0, . . . , I and j = 0, . . . , J with i + j ≤ I.
3. Individual development factors Fi,j for each triangle for i = 0, . . . , I−1 and j = 0, . . . , J − 1 with i + j ≤ I−1.

Remarks 2.1:
 The cumulative claims payments Ci,j (i + j ≤ I) itself have not to be computed since these values are given in the

upper left part of each development triangle (cf. equation (2.1)).
 The incremental claims payments Xi,j as well as the individual development factors Fi,j both generate “new” sets of

observations, one set for every triangle.
 Each new set of observations containing the individual development factors Fi,j is smaller than the corresponding

set containing Ci,j or Xi,j (see equations (2.4), (2.5) and (2.6))
 The use of exact these three characteristic values is determined through a more or less excessive usage in the

1 General Re-New England Asset Management, Inc.; Pond View Corporate Center; 76 Batterson Park Road; Farmington, CT
06032 USA.

O = {Ci,j | i + j ≤ I} . (2.1)
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literature.
Since the cumulative claims payments have to be given in our framework, the incremental claims payments as well

as the individual development factors must be defined. These definitions are given below.
Definition 2.2 (Incremental claims payments for a single development triangle): For a given development triangle

and the corresponding observation set O the incremental claims payments are given by

(2.2)

for i = 0, . . . , I and j = 0, . . . , J with i + j ≤ I.
With Definition 2.2 the cumulative claims payments Ci,j for each triangle for i = 0, . . . , I and j = 0, . . . , J with i + j

≤ I can be written as

The individual development factors are given in the following definition.
Definition 2.3 (Individual development factors for a single development triangle): For a given development

triangle and the corresponding observation set O the individual development factors are given by

(2.3)

for i = 0, . . . , I − 1 and j = 0, . . . , J − 1 with i + j ≤ I − 1.
To analyse the diff erent characteristic factors, i.e. to analyse the cumulative claims payments, the incremental

claims payments as well as the individual development factors, these datasets must be given in three vectors. Therefore,
we write

The vector vC contains all observable cumulative claims payments over all development triangles, while vX is the
vector with the computed incremental claims payments and vF is the vector with the computed individual development
factors.

The dimensions of these vectors are:

(2.4)
(2.5)
(2.6)

2.2 Benford’s law
Benford’s law states that in many sources of data the leading digits are distributed in a specifig – non-uniform –

way, the Benford distribution. The Benford distribution can be defined as follows (cf. Benford[2]).
Definition 2.4 (Benford distribution): A set A ⊆ R of real numbers satisfy Benford’s law if the probability of the

occurrence of the m-th significant decimal digit d ∈ {0, . . . , 9} of every number 0 6= x ∈ A is given by

Thereby, Dm(x) (x  0) denotes the m-th decimal digit of x counted from the left and started with 1. The brackets b·c
denotes Gaussian-brackets (“floor-function”).

Remarks 2.5:
 For a more detailed explanation of Benford’s law see Berger & Hill[3].
 There is a more general version of Definition 2.4 with a logarithm to a general base B (not to base 10), but in this
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paper we are only working with base 10.
 Leading zeros are eliminated so that D1(x) 6= 0 for all 0 6= x ∈ A.
 D1(0) is not defined since the occurrence of an 0 at the first position is not possible (that is because of the

elimination of leading zeros).
Example 2.6: Given

the operator Dm(x) works as follows:

In Table 1 and Figure 2 the probabilities described in Definition 2.4 are displayed.

probabilities (%)
digit 1st digits 2nd digits 3rd digits

0 – 11.97 10.18

1 30.10 11.39 10.14

2 17.61 10.88 10.10

3 12.49 10.43 10.06

4 9.69 10.03 10.02

5 7.92 9.67 9.98

6 6.69 9.34 9.94

7 5.80 9.04 9.90

8 5.12 8.76 9.86

9 4.58 8.50 9.83

100.00 100.00 100.00

Table 1. Probabilities (in percent) for the first, second and third digits for the Benford distribution

Benford’s law is often used only for the first and second digits. The reason is that the Benford distribution tends to
the uniform distribution on {0, . . . , 9} exponentially fast if m increases (see Definition 2.4 or Diaconis[4]). prob.

Figure 2; Probabilities for the first, second and third digits for the Benford distribution.

3. Empirical analysis
In our empirical analysis we use a dataset made available by GR-NEAM containing cumulative claims

development trapezoids of diff erent property/casualty insurer and re-insurer. All these development trapezoids are “all
lines of business” trapezoids.

After cleaning the dataset – which was in 99% just rejecting development trapezoids with at least one accident year
only containing zeros – we got N = 442 claims development trapezoids. Each of these claims development trapezoids
contains I + 1 = 25 accident years, beginning in 1987 and ending in 2011, and J + 1 = 10 development years. An



5

example development trapezoid is given in Table 2. Furthermore, we continue using i = 0, . . . , 24, respectively j =
0, . . . , 9. So we are not using the “real” years i = 1987, . . . , 2011.

The given dataset contains

observations of cumulative claims payments. The same quantity of observations is given for the incremental claims
payments Xi,j (i = 0, . . . , 24, j = 0, . . . , 9 and N = 442), i.e. dim(vX ) = 90,610. The quantity of observations for the
individual development factors Fi,j (i = 0, . . . , 23, j = 0, . . . , 8 and N = 442) is given by:

In Table 3 the empirical frequencies for the first three digits of the vectors vC , vX and vF are compared with the
corresponding theoretical frequencies given by the Benford

Table 2. Example of one of the given development trapezoids

distribution (cf. Definition 2.4). Obviously, the empirical and theoretical frequencies are much closer to each other for
the cumulative claims payments Ci,j and for the incremental claims payments Xi,j (i = 0, . . . , 24, j = 0, . . . , 9 and N =
442) than for the individual development factors Fi,j (i = 0, . . . , 23, j = 0, . . . , 8 and N = 442). Figure 3, 4 and 5
emphasize these observations.

In the next step hypothesis tests are made for the occurred empirical values against their theoretical ones using the
well known Kolmogorow-Smirnow-test (K-S-test) which is almost one of the most popular goodness-of-fit tests. Since
we are using the K-S-test for an underlying discontinuous distribution it is quite more difficult to compute exact
p-values (cf. Gleser[9]). The R-package “dgo f” (cf. R Development Core Team[15] and Arnold & Emerson[1]) provides an
exact computation of these p-values for small data-samples and a Monte-Carlo simulation of p-values for larger
data-samples.

We test the null hypothesis
H0 : Femp(x) = FBenf(x)for all x

against the alternative
H1 : Femp(x) 6= FBenf(x)for some x.
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Table 3. Empirical and theoretical frequencies (in percent) for the first, second and third digits for cumulative claims payments

Ci,j, for incremental claims payments Xi,j and for the individual development factors Fi,j.
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Figure 5; Empirical (bars) and corresponding theoretical (line) frequencies for the first, second and third digits for the individual

development factors Fi,j.

Figure 3; Empirical (bars) and corresponding theoretical

(line) frequencies for the first, second and third digits for

cumulative claims payments Ci,j.

Figure 4. Empirical (bars) and corresponding theoretical (line)

frequencies for the first, second and third digits for

incremental claims payments Xi,j.
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The test criterion is given by:

Table 4 presents the results for the K-S-test, i.e. the values of the test criterion D and the corresponding p-values
are listed. The results are the same than we got at first glance from Figure 3, 4 and 5.

Table 4. Values of test criterion D and corresponding p-values for the Kolmogorow-Smirnow goodness-of-fit test

One can see that the individual development factors Fi,j for i = 0, . . . , I − 1 and j = 0, . . . , J − 1 with i + j ≤ I − 1
do not fit to the Benford distribution for the first, second and third digits very well. Obviously, for the first digits the
reason for this is quite clear. The fact that most individual development factors have got a leading “1” is because nearly
all increments are larger than zero but not as high as the corresponding cumulative claims payments “near” the
development year (while staying in the same accident year). This results in an individual development factor between 1
and 2. The following equations summarize this.

From equation (2.2) we get (for j > 0):
Ci,j = Ci,j−1 + Xi,j

Together with equation (2.3) this becomes to:

Since in our dataset 0 < Xi,j+1 < Ci,j holds true for most i = 0, . . . , I−1 and j = 0, . . . , J−1 with i + j ≤ I − 1 it
follows the result seen in the first plot of Figure 5.

4. Conclusion
In the empirical analysis we have seen that Benford’s law is quite good for two out of three characteristic claims

development factors, namely
 the cumulative claims payments Ci,j for i = 0, . . . , I and j = 0, . . . , J with i + j ≤ I and
 the incremental claims payments Xi,j for i = 0, . . . , I and j = 0, . . . , J with i + j ≤ I.

Of course, this analysis is done with development trapezoids containing “all lines of business” which are middle
to long tailed. Thereby, the results only hold true (in an empirical sense) for this kind of triangles/trapezoids. For other
data, e.g. for short tail lines of business, the same analysis has to be done a second time.

Due to the fact that Benford’s law holds true for some characteristic factors, this result can be used to check a
given development triangle/trapezoid against plausibility, outliers, fraud, etc. Of course, if an actuary detects
inconsistency in a given dataset, he has to do some further research to determine the exact problem in the dataset. In this
case, Benford’s law can be seen as a first tool (among others) to automatically detect problems in a dataset.
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