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ABSTRACT 

The following research paper is devoted to the complex topic of modeling stochastic financial markets using the 

example of auction markets. The presented model for market makers’ behavior on stochastic auction markets contributes 

practically to the field of studying portfolio optimization, risk management, market participants’ balance processes, and 

prediction problems via cutting-edge machine learning and statistics approaches. The reliability of the given model is 

proved practically with the help of modern machine learning methods of validation, namely, combinatorial splits. A client-

server model for remote simulation was implemented, as well as interpreted language in C++. XGBoost, Catboost, LSTM, 

NN Ensemble, and H2O Auto-ML models were considered in the course of building the decision model. Hyperparameters 

were obtained via Optuna. Besides that, the developed model was backtested on historical data of different financial assets, 

starting with stocks and ending with commodity prices and foreign exchange rates. Within all models, positive Sharpe 

ratios have been obtained, which indicates the robustness of the model. The paper offers a valuable framework for market 

maker decision-making stochastic modeling, examining its pricing mechanisms and financial risk management as crucial 

for exchanges, funds, and other financial institutions, which makes it relevant in the context of the current dynamics of 

the development of financial markets and the increase in trading volumes. 

Keywords: auction market; Kalman filter; financial markets; machine learning; validation; stochastic modelling; 

modelling stochastic markets; backtesting 

1. Introduction 
Modeling of financial markets is an extremely complex and 

important topic that has been studied by mathematicians and 
economists for many decades. One of the key aspects of any market, 
or organized trade, is the pricing mechanism as well as the roles of 
different participants that drive the changes in prices. A structured and 
well-designed pricing mechanism ensures liquidity stability, trading 
efficiency, fair competition, and growth in dynamics of trades. 

In an era of evolving auction platforms and digital marketplaces, 
this field continues to evolve, contributing to our understanding of 
market dynamics and participants’ strategies. It is quite natural, given 
the heterogeneous behavior of investors, financial institution, and 
market makers, that the question of modelling of such auction markets 
is a complex and profound subject that needs comprehensive theoretical 
and practical development. There are several reasons for that. First of 
all, financial data often contains a lot of “noise”, or random fluctuations, 
which are hard to distinguish from genuine, significant market signals. 
In the effort to capture complex patterns in data, machine learning 
models can become overfitted or too adapted to the historical data they 
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were trained on, impairing their ability to generalize and predict future trends. This is particularly noticeable 
in stock markets, where prices can swing unpredictably due to unforeseen events or changes in trader behavior. 
Moreover, financial data is often characterized by complex, non-linear interdependencies, which makes them 
very hard to model. Thus, understanding financial markets through machine learning and statistics can help 
prevent crises by predicting risky trends and bubbles, contributing to economic stability on a global scale. 
Finally, machine learning provides advanced tools for portfolio optimization, leveraging not just the statistical 
characteristics of assets but also analyzing market conditions and behavioral factors. This enables more 
effective risk management and the construction of robust investment strategies. 

The auction market is a special type of market with a specific sales organization, which implies that the 
price of a good is determined by the process of competition between buyers. Sales are organized in accordance 
with the established rules, and the winner is the one with the highest bid price. The asset (stock, foreign 
exchange, commodity, or any other complex financial product), being the object of the auction, becomes the 
winner’s own after all the settlements. Auction market modeling is a vital field within finance and economics, 
aiming to capture the dynamic interplay of buyers and sellers in auction-based trading environments. In such 
models, researchers introduce stochastic variables to account for factors like bidder behavior, information 
arrival, and price fluctuations. By doing so, one aims for better simulations of the inherent uncertainty of 
real-world auction markets, which can be influenced by a wide range of unpredictable events. 

There are several important components that would help solve this problem. First, a client-server model 
would allow hypothesis testing to be done remotely without the processes of data preprocessing, data mining, 
model search, and hyperparameter selection. 

Second, the proprietary interpreted language with pre-described machine learning algorithms and the 
Sharpe ratio calculation would contribute significantly to the uniformity of model backtesting systems and 
trading algorithms. 

And, finally, the model of auction markets would allow us not to overthink the modeling and data 
processing processes for the above-mentioned problem. 

All three components have been developed in this paper. 

2. Relevant research and progress 
The related works devoted to stochastic auction market modeling include some of the following 

research papers: Law and Viens[1] developed a high-frequency stochastic model under a limit order book and 
avoided several common assumptions regarding market participants’ price processes (e.g., their independence, 
constant volumes of trade). The present paper will help examine this theorized approach from a more practical 
side, using our framework to implement the authors’ model on real data and obtain error estimates of machine 
learning models for his constrained-order approach. Lux[2] tries to explain the characteristics of financial 
markets as emergent properties of interactions and dispersed activities of a large ensemble of agents populating 
the marketplace. His results have proposed simple structures that could reproduce the empirical findings to a 
high degree with statistics that are even quantitatively close to the empirical ones. Our model allows for 
including large ensembles of agents, which can help to prove his assertions empirically on a larger market data 
set. Kraft et al.[3] developed stochastic auction market modeling ideas in terms of the electricity (commodity) 
market and focused on the behavior of different market participants, taking into account their risk aversion. 
This model allows for a multi-stage stochastic optimization approach to determine optimal bids in financial 
commodity markets. Their results showed that it is crucial to consider statistical dependences between different 
underlying price processes during trading cycles. The present paper’s model allows each market participant 
(or participants) to be modeled by a separate program in an interpreted programming language. In addition, 



 

3 

this approach can be used not only in commodity markets but also in other markets, such as stocks, FX, etc. 
This will help to check the authors’ results on other different markets with more precise set-ups. Bubeck et 
al.[4] considered the revenue maximization problem in stochastic online auction markets. They generalized 
classical learning algorithms (experts, multi-armed bandits) to their multi-scale models in order to get the 
generalized approach appropriate to maximize the profits from the trading strategy on stochastic auctions. Our 
approach will help them validate their model on real market data and verify the profit maximization algorithm 
with a backtest. It will also allow one to tune parameters for market participants and test their impact on the 
maximization algorithm. 

The stochastic auction market model given in the present research paper has hardly been studied before. 
The main articles operate with more general approaches to modeling markets. 

This research paper introduces a new model with best practice algorithms: a publicly available interpreted 
programming language for algorithmic trading; the filtering problem without loss of generality; and the basic 
concepts of machine learning algorithms for the validation of the proposed model. Also, the robustness (in 
terms of resistance to exchange prices noises) of the model is tested on the real historical data of futures prices 
(transformed to fit the model inputs) using the Sharpe ratio. It may be useful for marketplaces and other 
different auction market platforms. 

3. Theoretical model 

3.1. Determining the model 

First, it is necessary to develop the theoretical foundations for the model of stochastic behavior of auction 
markets. 

1) There are total N ∈ ℕ entities who act as real market participants. Each market participant has a 

unique index 1 ≤ 𝑘 ≤ 𝑁 . Ek = const—the quantity of new products for the market, 𝜀—random variable 
determining the costs, and depending on the number of participants at the cycle, a market commission is 

charged from each participant 𝜔–r.v. determined by market level index. All participants have an initial capital 

equal to 𝜂k for participant with index k, and 𝛿(𝑘) is a random variable determining the costs of purchasing a 
product on the market. The abovementioned is represented in the Table 1 below. 

Table 1. Market rules. 

 Quantity Increment Costs 

Stocks Qk Ek 𝜀 

Currency 𝜂k ? Qk× 𝛿(𝑘)+𝜔 

2) Each cycle, the market holds auctions to sell and purchase selected assets to/from the participants, 
choosing the most optimal offer depending on the transaction direction (the buyer requires the lowest price, 
the seller—the highest price). There exists a book of orders with limited purchasing and selling capacities; the 
participants need to choose the appropriate price, for instance, based on previous cycles. In the general case, 
the unit offer is determined by the following formula: 

Lk=𝛼k× 𝜇k (1) 

where Lk∈ ℤ, 𝛼k∈ ℕ—quantity of assets, 𝜇k∈ ℤ—prices set by the market participant. 

3) The total supply is as follows: 

∑ 𝐿௫
ୀ k (2) 

where x∈ ℕ—number of participant’s offers during the cycle. 
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4) The optimal (the seller requires the highest price possible) supply for the sale is determined by the 
following formula: 

Sp = max(∑ ∑ 𝐿௫
ୀ

ே
ୀ k), 0≤p≤N (3) 

Therefore, the market purchases all the assets from the market participants who offer optimal prices, and 
from them, it will determine the next participant to buy from. 

5) Similarly, the optimal purchase offer (the buyer requires the lowest price possible) is: 

Bp = min(∑ ∑ 𝐿௫
ୀ

ே
ୀ k), 0≤p≤N (4) 

The market will continue to satisfy the supply of participants as long as the quantity of products the market 
buys or sells is greater than zero. 

The market situation can be at one of the 𝑚 levels. The market offers to buy or sell assets from participants 
are determined depending on the market level, including pricemin and pricemax for one unit of an asset. The 
values are determined according to the table (Table 2) of market levels with the use of a random walk. 

Table 2. Market levels. 

 Purchase Sell 

Level quantity pricemin quantity pricemax 

1 (𝑉௦+𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦+𝜇) (𝑉௦

ᇱ+𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦

ᇱ+𝜇) 

2 (𝑉௦+2 ∗ 𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦+2 ∗ 𝜇) (𝑉௦

ᇱ+2 ∗ 𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦

ᇱ+2 ∗ 𝜇) 

3 (𝑉௦+3 ∗ 𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦+3 ∗ 𝜇) (𝑉௦

ᇱ+3 ∗ 𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦

ᇱ+3 ∗ 𝜇) 

4 (𝑉௦+4 ∗ 𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦+4 ∗ 𝜇) (𝑉௦

ᇱ+4 ∗ 𝜇) ∗ ∑ 𝐼
ே
ୀଵ (𝑘) (𝑊௦

ᇱ+4 ∗ 𝜇) 

… … … … … 

m (𝑉௦+𝑚 ∗ 𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦+𝑚 ∗ 𝜇) (𝑉௦

ᇱ+𝑚 ∗ 𝜇) ∗ ∑ 𝐼(𝑘)ே
ୀଵ  (𝑊௦

ᇱ+𝑚 ∗ 𝜇) 

The key issue lies in the market rules, which can differ from one market to another, and that is quite 
natural. Besides that, participants’ behavior may also be different for various assets. To solve this problem, 
one may use the backtesting approach, which allows one to test the trading system on historical data in order 
to check its performance, keeping in mind that the participants’ behavior and market rules are predetermined. 

The topic of financial modeling and financial mathematics was particularly developed in the 1970s 
with the development of the options market and the emergence of other derivatives. One of the most famous 
and historically important results in financial mathematics was the famous Black-Scholes formula, named 
after its authors, Fischer Black and Myron Scholes, after their paper “The pricing of options and corporate 
liabilities” in 1973. The Black-Scholes formula allowed to price European calls and put options analytically 
and, despite all of its disadvantages, made a huge contribution to the development of financial markets and 
financial mathematics. 

The Black-Scholes model[5] (more generally) has several assumptions, namely: 

a) The underlying asset’s price process follows the Geometric Brownian motion (GBM), with  and 

 being constants (drift and diffusion coefficients, respectively): 

𝑑𝑆௧ = μ𝑆௧𝑑𝑡 + σ𝑆௧𝑑𝑊௧ (5) 

The equation (5) implies the lognormal distribution of the underlying 

b) Short selling of assets is not restricted; 
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c) There are no transaction costs and taxes, and all the assets are perfectly divisible (say, one can 
buy or sell 1/5th of an asset); 

d) The underlying asset pays no dividends (even though its introduction to the model is not difficult); 
e) There are no arbitrage opportunities (the market is complete); 
f) The assets are traded continuously; 

g) The risk-free rate is 𝑟, and is applied to all maturities. 

One of the key concepts in pricing financial instruments is risk-neutral valuation[6]. None of the 
parameters of the Black-Scholes model are affected by the preference for risk. Investors in the risk-neutral 
world would demand a yield equal to the risk-free rate (in other words, one would discount future cash flows 

using the risk-free rate of 𝑟), because all the financial derivatives and products could be replicated. Thus, 
each derivative is priced simply by taking the discounted expected value of the risk-neutral measure of the 
derivative’s potential payout. Moreover, the price of a financial derivative will be a martingale under the 
risk-neutral measure that is equivalent to the real-world measure. 

The model developed in this article is free of the problem of arbitrage opportunities since it is modeled 
in such a way that markets are efficient and a fair price is set by the market maker in the most optimal way. 

As mentioned before, the underlying price process follows the lognormal dynamics under the GBM. 

At time 𝑇 we have: 

𝑙𝑛 𝑆் − 𝑙𝑛 𝑆 ∼ ϕൣ(μ − σଶ/2]𝑇, σ√𝑇൧ (6) 

𝑙𝑛 𝑆் ∼ ϕൣ𝑙 𝑛 𝑆 + (μ − σଶ/2)𝑇, σ√𝑇൧ (7) 

The lognormal dynamics of the stock path under the GBM may look like this (Figure 1): 

 
Figure 1. Five sample paths of the GBM under the lognormal dynamics. 

6) The model of stochastic auctions with a level market index has a normal distribution of relative 
increments and follows the Geometric Brownian motion. 

We can prove the normality of the transformed process 𝑊௦ + 𝑚μ, where 𝑊௦ is the initial value of the 

process, 𝑚 is a random variable from the Gaussian (normal) distribution, and 𝜇 is another random variable, 
and it is possible to leverage the properties of the sum of normal random variables. 

First, we need to ensure that 𝜇 also follows the normal distribution. Let’s assume that μ ∼ N൫μஜ, σஜ
ଶ൯. 

Now suppose that 𝑚 ∼ 𝑁(μ, σ
ଶ ). Then the product 𝑚μ will also follow the normal distribution since it is a 

liner combination of normally distributed random variables. From this, it follows that the sum 𝑊௦ + 𝑚μ will 

also have a normal distribution since 𝑊௦ is a constant. To find the parameters of this new distribution, we will 
need to find the parameters for the product first and then add the constant to the mean. This gives us the 

following parameters for 𝑊௦ + 𝑚μ: 
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μ௪ = 𝑊௦ + μμஜ 

σ௪
ଶ = σ

ଶ σஜ
ଶ + σ

ଶ μஜ
ଶ + σஜ

ଶμ
ଶ  

(8) 

Thus, we can conclude that 𝑊௦ + 𝑚μ ∼ 𝑁(μ௪ , σ௪
ଶ ). If μ, m are independent and have finite variance, 

and 𝑊௦ is a stationary process (its variance and mean are constant over time), then the variance of 𝑋 will be 

finite and not dependent on time 𝑠. If the additional condition of 𝐶𝑜𝑣[𝑊௦ + 𝑚μ, 𝑊௦] = 0 holds, then variance 

of 𝑋 will be simply 𝑉𝑎𝑟[𝑊௦ + 𝑚] + 𝑉𝑎𝑟[𝑊௦]. 

Now if the mean and variance of 𝑋 do not depend on time 𝑠 and the normality conditions are satisfied, it 

can be concluded that the increments of the process 𝑊௦ + 𝑚μ follow the normal distribution. 

However, it is important to note that analytically proving normality can be complex and depends on the 

specific characteristics of the random variables μ, m , and the properties of 𝑊௦ . Sometimes, numerical 
simulations and statistical tests may be required. 

However, it is important to perform a statistical check for normality of increments: increments of S (the 
difference between values of S at neighboring time points) should follow a normal distribution. 

This check is performed using the Shapiro-Wilk test. Its purpose is to test the hypothesis that the dataset 
was drawn from a normal distribution. This test is based on comparing observed data with theoretical 
expectations for a normally distributed sample. The Shapiro-Wilk test is sensitive to small deviations from 
normality, making it a commonly used method for assessing data normality. However, it’s important to note 
that with large sample sizes, the test may become statistically significant even if deviations from normality are 
not substantial. 

For the Brownian motion: 

Increments of S follow a normal distribution (p-value = 0.7704195380210876). 

For our model’s process: 

Increments of S follow a normal distribution (p-value = 0.10352202504873276). 

In order to simulate the auction market, we need to account for auction sessions that happen randomly 
over time. The dynamics of trades (if a single asset is considered) may be simulated using the lognormal GBM. 
There are also trading sessions that may happen randomly (e.g., uniformly distributed in time). If only one 
single session is examined, different paths of market participants may be modelled using the mean-reverting 
Ornstein-Uhlenbeck process (the Gaussian process). The SDE is as follows: 

𝑑𝑆௧ = κ(θ − 𝑆௧)𝑑𝑡 + σ𝑑𝑊௧ (9) 

where κ > 0 is the mean-reversion speed, θ—the long-term mean to which the process converges, σ > 0—
constant volatility. 

The solution to the Ornstein-Uhlenbeck SDE is given by: 

𝑆் = 𝑒ିச்𝑆 + θ(1 − 𝑒ିச்) + σ න 𝑒ିச(்ି௨)
்



𝑑𝑊௨ (10) 

This process may be used to simulate paths inside one trading cycle by setting the initial point (𝑆) equal 

to the price where the cycle begins, and the long-term mean (θ) may be set equal to the next trading point. 

The illustration of the abovementioned nested simulation is represented below (Figure 2, with the black 
path representing the dynamics of trade and the red ones representing inner paths representing different market 
participants or order books): 
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Figure 2. Illustration of auction market simulation. 

Interruptions of trajectories within each trading cycle are caused by the exit of a participant from the 
market, for example, bankruptcy due to the chosen strategy. A market with several assets may look as follows 
(Figure 3—with colored paths as inner participants’ processes): 

 
Figure 3. Illustration of several auction market simulations at a time. 

3.2. Filtration problem 

A linearized Kalman filter can be used to solve the problem of predicting and correcting the selling price. 

Consider a complete probability space with filtering (Ω, ℱ, P, {ℱ୲}୲∈ℤశ
), ℱ-adapted random vector X, 

ℱ୲ -adapted sequences of random vectors {V୲} и {W୲} (X, {V୲} and {W୲} are generally independent). Also 
consider the stochastic dynamic system with discrete time: 

൜
X୲ = a୲(X୲ିଵ) + b୲V୲, t ∈ ℕ, X~π(x): E[X] = m, cov(X, X) = D 

Y୲ = A୲(X୲) + B୲W୲, t ∈ ℕ.
 (11) 

The abovementioned stochastic system has: 

 the first equation—the dynamics equation, 

 the second equation—the observations model, 

 X୲ ∈ ℝ —unobservable state of the system; a୲(x): ℝ → ℝ, b୲ ∈ ℝ× —discrete drift and 

diffusion in dynamics; V୲ ∈ ℝ—sequence of random vectors—diffusions in dynamics; X—initial 

condition; 

 Y୲ ∈ ℝ—process of accessible observation; A୲(x): ℝ → ℝ, B୲ ∈ ℝ×—additive useful signal 

and noise intensity; W୲ ∈ ℝ—sequence of observation errors, 

 All conditions of the dynamic system with discrete time are satisfied for a given model. 

Let 𝒴 = σ{Yଵ, … , Y}—σ-algebra generated by observations on time interval [1, T]. 

Let us derive the equations of optimal filtration under some additional assumptions: 
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a) Matrices b୲ and В୲ are non-singular; 

b) V୲ ∈ ℝ—sequence of independently distributed random vectors with distribution density p(v). 

c) W୲ ∈ ℝ—sequence of independently distributed random vectors with distribution density p(w). 

d) Initial condition X has the distribution density π(x). 

e) X, {V୲} and {W୲} are independent in general. 

The derivation of recurrence relations of filtration is based on the property of the conditional density of 
distribution: 

πଡ଼|ଢ଼,(x|y, z) =
πଡ଼,ଢ଼|(x, y|z)

∫ πଡ଼,ଢ଼|(u, y|z)du
 (12) 

The equations are derived by the method of mathematical induction. We will denote πෝ୲(x) =

πෝ୲(x|Yଵ, … , Y୲) as a state distribution density X୲ conditional on 𝒴୲ (filtration estimation density). 

a) t = 0. In this case: 

ቐ

πෝ(x) = π(x) 

X =  E[X |𝒴] = E[X] = න xπ

?

ℝొ

(x)dx 
 (13) 

Equation (13) is a formula for calculating the initial condition. 

b) Let for the time t − 1 the density of filtration estimation πෝ୲ିଵ(x) = πෝ୲ିଵ(x|𝒴୲ିଵ) of the state X୲ିଵ 

conditional on 𝒴୲ିଵ and the corresponding filtration estimate X୲ିଵ = E[X୲ିଵ|𝒴୲ିଵ] = ∫ x π୲ିଵ
?

ℝొ (x)dx to be 

known. Then the density π෭୲(x) = π෭୲(x|𝒴୲ିଵ) of the state X୲ conditional on 𝒴୲ିଵ (distribution density of the 
one-step forecast) is given by the formula: 

π෭୲(x) = න หde tିଵ൫b୲(u)൯หp൫b୲
ିଵ(u)(x − a୲(u))൯

?

ℝొ
πෝ୲ିଵ(u)du (14) 

c) Conditional joint density ρത୲(x, y) = ρ୲(x, y|𝒴୲ିଵ) of the distribution of pair (X୲, Y୲) conditional 𝒴୲ିଵ 
looks like: 

ρത୲(x, y) = หde tିଵ൫B୲(x)൯หp ቀB୲
ିଵ൫y − A୲(x)൯ቁ π෭୲(x) (15) 

 
Then the density of filtration estimation at step t is equal to: 

πෝ୲(x) =
ρത୲(x, Y୲)

∫ ρത୲(u, Y୲)du
?

ℝొ

 (16) 

 
And the sought estimate of optimal filtering:  

X୲ =
1

∫ ρത୲(v, Y୲)dv
?

ℝొ

න u ρത୲(u, Y୲)du
?

ℝొ
 (17) 

 
The problem of optimal filtering is to construct E[X୲|𝒴୲]. However, the realization of the corresponding 

formulas is a rather complex computational problem. The following additional information is known about the 
equations: 

a) Functions a୲(x), A୲(x) are continuously differentiable over x, 
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b) A reference trajectory of the state {x୲} is known, the true trajectory of the system {X୲} is located in 
the neighborhood. 

Let’s decompose the equation in the neighborhood {x୲} into the Taylor series: 

⎩
⎪
⎨

⎪
⎧X୲ = a୲(x୲ିଵ) +

∂a୲(x)

∂x
ቤ

୶౪షభ

(X୲ିଵ − x୲ିଵ) + oത(‖X୲ିଵ − x୲ିଵ‖) + b୲V୲,

Y୲ = A୲(x୲) +
∂A୲(x)

∂x
ቤ

୶౪

(X୲ − x୲) + oത(‖X୲ − x୲‖) + B୲W୲.

 (18) 

 
And ignore the higher-order terms oത(‖X୲ିଵ − x୲ିଵ‖) и oത(‖X୲ − x୲‖). Then the equations are replaced by 

their linear approximations: 

⎩
⎪
⎨

⎪
⎧X୲ =

∂a୲(x)

∂x
ቤ

୶౪షభ

X୲ିଵ + ൭a୲(x୲ିଵ) −
∂a୲(x)

∂x
ቤ

୶౪షభ

x୲ିଵ൱ + b୲V୲,

Y୲ =
∂A୲(x)

∂x
ቤ

୶౪

X୲ + ൭A୲(x୲) −
∂A୲(x)

∂x
ቤ

୶౪

x୲൱ + B୲W୲

 (19) 

Linearized Kalman filter is applied to the linearized systems of observations: 

a) Initial condition: 

൜
X = m,
k = D.

 (20) 

b) Forecast: 

⎩
⎪
⎨

⎪
⎧X෩୲ =

∂a୲(x)

∂x
ቤ

୶౪షభ

X୲ିଵ + ൭a୲(x୲ିଵ) −
∂a୲(x)

∂x
ቤ

୶౪షభ

x୲ିଵ൱ ,

k෨ ୲ =
∂a୲(x)

∂x
ቤ

୶౪షభ

k୲ିଵ ൭
∂a୲(x)

∂x
ቤ

୶౪షభ

൱



+ b୲b୲
.

 (21) 

c) Adjustment: 

X୲ = X෩୲ + k෨ ୲ ൭ 
∂A୲(x)

∂x
ቤ

୶౪

൱



ቌ
∂A୲(x)

∂x
ቤ

୶౪

k෨ ୲ ൭ 
∂A୲(x)

∂x
ቤ

୶౪

൱



+ B୲B୲
ቍ

ିଵ

ቌY୲

−
∂A୲(x)

∂x
ቤ

୶౪

X෩୲ − ൭A୲(x୲) −
∂A୲(x)

∂x
ቤ

୶౪

x୲൱ቍ, 

(22) 

k୲ = k෨ ୲ − k෨ ୲ ൭ 
∂A୲(x)

∂x
ቤ

୶౪

൱



ቌ
∂A୲(x)

∂x
ቤ

୶౪

k෨ ୲ ൭ 
∂A୲(x)

∂x
ቤ

୶౪

൱



+ B୲B୲
ቍ

ିଵ

∂A୲(x)

∂x
ቤ

୶౪

k෨ ୲. 

(23) 

Selecting a “successful” reference trajectory {x୲}  is a key factor affecting the accuracy of filtering 
estimates. 
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The most important for understanding all nonlinear Kalman filters, including the linearized Kalman filter, 

is the fact that k෨ ୲—is not the forecast error covariance matrix, and k୲—is not the covariance matrix of the 

filtering estimation error. These are only some of their approximations. 

Usage of Hஶ filter: 

Let us consider another kind of Kalman filter for a “symmetric” observation system. 

1) Consider a complete probability space with filtration (Ω, ℱ, P, {ℱ୲}୲ ∈ℤశ
), ℱ-adapted random vector 

X, ℱ୲-adapted sequences of independent Gaussian random vectors {V୲} и {W୲} (X, {V୲} and {W୲}) which are 
independent. A pair of Markov recurrent stochastic sequences: 

X୲ = a୲X୲ିଵ + b୲V୲, t ∈ ℕ, X~𝒩(m, D) (24) 

Y୲ = A୲X୲ିଵ + B୲W୲, t ∈ ℕ (25) 

is called a linear Gaussian (stochastic dynamical) observation system with discrete time. The 
abovementioned stochastic system has: 

 (24)—dynamics equation; 

 (25)—model of observations; 

 X୲ ∈ ℝ —unobservable state of the system; a୲: ℕ → ℝ×, b୲: ℕ → ℝ× —sequences of 

deterministic matrices (discrete drift and diffusion in dynamics); V୲ ∈ ℝ—the sequence of random 

vectors–diffusions in dynamics; X—initial condition; 

 Y୲ ∈ ℝ —process of accessible observation; A୲: ℕ → ℝ×, B୲: ℕ → ℝ× —sequences of 

deterministic functions (additive useful signal and noise intensity); W୲ ∈ ℝ —sequence of 

observation errors; it is assumed that B୲B୲
 > 0. 

2) Optimal state filtering problem X୲ linear Gaussian observation system with discrete time is to find 

X୲ = E[X୲|𝒴୲], where 𝒴୲ = σ{Yଵ, … , Y୲}. 

3) (Kalman filter). Optimal estimation X୲ of the state of (24) and the covariance matrix of its error k୲ =

cov൫X୲ − X୲, X୲ − X୲൯ are computed using the following two-step recurrence algorithm: 

a) Smoothing step: 

Xഥ୲ିଵ = E[X୲ିଵ|𝒴୲] 

= X୲ିଵ + k୲ିଵA୲
൫A୲k୲ିଵA୲

 + B୲B୲
൯

ିଵ
൫Y୲ − A୲X୲ିଵ൯, 

(26) 

kത ୲ିଵ = cov(Xഥ୲ିଵ − X୲ିଵ, Xഥ୲ିଵ − X୲ିଵ) = 

= k୲ିଵ − k୲ିଵA୲
൫A୲k୲ିଵA୲

 + B୲B୲
൯

ିଵ
A୲k୲ିଵ 

(27) 

 
b) Forecast step: 

X୲ = a୲Xഥ୲ିଵ (28) 

k୲ = a୲kത ୲ିଵA୲
 + b୲b୲

 (29) 

c) Initial condition: 
X = m (30) 

k = D (31) 

Since the second filtering step is quite simple, sometimes the algorithm (26)–(29) is written in the 
following equivalent form: 
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X୲ = a୲X୲ିଵ + a୲β୲൫Y୲ − A୲X୲ିଵ൯ (32) 

β୲ = k୲ିଵA୲
൫A୲k୲ିଵA୲

 + B୲B୲
൯

ିଵ
 (33) 

k୲ = a୲kത ୲ିଵa୲
 + b୲b୲

 (34) 

kത ୲ିଵ = (I − β୲)A୲k୲ (35) 

After simple transformations using the matrix inversion lemma, the two-step procedure for calculating k୲ 
can be represented in a one-step form: 

k୲ = a୲k୲ିଵ ቀI + A୲
൫B୲B୲

൯
ିଵ

A୲k୲ቁ
ିଵ

a୲
 + b୲b୲

 (36) 

And the gain coefficient is in the form: 

β୲ = k୲ିଵ ቀI + A୲
൫B୲B୲

൯
ିଵ

A୲k୲ିଵቁ
ିଵ

A୲
൫B୲B୲

൯
ିଵ

 (37) 

4) Conditional optimization problem under equality type constraints: 

J(x) → min  s. t. x ∈ ℝ୬: f(x) = 0, f: ℝ୬ → ℝ୫ (38) 

Consider the Lagrangian function 

J(x, λ) = J(x) + λf(x) (39) 

When smoothness conditions of J(x) and f(x) hold so that the point x∗ was the solution to the problem 

(41) it is necessary for there to be such vector λ∗ that would be the solution to the system 

∂J

∂x
ฬ

(୶∗,∗)
= 0

∂J

∂λ
ฬ

(୶∗,∗)
= 0

⎭
⎪
⎬

⎪
⎫

 (40) 

5) Conditional optimization problem under inequality-type constraints: 

J(x) → min  s. t. x ∈ ℝ୬: f(x) ≤ 0, f: ℝ୬ → ℝ୫ (41) 

Consider the same Lagrangian function (39). When smoothness conditions of J(x) and f(x) hold so that 

the point x∗ was the solution to the problem (41), it is necessary for there to be such vector λ∗ that would be 
the solution to the system. 

∂J

∂x
ฬ

(୶∗,∗)
= 0,

λ୧
∗f୧(x∗) = 0, i = 1, … , m − complementary rigidity condition,

λ୧
∗ ≥ 0, i = 1, … , m. ⎭

⎪
⎬

⎪
⎫

 (42) 

The method of Lagrange multipliers for solving conditional optimization problems, represented visually 
in the Figure 4 below, can be extended to the case of dynamic systems with discrete time. Of course, such a 
problem can be reduced to an ordinary problem of high dimensionality, but there is still a possibility of an 
iterative solution. 
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Figure 4. Conditional optimization problem under constraints of equality type with the Lagrangian function. 

Consider a deterministic dynamical system: 

X୲ାଵ = a୲X୲ + V୲, t = 0, … , T − 1 (43) 

And the optimization criterion takes the form: 

J = ψ(X) +  D୲(X୲, V୲)
ିଵ

୲ୀ
 (44) 

The Lagrangian function in this case takes the form (only the equations of state act as constraints) (43)): 

J = ψ(X) +  ൣD୲(X୲, V୲) + λ୲ାଵ
 (a୲X୲ + V୲ − X୲ାଵ)൧

ିଵ

୲ୀ
= 

ψ(X) +  ൣD୲(X୲, V୲) + λ୲ାଵ
 (a୲X୲ + V୲)൧

ିଵ

୲ୀ
−  λ୲

X୲



୲ୀ
+ λ

X  

(45) 

Defining the Hamiltonian: 

ℋ୲(X୲, V୲, λ୲ାଵ
⬚ ) =  D୲(X୲, V୲) +  λ୲ାଵ

 (a୲X୲ +  V୲),      t = 0, … , T − 1 (46) 

The Lagrangian function can be expressed as: 

J =  ψ(X) +  ൣℋ୲ − λ୲
X୲൧

ିଵ

୲ୀ
− λ

X + λ
X (47) 

The necessary conditions of optimality in this case have the form: 

∂J

∂X
= 0,

∂J

∂X
= 0,

∂J

∂X୲
= 0, t = 1, … , T − 1, (48) 

∂J

∂V୲
= 0, t = 0, … , T − 1,

∂J

∂λ୲
= 0, t = 0, … , T. (49) 

Accounting for (47), the optimality conditions take the form: 

λ
 +

∂ψ

∂X
= 0 (50) 

−λ
 = 0 (51) 

λ୲
 =

∂ℋ୲

∂X୲
, t = 1, … , T − 1 (52) 

∂ℋ୲

∂V୲
= 0, t = 0, … , T − 1 (53) 
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X୲ାଵ = a୲X୲ + V୲, t = 0, … , T − 1 (54) 

Formulation of the problem of Hஶ filtration: 

Jୌ൫൛Z୲ൟ, X, {V୲}, {W୲}൯ → inf
൛౪ൟ

sup
ଡ଼బ,{౪},{౪}

  (55) 

If we consider a linear transformation (X, {V୲}, {W୲})


→ ൛∆୲
ൟ, then (55) may be expressed as 

sup
ଡ଼బ,{౪},{౪}

Jୌ൫൛Z୲ൟ, X, {V୲}, {W୲}൯ = ฮZฮ
ଶ

→ inf ⬚
⬚

 (56) 

6) (Hஶfilter). The following expressions are given: 

a) system of observations (45), (46) and the estimated output (47), 

b) price function—(50), where matrices P
⬚, Q୲

⬚, R୲
⬚, S୲

⬚  are symmetric positively defined (chosen 

according to the practical problem to be solved (it is important that they are not directly related to the statistical 
characteristics of noise). 

If at each time step the following inequality is satisfied: 

P୲
ିଵ − θSത୲ + A୲

R୲
ିଵA୲ > 0 (57) 

Then the price function can be made smaller 
ଵ


 using the following recurrent estimation algorithm: 

Sത୲ = L୲
S୲L୲ (58) 

β୲ = P୲൫I − θSത୲P୲ + A୲
R୲

ିଵA୲P୲൯
ିଵ

A୲
R୲

ିଵ (59) 

X୲ାଵ = a୲X୲ + a୲β୲൫Y୲ − A୲X୲൯ (60) 

P୲ାଵ = a୲P୲൫I − θSത୲P୲ + A୲
R୲

ିଵA୲P୲൯
ିଵ

a୲
 + Q୲ (61) 

Suitable tasks for the Hஶ filter: 
a) Systems for which robustness must be guaranteed or the quality of the worst-case evaluation is 

prioritized. 
b) Models with unpredictable changes in which identification or optimization of gain is difficult or 

resource intensive. 
c) Systems whose models are not fully known. 

Below one can see the Kalman filter applied to the auction market path (Figure 5). 

 
Figure 5. The Kalman filter applied to the auction market path. 
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4. Practical examination 

4.1. Program implementation 

Users make bids in parallel and independently from each other. Only after all the users have declared the 
end of the move, the cycle is terminated. One can see the commands for the server in the Table 3. 

Table 3. User teams with market level modeling. 

Name Param. 1 Param. 2 Example Comment 

market – – market Displays market level parameters 

player id – player 1 Displays user-specific settings 

online – – online Displays the number of non-bankrupt users 

me – – me Displays the current user’s settings 

exit – – exit Server disconnection 

prod count – prod 2 Produce 2 units of good from 2 units of raw materials 

buy count price buy 2 2000 Buy 2 units of good for 2000 units of currency 

sell count price sell 2 2000 Sell 2 units of good for 2000 units of currency 

build count – build 2 Build 2 production facilities 

turn – – turn Finalization of offers 

help – – help Displays program commands 

At the end of the cycle, the market reports to users’ full information about the trading results, namely, the 
total closing price, the number of bought and sold units of trade relations for all users, and the number of 
currency units for all users. The program terminates when, for one reason or another, only one user remains in 
the program. A detailed model can be found in the research paper[4] by the author. 

The statistical bot model is to use trivial estimation or estimation by the mathematical expectation of 
winning bets. 

1) The current bid for the buy has the form: 

Ε|  𝑏𝑢𝑦

ே

ୀ

| (62) 

where 𝑏𝑢𝑦—bids to buy from all players on the previous turn, N ∈ ℕ—number of auction participants.  

2) The current bid for the sale is of the form: 

Ε|  𝑠𝑒𝑙𝑙

ே

ୀ

| (63) 

where 𝑏𝑢𝑦—bids to sell from all players on the previous turn, N∈ℕ—number of auction participants. 

The starting parameters of the interpreter program are the IP address and TSP port number of the server, 
as well as the name of the file containing the program in the model language. The script determines the further 
behavior of the bot. Thus, the bot program is a combination of a client program and a model language 
interpreter program. 

Similarly, with the server, the start parameters are set on the command line. The input language of the bot 
should allow the use of all the information that is available to a normal user, as well as issuing all the commands 
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that a normal user would issue. The language should be algorithmically complete and have the ability to create 
non-trivial strategies. 

All whitespace characters must be equal, and any number of whitespace characters must also be allowed 
anywhere in the program. 

The language contains the following operators: assignment, unconditional transition, conditional operator, 
auction operator, and debug print operator. The language supports arithmetic and comparison operations. The 
language must define the priority of operations. 

Operands can be constants, variables, arrays, and calls to built-in functions. Expressions may contain 
parentheses of any nesting. A lexical and syntactic analyzer must be used for implementation. 

The result of the analyzer’s work should be an internal representation of the scenario convenient for 
further interpretation—RPN (Figure 6). 

 
Figure 6. Hierarchy of classes for representing RPN. 

Syntax of the proprietary language of trading strategies: 
?—internal function indicator; 
$—variable indicator; 
;—end of operation indicator; 
{}—initialization similar to C/C++-type languages; 
{}end—indicator for the beginning and end of the entire program. 

The language is algorithmic complete. Below, one can see an example of a simple trading strategy 
implementation program (Figure 7): 
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Figure 7. A simple trading strategy implementation program. 

4.2. Model ensembles and results 

The input of each neural network is raw data in any format—categorical attributes are translated using 
label encoding, so any initial date format with any set of attributes can be used for the neural network approach. 
Then each model uses two hidden layers, and the output layer represents the transaction date, optimal price, 
and signal (buy or sell) (Figure 8). 

 
Figure 8. Steps in the implementation of a neural network ensemble with the auto ML method. 

4.3. Model validation 

The following validation method is called Combinatorial Splits[7]. Consider 𝑇 observations partitioned 

into 𝑁 groups with shuffling, where groups 𝑛 = 1, … , 𝑁 − 1 are of size 𝑇/𝑁, the 𝑁-th group is of size 𝑇 −

[𝑇/𝑁](𝑁 − 1), and [⋅] is the floor or integer function. For a testing set of size 𝑘 groups, the number of possible 

training/testing splits is 𝐶
ேି. 
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Since each combination involves 𝑘 tested groups, the total number of tested groups is 𝑘𝐶ே
ேି. And since 

we have computed all possible combinations, these tested groups are uniformly distributed across all 𝑁 (each 

group belongs to the same number of training and testing sets). The implication is that from 𝑘-sized testing 

sets on 𝑁 groups we can back backtest a total number of paths ϕ[𝑁, 𝑘] =


ே
𝐶ே

ேି. For numerical results, see 

Table 4. 

Table 4. Different models’ performance metric. 

 RMSE MSE MAE MAPE 

Trivial expectation 1.2 1.44 1.1 10.2 

XGBOOST 0.8 0.64 0.7 6.3 

CATBOOST 0.75 0.56 0.65 5.8 

LSTM 0.9 0.81 0.8 7.4 

AUTO ML H2O 0.7 0.49 0.6 5.0 

Kalman filter 0.85 0.72 0.75 6.9 

H2O and NN ensemble 0.6 0.36 0.5 4.5 

4.4. Backtesting problem 

In order to backtest the model, one needs to perform the following steps[8]: 

1) Form a matrix 𝑀 by collecting the performance series from the 𝑁 trials. 

Each column 𝑛 = 1, … , 𝑁 represents a vector of PnL (mark-to-market profits and losses) over 𝑡 = 1, … , 𝑇 
observations associated with a particular model configuration. 

2) Partition 𝑀 across rows, into an even number 𝑆 of disjoint submatrices of equal dimensions. Each of 

these submatrices 𝑀௦, with 𝑠 = 1, … , 𝑆 is of order ቀ
்

ௌ
𝑁ቁ. 

3) Form all combinations 𝐶௦  of 𝑀௦ , taken in groups of size 
ௌ

ଶ
, which gives a total number of 𝐶ௌ

ௌ/ଶ 

combinations. 

4) For each combination 𝑐 ∈ 𝐶௦ we: 

a) Form the training set 𝐽 by joining the 𝑆/2 submatrices 𝑀௦ that constitute 𝑐. 𝐽 is a matrix of order 
்

ௌ

ௌ

ଶ
× 𝑁 =

்

ଶ
× 𝑁; 

b) Form the testing set 𝐽 as the complement of 𝐽 in 𝑀. In other words, 𝐽 is the 
்

ଶ
× 𝑁 matrix formed by 

all rows of 𝑀 that are not part of 𝐽; 

c) Form a vector 𝑅  of performance statistics of order 𝑁  where the 𝑛 -th item of 𝑅  reports the 

performance associated with the 𝑛-th column of 𝐽 (the training set); 

d) Determine the element 𝑛 ∗ such that 𝑅 ≤ 𝑅 ∗, ∀𝑛 = 1, … , 𝑁. In other words, 𝑛 ∗= 𝑎𝑟𝑔 𝑚𝑎𝑥


𝑅; 

e) Form a vector 𝑅  of performance statistics of order 𝑁 , where the 𝑛 -the item of 𝑅  reports the 

performance associated with the 𝑛-th column of 𝐽 (the testing set); 

f) Determine the relative rank of 𝑅∗ within 𝑅. We denote this relative rank as ω, where ω ∈ (0,1). 
This is the relative rank of the out-of-sample (OOS) performance associated with the trail chosen in-

sample (IS). If the strategy optimization procedure does not overfit, we should observe that 𝑅∗ 

systematically outperforms 𝑅 (OOS), just as 𝑅∗ outperformed R (IS); 
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g) Define the logit λ = 𝑙𝑜𝑔  
ன

ଵିன
. This presents the property that λ = 0 when 𝑅∗ coincides with the 

median of 𝑅 . High logit values imply a consistency between IS and OOS performance, which 
indicates a low level of backtest overfitting. 

5) Compute the distribution of ranks OOF by collecting all the λ , for 𝑐 ∈ 𝐶𝑆.  The probability 

distribution function 𝑓(λ) is then estimated as the relative frequency at which λ occurred across all 𝐶௦ with 

∫ 𝑓(λ)𝑑λ
ஶ

ିஶ
. Finally, the PBO is estimated as 𝑃𝐵𝑂 = ∫ 𝑓(λ)𝑑



ିஶ
λ as that is the probability associated with IS 

optimal strategies that underperform OOS. See performance degradation below (Figure 9) and stochastic 
dominance (Figure 10). 

 
Figure 9. Performance degradation, IS vs OOS. 

 
Figure 10. Stochastic dominance. 

Below are the backtesting results. Simple visualization is represented below (Figure 11): 

 
Figure 11. Backtesting on one path and one strategy. 
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The objects above are: 
a) short_ma (short-term moving average) represents the short-term moving average of the asset prices. 

A short-term moving average is calculated as the average of asset prices over a certain short time 
interval. In the context of the strategy, the short-term moving average is used to smooth asset prices 
and identify short-term changes in trend. 

b) long_ma (long-term moving average) represents the long-term moving average of the asset prices. 
A long-term moving average is calculated similarly to the short-term moving average, but with a 
wider time interval. In the context of the strategy, the long-term moving average is used to smooth 
asset prices and identify long-term trends. 

c) positions indicate the current position in the strategy. The values of this variable can be as follows: 

 1: long position (purchase) signals that the short-term moving average has crossed the long-term 
moving average from top to bottom, which can be considered a buy signal; 

 –1: short position (selling) signals that the short-term moving average has crossed the long-term 
moving average from below upwards, which can be considered as a signal to sell the asset; 

 0: out of position means that there is no clear signal to buy or sell, and the participant is out of the 
market. 

In order to calculate a value (metric) to assess the performance of the strategy, one can use Sharpe ratio, 
which measures the ratio of the return and its risk. Sharpe ratio is one of the most popular metrics for 
backtesting trading strategies. This ratio is calculated as follows (64): 

𝑆ℎ𝑎𝑟𝑝𝑒𝑅𝑎𝑡𝑖𝑜 =
𝑅 − 𝑅

σ
 (64) 

where 𝑅—average annualized return of the strategy, 𝑅—risk-free rate (e.g., government bonds, or bank 

account), σ—standard deviation of the strategy (risk). 

High value of Sharpe ratio indicates a good relative return of the trading strategy compared to the risk 
taken.  

In addition to synthetic data, there were used data of AAPL, USD/RUB, S&P500, GOLD, and Crude Oil 
quotations (Table 5) for the time range from 31/12/21 to 10/04/22, sourced from finam.ru: 

Table 5. Backtest on historical data. 

Strategy Average return Risk (Std. deviation) Sharpe ratio 

Trivial expectation 0.05 0.1 0.2 

XGBOOST 0.07 0.12 0.33 

CATBOOST 0.08 0.11 0.45 

LSTM 0.09 0.13 0.46 

AUTO ML H2O 0.06 0.09 0.33 

Kalman filter 0.07 0.1 0.4 

H2O and NN ensemble 0.08 0.11 0.45 

The similar, but not the same approach of using machine learning methods and their implementation on 
big data was represented in one of the authors’ papers[9]. However, the main focus of that paper was on working 
with the data and preparation for analysis. 
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The backtest results demonstrate the robustness of our algorithms not only on synthetic data, but also on 
real futures data adjusted for the auction markets model. To improve the backtest results, one may pay attention 
to the following: 

 Adjustment for real market conditions: backtesting on real futures data allows you to take into 
account actual market conditions such as liquidity, spreads, commissions, and other costs. This 
provides a more realistic view of strategy performance. 

 Analysis on different time horizons: backtest results can be presented for different time horizons, 
such as daily, weekly, and monthly data. This will help understand how the strategy behaves over 
different time horizons. 

 Volatility analysis: one can look at how a strategy responds to changes in market volatility. This is 
important for determining the level of risk and capital management. 

 Different instruments and assets: a backtest can be conducted not only on stock futures, but also on 
other assets such as currencies, bonds, or commodities, which will help determine which markets 
the strategy works best in. 

 Auction market analysis: Modeling auction markets can include consideration of market opening 
and closing times, trading volumes, and value dynamics. 

 Comparison to broad market indices: comparing a strategy’s performance to underlying indices, 

such as the S&P 500 or other indices, can provide insight into whether or not the strategy is 
outperforming the market. 

 Analysis of resilience to different market regimes: it is important to evaluate how a strategy behaves 

in different market regimes, such as bullish, bearish, or sideways. This allows you to understand 
how resilient the strategy is to a variety of market conditions. 

 Risk assessment and performance metrics: in addition to returns, one may also consider risk metrics 
such as drawdown, maximum deviation, and performance metrics such as Sharpe ratio, Treynor 
ratio, and others. 

 Automated monitoring: for long-term strategies, it is important to set up automated monitoring of 
the strategy on real data to quickly identify and react to changes in market conditions. 

It is quite important to remember that backtesting only serves as a tool to evaluate the potential 
performance of a strategy on historical data. Actual results may vary significantly depending on current market 
conditions and other factors. 

5. Conclusion 
In conclusion, it is desirable to describe the main results of the work: a proprietary model of stochastic 

auctions using the level market index has been developed. A risk-neutral measure has been introduced, making 
the market arbitrage-free. A minor theorem has been proven, stating that in such a model, the auction closing 
price will follow a Brownian motion. The filtration problem has been described and implemented. A 
proprietary interpretable programming language has been developed in C++ for testing trading algorithms on 
this model. The algorithms have been validated using a powerful machine learning algorithm. Quality metrics 
for the predictive models have been obtained. Robustness metrics (resistance to noise in real data) of the models 
have been obtained through backtesting on real, modified data to fit the described model. A market-making 
task has been formulated for the model, which can employ reinforcement learning methods, a topic that has 
been relevant in recent years. 
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