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Abstract: This paper introduces a novel application of principal component analysis (PCA) in 

constructing equity indices. While PCA is well-established in other fields, its use in financial 

index design remains underexplored. The proposed method addresses entropy concerns in 

nonlinear return time series. PCA is employed to determine equity weights, using factor 

loadings to guide its construction. This results in a factor model index (FMI) that identifies 

sub-sectors and assigns data-driven weights. The FMI framework is flexible, allowing 

adaptation to different asset sub-groups and facilitating synthetic replication of risk factors. 
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1. Introduction 

This paper explores the application of principal component analysis (PCA) in 

constructing investment indices and introduces a method for the construction of a 

factor model index (FMI). The study is theoretical and provides a detailed overview 

of the process. We explain and expand on the PCA method, focusing on its application 

in index construction. Our approach enables the selection of sub-groupings and 

clustering of asset proxies based on factor exposure. We argue this results in a more 

flexible factor-based weighting. The method leverages the dimension reduction 

properties of PCA, first identified by Pearson [1]. He highlighted PCA’s broad range 

of applications. Here, we apply PCA specifically to one of these, namely index 

construction. We explain how the eigenfactor of the first principal component, within 

an equity asset sub-class, can be used to determine index weights. 

Traditional equity indices, such as those constructed through market or equal-

weighted capitalization, have long been criticized for their susceptibility to biases. 

These include over-concentration in certain sectors or stocks. Factor-based approaches 

offer a solution. Those in common usage, however, rely on pre-defined factors that 

may not capture all dimensions of market variance. In this context, PCA presents an 

alternative, enabling the extraction of orthogonal factors directly from observed 

market returns. We explore the applicability of PCA to construct equity indices that 

are both empirically robust and interpretable. While PCA’s theoretical advantages in 

other fields are well documented, the specific equity index use case addressed by our 

paper remains under-articulated. 

While finance academics frequently use PCA as a dimensionality reduction tool, 

its application to index construction remains uncommon. In contrast, other disciplines 

have applied PCA for similar purposes [2–5]. One prominent use of PCA is in the 

evaluation of environmental indices, particularly in assessing water quality [6]. PCA 

has also been utilized to construct indices that gauge competitiveness and soundness 
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[7]. The finance industry, meanwhile, has developed factor indices based on the 

Arbitrage Pricing Model, though PCA-derived factor models offer a distinct approach. 

PCA not only captures the diagonal elements of a covariance or correlation matrix but 

also accounts for off-diagonal terms, reflecting interdependencies between assets. This 

dual capability allows PCA to determine both asset characteristics and corresponding 

FMI weights. 

PCA has several useful mathematical properties for indices. The most important 

is that the first principal component explains the largest portion of variance of the 

individual equities in an index (built using the FMI approach). This corresponds to the 

systemic risk factor of the capital asset pricing model. Malevergne et al. [8] argue that 

this property makes its use consistent with the self-consistency condition, namely that 

a market proxy should be composed of assets whose returns it aims to explain. Thus, 

PCA provides a systematic way to align index construction with both underlying 

market dynamics and finance theory. 

There have been precedents in allied financial asset classes for the use of PCA 

methods to define index constituents (by their common attributes). Daniel et al. [9], 

for example, argue that its characteristics provide a better ex-ante forecast of the cross-

sectional returns of futures markets. As such, they argue characteristic identification 

is a superior way of matching the likely realized returns of an asset class against a 

benchmark. Broby et al. [10] develop a PCA-based index that outperforms traditional 

commodity indices when applied to that asset class. For a detailed empirical example 

of the FMI approach, readers are encouraged to consult that paper. 

The PCA method we present expands the range of approaches to equity index 

construction found in the literature. It is designed for effective performance attribution 

by virtue of being grouped into relevant sub-sectors. The techniques for achieving such 

sub-sector divisions are discussed in Meade and Salkin [11]. A practical example of 

that widely used approach is provided in the MSCI Methodology Booklet [12]. PCA 

can similarly be used to enhance index construction through systematic asset grouping. 

Background 

The use of PCA is well documented in disciplines other than finance. It is 

explained by Jolliffe [8] in his textbook on the method. As a statistical tool, it is used 

in a number of fields where data is investigated in an exploratory manner. PCA is also 

used in time series analysis for tasks such as seasonal adjustment. Its potential in 

financial time series comes from its transformation of the original data into a set of 

orthogonal components. In the context of equity markets, this means that each equity 

can be represented as a linear weighted combination of the available instruments. This 

enables the resultant FMI to be constructed based on shared variance patterns. 

PCA is therefore an established procedure in academic investigation. It has only 

recently started to be used as a method in finance as a response to over-fitting in 

traditional multivariate regressions. In economics, it has been used to show correlated 

response and to identify predictor variables. PCA has, however, not been used 

previously to construct indices for equity assets. That said, it was used to index 

commodity prices by Barlett [13] and, as stated, by Broby et al. [14]. The former 

applied PCA to a time series of cotton prices over the period 1924–1938 in order to 
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better understand the nature of their returns. The latter applied it to commodity futures 

prices from 2008 to 2016. 

In the literature there are several hierarchical models similar to PCA that are used 

to create optimal weights, as described by Polsen and Tew [15]. They show how they 

can be used to construct portfolios that can in turn be used as benchmark indices. They 

detail how Bayesian methods can be incorporated to treat parameter uncertainty, such 

as missing return data. This approach is useful for indices focused on infrequently 

priced asset classes, such as real estate. That said, most current methods, as explained, 

rely on representation rather than replication. Amenc et al. [16] explain that in the 

index replication stage, one should have two steps in the construction process, these 

being constituent and weighting scheme selection. This therefore has to be applied to 

the way we construct the FMI. 

The advantage of PCA usage in an equity universe application is that clusters are 

easily identified. It overcomes the problems with peer indices identified by Bailey [17]. 

It also addresses issues with those indices that are constructed without attention to 

correlation, co-variance skew and kurtosis. Further, the use of FMI can help explain 

variability through insights on factors and correlation. The theorems behind PCA, 

matrix algebra and multivariate analysis are explained well by Rao [18], amongst 

others. It can be used on investment proxies, thereby filling an identified need in the 

literature as it relates to equity assets. We suggest that PCA can help define an 

appropriate index as a result of its robustness. It is a particularly useful method if there 

is a large amount of data, and one wants to view the various sub-groups visually in 

two-dimensional space. As there are a number of sub-groups in equity asset classes 

that are very different, this is deemed appropriate. For example, gold mining stocks 

are very different from coal mining stocks. 

The PCA has similarities to a regression model. In this respect, it creates an 

orthogonal transformation of the individual instruments, thereby better explaining the 

way they group together. In technical terms it results in a linear transformation of the 

data at the same time as preserving the statistical symmetry. It extracts the first 

principal component, which accounts for the greatest variance, followed by successive 

components that explain decreasing amounts of variance. This process allows PCA to 

be applied to equities, whose returns are driven by distinct factors. It enables a 

reevaluation of variances, covariances, and correlations. 

In a portfolio context, Partovi et al. [19] demonstrate how PCA can reshape the 

efficient frontier by constructing portfolios from uncorrelated assets. While most 

assets exhibit some degree of correlation, their study shows that PCA simplifies 

portfolio structure and offers a more transparent framework for asset allocation. 

Similarly, Pasini [20] applies PCA to equity portfolio analysis, using it to assess how 

much a time series deviates from being a sequence of independent and identically 

distributed observations with finite mean and variance. Although this differs from the 

approach proposed in this paper, it provides valuable insight. Pasini finds that the first 

principal component typically represents the market factor, while the second principal 

component often captures most of the remaining risk. 

In summary, the PCA approach constructs indices by identifying common 

components and assigning weights based on eigenvalue optimization. This contrasts 

with traditional index construction, which typically relies on market capitalization-
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based weighting. PCA serves as a classification method by creating an index from 

factor weights, which can be evaluated for optimality. When applied to return time 

series, PCA enhances index robustness by reducing data complexity, enabling the 

creation of interpretable factors with assigned weights. This process is driven by an 

orthogonal transformation that isolates uncorrelated components, ensuring a 

systematic and transparent index construction framework. 

2. Materials and methods—Factor model index (FMI) 

It is easier to understand PCA visually. Figure 1 presents a geometric 

representation based on two variables, X1 and X2. These are centered on their 

respective means. The ellipse illustrates the scatter of sample points. The line that 

transects the first principal component is derived from the widest point. The second 

component is the line that is at right angles to this first principal component. The initial 

reference point is used, and a rigid transformation is applied around the origin. This 

results in a new set of axes. The origin is given by the sample mean average of the two 

X1 and X2 variables. 

 
Figure 1. A representation of the first and second rotations. 

Figure 1. A geometric representation based on two asset variables, X1 and X2, 

showing the first component and second component rotations. In the case of equity 

assets these could be the first component in the direction along which the asset 

instruments have the largest variance. The second principal component is the direction 

that maximizes variance in those instruments from all directions orthogonal to the first 

component. 

Meanwhile, Figure 2 shows the transformed axis. The components in it can be 

explained algebraically based on the two variables, X1 and X2, with the following 

variance-covariance matrix. 

Σ𝑋1,𝑋2 = (
σ1
2 σ12

σ12 σ2
2 ) (1) 

a11 and a21 denote the weights from the first eigenvector of Σ; a12 and a22 are the 

weights from the second eigenvector. It can be represented by a 2 × 2 orthogonal (or 

rotation) matrix T, with the first column containing the first eigenvector weights and 

the second column the second eigenvector weights. This then allows the calculation 

of the direction cosines of the new axes based on the following: 
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𝑇 = (
𝑎11 𝑎12
𝑎21 𝑎22

) = (
cos(θ) cos(90 + θ)

cos(θ − 90) cos(θ)
) = (

cos(θ) − sin(θ)

sin(θ) cos(θ)
)   (2) 

The cosines of the angles are based on the positive (horizontal and vertical) axes. 

The orientation of the transformed axis can therefore be found by multiplication of the 

relevant eigenvector values by −1. 

 
Figure 2. A PCA transformed axis showing the cosines of the angles on the 

horizontal and vertical axes. 

The case of two-dimensional rotations can be extended to three or more 

dimensions by using the appropriate matrix of the direction cosines. In this way, one 

can build multi-factor models from which to build indices. The axis shows the 

direction of maximum spread. This is the principal axis. With this it is possible to 

subtract the variance to obtain the remaining variance. The same procedure is applied 

to find the next principal axis from the residual variance. The principal axis must be 

orthogonal to any other principal axes. The transformed data become the principal 

components. 

2.1. Orthogonal transformation 

To understand how PCA can be used as a sampling method to construct an index 

it is necessary to specify the process. The technique is primarily a data analytic 

technique, so its use in indices is not widely appreciated. A tutorial is given by Shlens 

[21]. It uses linear algebra to obtain transformations of the data. These are orthogonal 

in nature and help with identifying how the data is grouped. The non-orthogonal 

vectors are depicted in Figures 3 and 4. In index construction, this results in a linear 

transformation that preserves the integrity of the relationships between the various 

asset instruments. This allows for weights to be assigned. This is traditionally done in 

index construction through sampling rather than statistical technique. 
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Figure 3. Non-orthogonal 3D coordinate systems. 

 

Figure 4. Vectors in 3d and non–orthogonal basis vectors. 

Orthogonal is a term used to mean normal. In Euclidean space, two vectors are 

orthogonal if they make an angle of 90 degrees, or one of the vectors is zero. This 

figure represents the transformation that a set of asset instruments would go through 

when PCA is applied. 

As a result of transforming the first loading vector in the way depicted in the 

diagram, the variance of the individual asset instruments is maximized. The total 

variance remains the same. It results in a redistribution of the new equity asset 

instruments on a different dimension. The outcome is determined by the most “unequal” 

result. In this way, the first equity asset not only explains the most variance among the 

new assets, but the largest variance of any single instrument (see [22] for formulas and 

proof). This is illustrated mathematically as where w equates to: 

𝑤(1) = 𝑎𝑟𝑔 max‖𝑤‖=1 {∑(𝑡1(𝑖))
2

𝑖

} = 𝑎𝑟𝑔 max‖𝑤‖=1 {∑(𝑥(𝑖) ⋅ 𝑤)
2

𝑖

} (3) 

where: w(1) = Weighting load factor one. 

This is represented in matrix form as: 

𝑤(1) = 𝑎𝑟𝑔 max‖𝑤‖=1{‖𝑋𝑤‖
2} = 𝑎𝑟𝑔 max‖𝑤‖=1{𝑤

𝑇𝑋𝑇𝑋𝑤} (4) 

where: w(1) = Weighting load factor one. 

When the transformation has been made, the next step is to extend the statistical 

input by the calculation of an additional factor component. This kth component is 

found by subtracting the result from the first component. In effect, another rotation is 

made. This has the effect of splitting out different types of asset groupings (similar to 

equity sub-sectors). Think of it as potentially isolating different investment 

characteristics. The equation below shows how this is presented algebraically, 

highlighting the weighting of the respective identified factor. 
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�̂�𝑘 = 𝑋 −∑𝑋

𝑘−1

𝑠=1

𝑤(𝑠)𝑤𝑠T (5) 

where: w(k) = Weighting load of the Kth factor. 

Once the weighting has been identified, the loading factor vector should then be 

calculated. This is the point of the maximum variance from the new data matrix. It is 

shown algebraically thus: 

𝑤(𝑘) = 𝑎𝑟𝑔 max‖𝑤‖=1 {‖�̂�𝑘𝑤‖
2
} = 𝑎𝑟𝑔 max {

𝑤𝑇�̂�𝑘
𝑇�̂�𝑘𝑤

𝑤𝑇𝑤
} (6) 

where: w(k) = Weighting load of the kth factor. 

The results can then be presented as a set of weights that can be used in an index. 

These are mathematically expressed as P dimensions. In the construction of an index 

using this method, the random vector of returns is found from the universe of the 

relevant equity assets. This is done with a mean vector where the vector is the common 

asset factors, and the matrix of factor loadings are the specific factors. Note that this 

is similar to the output of the market model, which has a common systemic factor and 

various stock-specific factors. The creation of a common asset factor means that the 

PCA approach has a theoretical link to the market proxy. That proxy is derived from 

the market model and mean variance portfolio theory. It is used to justify broad market 

indices. The output shows that the variance for the asset equals the sum of the squared 

outputs for that equity asset. 

Using this approach, the structure of equity assets generates an estimate of the 

relevant factors from their eigenvectors. That is, it identifies those factors associated 

with the largest eigenvalues of the matrix output. It is these that form the basis of the 

weight of the contender equity asset index, as shall be further explained. 

2.2. Deriving factors from principal components 

The properties of the PCA output mean that it is possible to derive investment 

factors. A factor is a measurable characteristic or attribute that explains variations in 

returns across securities. For example, in finance, systemic risk is often considered a 

common factor to all equities. 

The process begins with a matrix representing the equity asset class opportunity 

set. PCA decomposes this matrix into principal components, where each component 

represents a factor explaining a portion of the total variance. Mathematically, this can 

be expressed using a stock matrix with multiple factor loadings, as illustrated in the 

equation below: 

𝑋 = 𝜇 + 𝐿𝐹 + 𝜖 (7) 

where: 

X: vector of the equity asset class returns. 

(

𝑋1
𝑋2
⋮
𝑋n

). 
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μ: X is drawn from a universe of stocks with a mean vector. 

𝜇 = (

−1
−2
⋮
−𝑛

). 

L: k × n {matrix of factor loadings.} F = 

(

𝑙1,1 𝑙1,2 ⋯ 𝑙1,5
𝑙2,1 𝑙2,2 ⋯ 𝑙2,5
⋮ ⋮ ⋱ ⋮

𝑙𝑛,1 𝑙𝑛,2 ⋯ 𝑙𝑛,5

). 

F: vector of common factors. f = 

(𝑓1 𝑓2 ⋯ 𝑓5). 

ϵ: vector of errors (specific factors). ϵ = 

(

𝜀1
𝜀2
⋮
𝜀𝑛

). 

Using the PCA approach, the variance for the equity asset class ith is going to be 

equal to the total of the squared loadings and the variances of the instruments: 

var(𝑋𝑖) = ∑𝑙𝑖,𝑗
2

𝑛

𝑗=1

+ ψ𝑖, 

where:  ∑ 𝑙𝑖,𝑗
2𝑛

𝑗=1 : communality of the equity asset class i,  

∑ 𝑙𝑖,𝑗
2𝑛

𝑗=1 . 

ψi: specific factor for the equity asset class i. 

𝑋 = 𝜇 + LTT′𝐹 + 𝜖 = 𝜇 + 𝐿∗𝐹∗ + 𝜖. 

For the orthogonal matrix T. 

This approach was first presented in a generalized way [23]. It should be used in 

preference to the varimax orthogonal method, suggested by Kaiser [24]. In this way, 

the oblique solution is effectively obtained by trial and error, increasing the larger 

loads and reducing the smaller ones. A good knowledge of the time series of the 

equities in question is helpful. It helps to identify relevant factors accurately and 

interpret factor loadings within the context of financial market behavior. 

The connection between factors and eigenvalues, which determines their use in 

index weighting, was explained by Roncalli [25]. His method applies PCA to the 

selected index universe, generating a risk factor from the covariance matrix. The first 

eigenvalue corresponds to the market risk factor, capturing the largest variance in the 

asset set. Subsequent eigenvectors represent additional common risk factors, each 

explaining a smaller portion of the variance. This hierarchical structure allows for 

systematic factor identification and weighting in index construction. 
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2.3. Linking to finance theory 

We now turn to linking this to finance theory. In the context of the Capital Asset 

Pricing Model (CAPM), the first principal component derived from PCA serves as a 

proxy for systemic market risk. The creation of a common asset factor means that the 

PCA approach has a theoretical link to the market proxy. That proxy is derived from 

the market model and mean variance portfolio theory. It is used to justify broad market 

indices. The output shows that the variance for the asset equals the sum of the squared 

outputs for that equity asset. This component captures the largest share of variance 

across assets, representing the common risk that affects all securities. Subsequent 

principal components reflect specific risk factors unique to subsets of assets. These 

factors capture idiosyncratic risks not explained by the market factor. In this respect, 

the method is aligning with CAPM’s framework where total risk is divided into market 

(systematic) and asset-specific (unsystematic) components. Thus, PCA provides a 

data-driven way to decompose asset returns into systematic and specific risks. 

Building on this concept, Yang et al. [26] applied PCA to interpret the covariance 

matrix of asset returns. Interestingly, they found that even the last few principal 

components hold meaningful information, as they reveal instruments with nonlinear 

correlations. This finding is significant given the ongoing debate in finance about the 

number of factors needed to explain asset returns. It suggests that equity asset factors 

can be identified directly through PCA, without relying solely on traditional models. 

In linear algebra, an eigenfactor is a scalar value that, when multiplied by a given 

matrix, produces a new matrix that is a scalar multiple of the original matrix. The 

scalar value is known as the eigenvalue of the matrix, and the process of finding it is 

known as finding the eigenvalues of the matrix. As far as index construction goes, the 

second eigenvector is a combination of asset weights orthogonal to the first 

eigenvector and so on. 

In this way, the factors identify the variance not explained by the first eigenvector. 

This can be critiqued as difficult to use to identify a specific asset class group, as it 

means there is no real way of determining the number of eigenvectors without 

knowing the original number of sub-groupings that the equity asset class exhibits. 

Financial industry experience, however, can be used to manually identify these, but 

for the purpose of index creation the first eigenvector is sufficient. 

These properties mean that it is possible to use PCA and still create a mean 

variance optimal index. This can then generate a portfolio of assets representing an 

index that has been optimized to maximize expected returns while at the same time 

minimizing risk. This is calculated using the mean and variance of the returns of the 

assets in the portfolio, with the goal of finding the optimal balance between risk and 

return. This approach to portfolio construction is based on the idea that investors are 

risk-averse and willing to trade off higher expected returns for lower levels of risk. 

Achieving this outcome requires interpreting the covariance matrix (or historical 

covariance matrix) in the context of factor risk [27]. Alternatively, this can be done 

using shrinkage techniques applied to the sample covariance matrix or by employing 

common co-movement measures such as the Gerber statistic [28] and the modified 

Gerber statistic [29]. These methods enable the construction of indices using only the 
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return time series, without needing additional market information. This data-driven 

approach ensures more robust and adaptable index construction. 

3. Results and discussion of method 

We now focus on how to reorganize the results for index construction, so that a 

set of clear rules can be established. This is essential in financial markets for 

replication. The underlying instruments must first be transformed from their raw form 

using a variance reduction method. The process begins with applying PCA, followed 

by analyzing the equity asset returns using the variance-covariance matrix. Based on 

insights from the relevant literature, the equities should reveal several factors that 

explain the variation in returns. 

Once the matrix is generated, its outputs are applied through factor analysis. This 

allows the creation of an index where securities are weighted according to their factor 

loadings. Additionally, a periodic ranking, either monthly or yearly, is then calculated. 

This enables a rebalancing process within a specified holding period. As a systematic 

approach, this ensures the index reflects changing market dynamics while maintaining 

diversification. 

Once the common components have been established, it is possible to determine 

the factors present using an associated dimension reduction technique. This is a 

method for modeling observed variables and their co-variance structure for a small 

number of underlying un-observable latent factors. It can be considered as an inversion 

of the PCA. The next step is to create linear combinations of the observed variables. 

To do this, the FMI weights are derived from a factor analysis implemented through a 

variance-covariance matrix of the returns of equity asset instrument sets. This is 

repeated on each date of the new reconciliation. 

The results deliver a variance fraction for each of the identified factors. With 

these results, for each identified factor, the formation of a sub-portfolio is possible. 

This is based on only instruments with a significant loading to the identified factor. A 

loading factor has then to be determined. This is a statistical measure that represents 

the strength of the relationship between a particular observed variable and an 

underlying latent factor. 

In factor analysis, the observed variables are believed to be influenced by a 

smaller number of unobserved, underlying factors. The loading factors are used to 

quantify the extent to which each observed variable is related to each latent factor. The 

loading factor for a particular observed variable and latent factor is calculated as the 

correlation between the observed variable and the latent factor. 

It is suggested that the FMI weights be derived from data observed over annual 

observation periods. This is for ease of computation. That said, the method can be used 

to construct equity asset portfolios held over a shorter re-balancing period. Each 

portfolio that is created in this way is essentially the index at this time. Portfolio and 

index are being used interchangeably in this context. At the end of the period, the FMI 

weights are updated and the portfolio re-balanced using the same procedure. 

In the next stage, each equity receives a weighting equal to the nth ratio of its 

load relative to the sum of the loads contained in the sub-portfolio. The resulting group 

of sub-portfolios can then be aggregated into an overall portfolio in which each sub-
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portfolio receives a weight equal to the ratio of the variance component. This is 

explained by the factor resulting from the total variance explained by the factors 

determined. 

The factor results can then be put into an oblique rotation. This allows for some 

correlation between the underlying factors and provides a clearer picture of the 

variance decomposition. It will result in groups of equity asset instruments as single 

factors. We stress that the underlying interactions between the factors should be 

thought of as similar to creating sectors in traditional index construction. 

3.1. Data transformation and PCA application 

This section provides an illustrative framework, supported by tables and 

equations to clarify each step. The process begins with the application of PCA to the 

equity asset return data, transforming raw instruments into principal components. The 

principal components are derived from the variance-covariance matrix, capturing 

common patterns in the returns. These components explain the variation in returns 

across the asset universe, allowing for dimensionality reduction. 

The PCA output is analyzed to identify factors, with eigenvalues indicating the 

relative importance of each factor. Factor loadings (β) are calculated for each equity 

instrument, representing their correlation with the identified factors. A threshold of β > 

0.3 (shown as * in Table 1) was suggested by Chao and Wu [30] and is used to 

determine significant factor contributions. An example is shown in Table 1. 

Table 1. Factor loadings. 

Equity Instrument Factor 1 Factor 2 Factor 3 Significant Factor 

Security A 0.45* 0.10 0.05 Factor 1 

Security B 0.20 0.35* 0.15 Factor 2 

Security C 0.05 0.25 0.40* Factor 3 

Note: The highest factor loading in each column is highlighted with an *. This is the Significant Factor 

as shown in the final column. 

Equity instruments are allocated into sub-portfolios based on their significant 

factor loadings. For example, a sub-portfolio for Factor 1 would include securities 

predominantly influenced by Factor 1, such as Security A, while a sub-portfolio for 

Factor 2 would consist of securities with substantial loadings on Factor 2, such as 

Security B. Each sub-portfolio represents a distinct underlying factor identified 

through PCA, ensuring that securities are grouped according to common risk 

exposures. The weights of individual securities within each sub-portfolio are then 

calculated as: 

𝑤𝑖 =
Loadi

∑𝐿𝑜𝑎𝑑𝑠𝑆𝑢𝑏−𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
 (8) 

The sub-portfolios in Table 2 are aggregated into a single portfolio. The weight 

of each sub-portfolio is determined by the variance explained by its associated factor: 
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Table 2. The relationship of variance explained to the various factors. 

Factor Variance Explained (%) Cumulative Variance (%) 

Factor 1 40% 40% 

Factor 2 30% 70% 

Factor 3 20% 90% 

The process is repeated for each observation period, with weights updated and 

portfolios rebalanced. The rebalancing period (e.g., three or six months) is chosen to 

balance computation ease and transaction costs. The FMI weights are recalculated at 

each rebalancing date, ensuring the index reflects evolving market dynamics. 

To refine the factor structure, an oblique rotation is applied. Oblique rotation 

allows factors to be correlated, reflecting the inherent interdependencies often 

observed in real-world data. This enhances the robustness of constructed indices by 

improving factor interpretability and aligning them with the underlying data structure. 

Additionally, oblique rotation minimizes cross-loadings, clarifying the distinctiveness 

of factors and ensuring each captures a specific dimension of variability. However, 

this approach introduces complexity due to correlated factors, risks of overfitting, and 

challenges in maintaining generalizability across datasets. This step allows for some 

correlation between factors, providing a clearer decomposition of variance and 

grouping equity instruments into cohesive sectors. This step is analogous to creating 

traditional index sectors but is data-driven based on the PCA output. 

The resulting index in Table 3 comprises aggregated sub-portfolios, each 

weighted by their explained variance. These could be, for example, sectors. The final 

portfolio reflects a systematic combination of securities optimally weighted by their 

factor contributions. 

Table 3. Derived equity weights by sub portfolio and total portfolio. 

Equity Instrument Sub-Portfolio Weight Portfolio Weight 

Security A 50% 20% 

Security B 30% 15% 

Security C 20% 10% 

This systematic approach ensures that the constructed index reflects the primary 

systemic and specific risks while maintaining diversification and minimizing 

rebalancing costs. The methodology provides a robust framework for data-driven 

index construction. 

To demonstrate the practical application of PCA in equity index construction, we 

conducted an empirical analysis using a simulated equity dataset representing stocks 

from seven major GICS sectors over a five-year period. The dataset was based on 20 

stocks and included Information Technology, Healthcare, Financials, Energy, 

Consumer Discretionary, Industrials, and Real Estate sectors. Figure 5 below 

illustrates how the weights dynamically shift each year to reflect the changing factors. 

The PCA methodology was applied to the monthly return data to extract orthogonal 

factors, with the first principal component serving as the primary driver for the PCA-

derived index. 
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Figure 5 Sector weight changes of the simulated rebalanced portfolios. 

Figure 5: This chart illustrates the evolving weights of major GICS sectors, 

including Information Technology, Healthcare, Financials, Energy, Consumer 

Discretionary, Industrials, and Real Estate, over a five-year period. The greyscale bars 

represent the proportion of each sector’s contribution to the overall portfolio, 

showcasing shifts in market dynamics, such as the increasing dominance of healthcare 

and the relative stability of other sectors like Energy and Real Estate. 

To recap, the FMI is derived through the constituent weights for each period 

using factor analysis implemented using oblique rotations. This is a transformation of 

coordinate axes in which the new axes are not perpendicular to one another, thereby 

producing separate factor outputs. The output would appear as in Table 1. The PCA 

index return is therefore a weighted average of the returns of the derived equity asset 

portfolio constituents. The resultant factor model can be described as such: 

PC𝐴𝑟𝑖,𝑡 = 𝛽1𝐹𝑣𝑡 + 𝛽2𝐹𝑣𝑡 +⋯+ 𝛽𝑛𝐹𝑣𝑡 (9) 

where: PCAri,t = FMI, the excess return of portfolio i in month t, Fv = Factor identified 

by eigenvalues. 

To enhance the robustness of the index and manage rebalancing costs, we 

recommend using a multi-year observation period with a rebalancing frequency of 

three or six months. This approach helps to smooth out the effects of rebalancing and 

reduces transaction costs, ensuring the index remains both cost-efficient and reflective 

of underlying market dynamics. 

In summary, the eigenvalues indicate the relative importance of each factor, while 

the equation uses factor loadings (𝛽) as weights assigned to those factors. This 

approach allows for the stepwise construction of an index, aiming to identify the 

combination of variables that provides the best model fit based on a chosen metric. 

3.2. Discussion 

A significant contribution of the PCA-based approach to index construction lies 

in its ability to address the non-normal distribution of equity asset time series. 

Traditional index models often assume normally distributed returns, which can lead to 

inaccuracies in portfolio analysis. In contrast, the Factor Model Index (FMI) 

constructed using PCA accounts for skewed and non-Gaussian data structures. This 

makes the approach particularly relevant in the context of equity indices, where asset 
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returns frequently exhibit skewness and kurtosis. Hubert et al. [31] demonstrated that 

robust PCA methods remain effective even when faced with such data irregularities. 

We summarise the differences between PCA based indices and traditional indices 

in Table 4. When testing for the appropriateness of an equity asset benchmark, a 

dialectic approach is best [32]. This avoids accepting statistical output at face value. 

In time series, correlations vary over time. This was addressed by Brown and Warner 

[33] who showed that, when events are not clustered in time, the differences between 

the various methodologies are quite small. As a result, there is no evidence that 

existing equity construction methodologies convey any benefit over and above the 

FMI. We therefore consider that the PCA method is equally valid as a method in the 

index construction process as any. 

Table 4. A comparison of PCA based indices with traditional and factor based indices. 

Comparison 

Criteria 
PCA-Based Indices 

Traditional Market-Capitalization 

Indices 
Other Factor-Based Indices 

Construction Method 
Based on dimensionality reduction of 

data using PCA. 

Weighted by market capitalization of 

constituent stocks. 

Based on pre-defined factors (e.g., 

value, growth). 

Weighting Approach 
Data-driven factor loadings derived 

from PCA. 

Proportional to the market value of 

listed companies. 

Factor exposure weights determined 

by specific metrics. 

Flexibility 
Highly flexible and adapts to changes in 

data correlations. 

Limited to market cap adjustments and 

periodic updates. 

Limited by pre-defined factors and 

their calculation rules. 

Robustness to Noise 
Handles noise well by focusing on 

dominant data patterns. 

Sensitive to market volatility and 

extreme stock moves. 

Sensitive to factor misestimation or 

market shifts. 

Transparency 
Complex and requires detailed 

knowledge of PCA interpretation. 

Easy to understand due to 

straightforward weighting rules. 

Moderate, it depends on the factor 

definitions. 

Application 
Suitable for analyzing complex, multi-

dimensional datasets. 

Commonly used for broad market 

tracking and benchmarking. 

Widely used for targeted investment 

strategies. 

Computational 

Requirements 

High; requires advanced tools and 

processing power. 

Low; straightforward calculations 

based on market data. 

Moderate; depends on the 

complexity of factor calculations. 

The theoretical justification for applying PCA stems from its capacity to 

represent complex data in reduced dimensions. While PCA inherently assumes that 

the data approximates a multivariate Gaussian distribution, this assumption serves 

primarily as a simplification for variance decomposition. In practice, PCA’s use of 

eigenvalues and eigenvectors to capture key data patterns allows it to work well even 

when returns deviate from normality. 

Another contribution of PCA to index construction is its potential for index 

replication without requiring direct investment in the underlying securities. By 

reducing the dimensionality of financial time series, PCA projects asset returns onto a 

lower-dimensional space while preserving essential information. This process helps 

eliminate data redundancy, making analysis and interpretation more efficient. The 

reduced representation enables the creation of synthetic indices that approximate the 

behavior of complex portfolios, supporting efficient market exposure with fewer 

underlying components. This capability has practical implications for financial 

product design, particularly in developing exchange-traded funds (ETFs) and other 

passive investment vehicles. 

One advantage of using PCA in index construction is that it can be more accurate 

in tracing the performance of the component stocks. By reducing the dimensionality 
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of the data, PCA can help to eliminate noise and capture the most important patterns 

and trends in the data. This can be especially useful when working with large and 

complex datasets, as it can help to simplify the analysis and make it more interpretable. 

Another advantage of using PCA in index construction is that it can be less 

computationally intensive. Because PCA reduces the dimensionality of the data, it 

requires fewer calculations and can be faster to run than other techniques that might 

be used to analyze the data. This can be especially useful when working with real-time 

data or when the index needs to be updated frequently. 

One potential disadvantage of using PCA in index construction is that it can be 

sensitive to the scaling of the data. If the data are not properly scaled, the results of the 

PCA analysis may be distorted. In addition, PCA is a linear technique, which means 

that it can only capture linear relationships in the data. This means that it may not be 

suitable for data that exhibits more complex patterns or trends. Other identified 

limitations of PCA include domain shape dependence, lack of stability, and the 

presence of sampling errors. Additionally, as the number of factors approaches the 

smaller of the dimensions, spurious correlations may occur, which may lead to miss-

classification of smaller equity asset class instruments. According to Wold [34], as the 

number of factors approaches the smaller of the dimensions, spurious correlations may 

occur. This may mean the smaller equity asset class instruments might get miss-

classified. The use of PCA also requires expert knowledge of the asset class to identify 

the factors. 

A further limitation of the PCA approach, identified by Fralet and Raftery [35], 

relates to computing requirements that grow at a nonlinear rate relative to the size of 

the groupings. This can limit the size of the data set being analyzed when the 

researcher does not have adequate computing power. As equity assets have a large 

number of instruments, this is relevant. The index construction method cannot 

realistically be done without the relevant software. 

4. Conclusion 

This paper presents a method for constructing financial market indices using 

Principal Component Analysis (PCA). The approach results in a Factor Model Index 

(FMI), where PCA assigns weights to individual equities based on factor loadings, 

enabling the aggregation of these equities into a portfolio. The derived FMI weights 

facilitate the identification and weighting of sub-sectors within the broader market, 

offering a data-driven approach to portfolio construction. 

We demonstrate how PCA-derived indices can be constructed through 

eigenvector-based weighting, complemented by rules ensuring continuity, context, 

causality, and consistency. This approach represents a significant departure from 

conventional index construction methods, extending the theoretical framework of 

financial benchmarks. By incorporating PCA, the method enhances traditional 

benchmark theory and contributes to the broader literature on index design. 

The steps involved in constructing a PCA-based index can be summarized as 

follows: 

1) Identify the relevant equity instruments and obtain their historical return time 

series. 
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2) Standardize the return series and compute the covariance matrix to measure the 

relationships between asset returns. 

3) Derive the eigenvalues and eigenvectors from the covariance matrix. The 

eigenvectors indicate the principal directions of data variance, while the 

eigenvalues quantify the amount of variance explained by each eigenvector. 

4) Choose the top 𝑘 eigenvectors based on the magnitude of their corresponding 

eigenvalues. These eigenvectors determine the dimensions retained in the index. 

5) Assign weights to the original variables based on their contributions to the 

selected eigenvectors. Each variable’s weight corresponds to its eigenvector 

element. 

6) Create the index by calculating the weighted sum of the original variables using 

the assigned weights. 

Future research could focus on conducting a sensitivity analysis to examine how 

different parameter choices, such as rebalancing frequency and the threshold for factor 

significance, impact the constructed index. This analysis would provide valuable 

insights into the stability and robustness of the proposed methodology, ensuring its 

reliability across various scenarios and applications. 

We suggest that PCA-based indices offer a powerful tool for ESG investing. They 

enable the integration of often subjective metrics into a more objective index. The 

eigenvalues can be used to identify and emphasize the most influential ESG factors, 

moving away from the traditional negative screening common in such indices. We 

further suggest that this methodology can be applied across various asset sub-

groupings, supporting the synthetic replication of risk factors. 

In conclusion, the FMI framework addresses entropy issues commonly associated 

with non-linear return time series, improving the index’s ability to approximate the 

market portfolio. This method fills a gap in the literature on index construction by 

offering a systematic process that does not rely on traditional proxies. 
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