A novel circular dynamics in financial networks with cross-correlated volatility and asset movements

Subhrajit Saha, Debashis Chatterjee

Article ID: 9177
Vol 7, Issue 2, 2024

VIEWS - 664 (Abstract) 657 (PDF)

Abstract


In this paper, we propose a novel application of classical directional statistics to model the cross-correlation of asset volatility in financial networks. The proposed novel Circular Volatility Model (CVM) provides a framework for studying the interdependencies of financial assets whose returns exhibit periodic behaviors. By extending traditional volatility models into a circular framework, we establish new pathways for understanding the cyclicity inherent in market dynamics. Our model is rigorously grounded in classical \& directional statistics, utilizing von Mises distributions for parameter estimation and novel circular covariance structures. We offer formal derivations, maximum likelihood estimates, and a novel goodness-of-fit testing framework for this circular model. We establish our methodologies using simulation studies.


Keywords


circular volatility model; von mises distribution; angular data; financial networks; volatility modeling; Maximum Likelihood Estimation (MLE); confidence intervals

Full Text:

PDF


References


1. Abdullah M, Chowdhury MAF, Sulong Z. Asymmetric efficiency and connectedness among green stocks, halal tourism stocks, cryptocurrencies, and commodities: Portfolio hedging implications. Resources Policy. 2023; 81: 103419. doi: 10.1016/j.resourpol.2023.103419

2. Adams Z, Glück T. Financialization in commodity markets: A passing trend or the new normal? Journal of Banking & Finance. 2015; 60: 93-111. doi: 10.1016/j.jbankfin.2015.07.008

3. Ali Z, Ullah I, Ahmad A. Financial markets interdependence: Evidence from South and East Asian countries. Pakistan Social Sciences Review. 2022; 6(2). doi:10.35484/pssr.2022(6-ii)71

4. Almeida D, Dionísio A, Vieira I, et al. COVID-19 Effects on the Relationship between Cryptocurrencies: Can It Be Contagion? Insights from Econophysics Approaches. Entropy. 2023; 25(1): 98. doi: 10.3390/e25010098

5. Balcilar M, Ozdemir H, Agan B. Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks. Physica A: Statistical Mechanics and its Applications. 2022; 604: 127885. doi: 10.1016/j.physa.2022.127885

6. Baldi L, Peri M, Vandone D. Stock markets’ bubbles burst and volatility spillovers in agricultural commodity markets. Research in International Business and Finance. 2016; 38: 277-285. doi: 10.1016/j.ribaf.2016.04.020

7. Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 1986; 31(3): 307-327. doi: 10.1016/0304-4076(86)90063-1

8. Bouri E, Gabauer D, Gupta R, et al. Volatility connectedness of major cryptocurrencies: The role of investor happiness. Journal of Behavioral and Experimental Finance. 2021; 30: 100463. doi: 10.1016/j.jbef.2021.100463

9. Chen Y, Yang S, Lin F. Foreign institutional industrial herding in Taiwan stock market. Managerial Finance. 2012; 38(3): 325-340. doi: 10.1108/03074351211201442

10. Chiang TC, Zheng D. An empirical analysis of herd behavior in global stock markets. Journal of Banking & Finance. 2010; 34(8): 1911-1921. doi: 10.1016/j.jbankfin.2009.12.014

11. Fang T, Su Z. Does uncertainty matter for US financial market volatility spillovers? Empirical evidence from a nonlinear Granger causality network. Applied Economics Letters. 2020; 28(21): 1877-1883. doi: 10.1080/13504851.2020.1854656

12. Figueiredo AMS. Goodness-of-fit for a concentrated von Mises-Fisher distribution. Computational Statistics. 2011; 27(1): 69-82. doi: 10.1007/s00180-011-0238-4

13. Fisher NI, Lee AJ. Time Series Analysis of Circular Data. Journal of the Royal Statistical Society Series B: Statistical Methodology. 1994; 56(2): 327-339. doi: 10.1111/j.2517-6161.1994.tb01981.x

14. Gai P, Kapadia S. Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010; 466(2120): 2401-2423. doi: 10.1098/rspa.2009.0410

15. Haldane AG, May RM. Systemic risk in banking ecosystems. Nature. 2011; 469(7330): 351-355. doi: 10.1038/nature09659

16. Harvey A, Hurn S, Palumbo D, et al. Modelling circular time series. Journal of Econometrics. 2024; 239(1): 105450. doi: 10.1016/j.jeconom.2023.02.016

17. Holzmann H, Munk A, Suster M, et al. Hidden Markov models for circular and linear-circular time series. Environmental and Ecological Statistics. 2006; 13(3): 325-347. doi: 10.1007/s10651-006-0015-7

18. Lin M, Duan L. Financial Risk Information Spreading on Metapopulation Networks. Complexity. 2021; 2021(1). doi: 10.1155/2021/6654169

19. Mardia KV, Voss J. Some Fundamental Properties of a Multivariate von Mises Distribution. Communications in Statistics - Theory and Methods. 2014; 43(6): 1132-1144. doi: 10.1080/03610926.2012.670353

20. Mei-jun L, Guang-xi C. Dynamics of asymmetric multifractal cross-correlations between cryptocurrencies and global stock markets: Role of gold and portfolio implications. Chaos, Solitons & Fractals. 2024; 182: 114739. doi: 10.1016/j.chaos.2024.114739

21. Mensi W, Rehman MU, Vo XV, et al. Spillovers and multiscale relationships among cryptocurrencies: A portfolio implication using high frequency data. Economic Analysis and Policy. 2024; 82: 449-479. doi: 10.1016/j.eap.2024.03.021

22. Okorie DI, Lin B. Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy. Energy Economics. 2020; 87: 104703. doi: 10.1016/j.eneco.2020.104703

23. Othman AHA, Kassim S, Rosman RB, et al. Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach. Journal of Revenue and Pricing Management. 2020; 19(5): 314-330. doi: 10.1057/s41272-020-00229-3

24. Ren J, Vaughan RG. Spaced Antenna Design in Directional Scenarios Using the Von Mises Distribution. 2009 IEEE 70th Vehicular Technology Conference Fall. 2009; 1-5. doi: 10.1109/vetecf.2009.5379012

25. Rocha Filho TM, Rocha PMM. Evidence of inefficiency of the Brazilian stock market: The IBOVESPA future contracts. Physica A: Statistical Mechanics and its Applications. 2020; 543: 123200. doi: 10.1016/j.physa.2019.123200

26. So MKP, Chan LSH, Chu AMY. Financial Network Connectedness and Systemic Risk During the COVID-19 Pandemic. Asia-Pacific Financial Markets. 2021; 28(4): 649-665. doi: 10.1007/s10690-021-09340-w

27. Tao C, Zhong GY, Li JC. Dynamic correlation and risk resonance among industries of Chinese stock market: New evidence from time–frequency domain and complex network perspectives. Physica A: Statistical Mechanics and its Applications. 2023; 614: 128558. doi: 10.1016/j.physa.2023.128558

28. Zhu P, Tang Y, Wei Y, et al. Multidimensional risk spillovers among crude oil, the US and Chinese stock markets: Evidence during the COVID-19 epidemic. Energy. 2021; 231: 120949. doi: 10.1016/j.energy.2021.120949




DOI: https://doi.org/10.24294/fsj9177

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Subhrajit Saha, Debashis Chatterjee

License URL: https://creativecommons.org/licenses/by/4.0/