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Abstract: This study performs a comparative analysis of autoregressive moving aver-
age models for non-negative time series within a financial context, aiming to identify
the model that offers the best fit and forecasting accuracy. The analysis is applied to
two financial datasets: the stock trading volume of Banco Bradesco and the insurance
volume of Porto Seguro. Four models are fitted in the process: Autoregressive Moving
Average (ARMA), Rayleigh Autoregressive Moving Average (RARMA), Generalized
Autoregressive Moving Average (GARMA), and Generalized Linear Autoregressive
Moving Average (GLARMA). Model performance is evaluated through fit comparison
metrics and forecasting accuracy measures to determine the most effective model.

Keywords: non-negative time series; stock volume; GARMA; GLARMA

1. Introduction
Statistical methods have assumed that data follow a normal distribution for many years.

However, data often deviate from this pattern, showing asymmetry, kurtosis, heteroscedasticity,
and non-linear trends. In finance, variables such as salaries, financial returns, and stock trade
volumes often display these asymmetric behaviors, which can challenge traditional analysis
methods. Forcing data into a normal distribution can distort its true structure, leading to biased
estimates, incorrect conclusions, and unreliable predictions. Most financial andmacroeconomic
data are time series, where observations are collected over time and are not independent of each
other. This lack of independence can further complicate the analysis. Therefore, it is important
to evaluate the data’s distribution carefully and before applying statistical methods, ensuring
that the analyses are accurate and appropriately represent the nature of the data.

Linear models were frequently employed to describe random phenomena, even when the
data exhibited autocorrelated observations. However, alternative methods designed for data
with time-dependent structures began to emerge over time. Among these, the autoregressive
moving average (ARMA) model, introduced by Box and Jenkins [1], is particularly significant.
This method assumes that the data follows a normal distribution. This model has been widely
used to analyze linear characteristics, such as autocorrelation, in financial time series and is
considered a benchmark model. Choudhury and Jones [2] used the ARMAmodel to assess crop
yield estimates for insurance purposes in Ghana, Tang [3] adjusted the model to predict prices
of Apple Inc from 2018 to the end of 2019, Ibrahim et al. [4] used the methodology to predict
price movement’s direction of Bitcoin for the next 5-minute time frame, among others. Despite
the extensive use of the ARMAmethodology, advances in computational methods have enabled
the development of new approaches to explaining various phenomena in practical situations.

However, it is crucial to use models that capture the specific characteristics of the vari-
able of interest, such as asymmetry. New models have been developed to address this need
that extend autoregressive moving average (ARMA) models to non-Gaussian time series. In
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this context, we can mention the Rayleigh autoregressive moving average (RARMA) model,
originally proposed by Bayer et al. [5] for signal and image processing, offers an alternative for
modeling continuous, asymmetric, and non-negative processes. It models the mean of Rayleigh-
distributed discrete-time signals using a dynamic structure incorporating autoregressive (AR)
and moving average (MA) terms, a set of regressors, and a link function. De Araújo et al. [6]
considered this methodology to model stock trading volumes.

Zeger and Qaqish [7] introduced a quasi-likelihood approach to time series regression,
which Benjamin et al. [8] later generalized into the generalized autoregressive moving average
(GARMA) models. GARMA extends the ARMA model to non-Gaussian processes where the
conditional mean (given past information in a time series setting) belongs to the exponential
family. Specifically, GARMA-GAMMA is used for non-negative time series. Recently, Alco-
forado et al. [9] applied the GARMA model to predict an index related to cattle spot and future
prices, while de Araújo et al. [6] used the GARMA model to analyze and forecast the trading
volume of Banco Bradesco S.A. (BBD) stocks. Although is an interesting alternative Zheng
et al. [10] argues that unless an identity link function is used, the model’s error sequence does
not form a martingale difference sequence, complicating the study of the series’ probabilistic
properties and the asymptotic behavior of its estimators. On the other hand, for non-negative
time series, GARMA models with an identity link function do not accommodate negative auto-
correlation, which is quite common in real-world applications. Albarracin et al. [11] states that
the structure of the GARMA model can lead to multicollinearity issues.

In parallel, Davis et al. [12] proposed the generalized linear autoregressive moving av-
erage (GLARMA) model as an extension of the generalized linear model (GLM) to handle
time-dependent data, originally designed for count and discrete time series. Maia [13] later
introduced the GLARMA for positive continuous processes, named GLARMA-GAMMA and
GLARMA-IG, and derived some properties. In this work, theGLARMA-GAMMAandGLARMA-
IG models are applied to estimate the trading volume of a Brazilian insurance company and
Banco Bradesco. Although theoretical properties of the class of GLARMA models have only
been rigorously established for a very limited case, Davis et al. [14] in a recent literature review
highlighted that, despite this complexity, this family remains one of the most flexible and easily
applicable methods.

This work aims to compare the prediction capability of the ARMA, RARMA, GARMA,
and GLARMAmodels. To the best of our knowledge, comparisons involving the cited methods
in the financial context have not yet been explored, and this work aims to fill that gap. The
comparison is based on real-world data from two applications. The first focuses on forecasting
the trading volume of Banco Bradesco for the period from 14 February 2022 to 10 February
2023. The second application involves forecasting the trading volume of the insurance company
Porto Seguro from January 2005 to April 2023, incorporating an explanatory variable related
to stock volume.

Section 2 outlines the methodologies under comparison. Section 3 presents and discusses
the results of the real data applications for stock volume. Finally, Section 4 concludes the study,
summarizing the main findings.

2. Materials and methods
In this section, we detail the procedures adopted to conduct this study, including the tools

used and the methodology applied. Initially, we present the models employed. Next, we de-
scribe the data processing and analysis techniques, highlighting the parameters used and the
criteria for model selection. Finally, we address the tools and software used to implement the
analyses and validate the results.
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2.1. ARMA models
The autoregressive moving average (ARMA(p, q)) model is a methodology for analyzing

stationary time series based on four steps: identification, estimation, validation, and forecasting.
The order p represents the autoregressive component, which captures the relationships between
a value and its previous values. The order q corresponds to the moving average component,
which reflects how forecast errors are incorporated into future predictions. For non-stationary
time series, where the mean and variance change over time, the ARIMA(p, d, q) model is
used. Here, the ”I” denotes the integrated component, accounting for trends or other systematic
changes in the data.

Let {Yt}t∈N be a stationary process, the ARMA model is defined as

Ỹt = ϕ1Ỹt−1 + ...+ ϕpỸt−p + at − θ1at−1 − ...− θqat−q (1)

where Ỹt = Yt−µ and at is an white noise. The orders p and q are identified using the autocor-
relation function (ACF) and the partial autocorrelation function (PACF). The PACF measures
the correlation between two observations, excluding the influence of any intermediate obser-
vations. Once the orders p and q are determined, the parameters ϕ = (ϕ1, ϕ2, ..., ϕp)

⊤ and
θ = (θ1, θ2, ..., θq)

⊤ are estimated. The maximum likelihood method is widely used for pa-
rameter estimation in the model. The Akaike Information Criterion (AIC) proposed by Akaike
[15]), the Bayesian Information Criterion (BIC), and the Hannan-Quinn information criteria
(HQ) are used to determine the appropriate number of parameters to include in the model.

For validation, the adequacy of the estimated models can be assessed through residual
analysis. According to Box et al. [16] the residuals in ARMA(p,q) are defined as

ât = Ỹt − ϕ̂1Ỹt−1 − ...− ϕ̂pỸt−p + θ̂1at−1 + ...+ θ̂qat−q

The assumption that at, t = 1, 2, .., n are independent must be satisfied.

2.2. RARMA models
Let {Yt}t∈N be a discrete-time signal and Ft−1 = σ{Ys, s ≤ t − 1} is the past of the

observations up to time t. It is assumed that each Yt conditioned to Ft−1 is a Rayleigh with
conditional mean µt, and the conditional distribution density of Yt is given by

f(yt|Ft−1) =
πyt
2µt

2
exp

(
−πyt

2

4µt
2

)
(2)

where yt > 0 and µt > 0

A strictly monotonic and twice differentiable link function g(·) maps µt into a linear pre-
dictor (ηt). Thus, the structure of the RARMA model is given by

g(µt) = ηt = X⊤
t β + Zt (3)

where Xt = (1, X1,t, . . . , Xk,t)
⊤ is a k-dimensional vector of regressors observed for t =

1, ..., n, and β = (β0, β1, . . . , βk)
⊤ are the regression coefficients. The component Zt =∑p

i=1 ϕig(yt−i)+
∑q

j=1 θjrt−j , where rt−j = g(yt)−g(µt), adds the autoregressive and mov-
ing average terms to the linear predictor, whereϕ = (ϕ1, ϕ2, ..., ϕp)

⊤ and θ = (θ1, θ2, ..., θq)
⊤

are respective parameters to be estimated. The estimators are obtained upon maximizing the
conditional log-likelihood function. For more details, see Bayer et al. [5].
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2.3. Gamma-GARMA models
Let {Yt}t∈N be the observations and Ft−1 = σ{Ys, s ≤ t − 1;Xi,s, 1 ≤ i ≤ k, s ≤

t}, where Ys is the past of the observed positive process and Xi,s is the past and present of
the regressor variables. The density function of Yt|Ft−1 follows a Gamma(µt, ν) distribution,
which can be written in exponential family as

f(yt|Ft−1) = exp[ν(−ytµt)− logµt − logΓ(ν) + νlog(νyt)− logyt] (4)

where yt > 0, ν > 0, µt = E(Yt|Ft−1) is positive and Γ(ν) =
∫∞
0

tν−1e−tdt is the gamma
function.

The linear prediction expression is given by

g(µt) = ηt = X⊤
t β + Zt (5)

where Xt = (1, X1,t, . . . , Xk,t)
⊤ is a k-dimensional vector of regressors observed for t =

1, ..., n, and β = (β0, β1, . . . , βk)
⊤ are the regression coefficients. The link function used

is the logarithm. The term Zt =
∑p

i=1 ϕj

{
g(yt−j)−XT

t β
}
+

∑q
j=1 θj {g(yt−j)− ηt−j}

captures the autoregressive and moving average components, where ϕ = (ϕ1, ϕ2, ..., ϕp)
⊤

and θ = (θ1, θ2, ..., θq)
⊤ are the corresponding parameters. Equations (4) and (5) define the

GARMA-GAMMA(p, q) model. The parameters β,ϕ,θ and ν are estimated via maximum
likelihood. For further details, refer to Benjamin et al. [8].

2.4. GLARMA-GAMMA and GLARMA-IG models
Let {Yt}t∈N be the positive continuous time series andFt−1 = σ{Ys, s ≤ t−1;Xi,s, 1 ≤

i ≤ k, s ≤ t}, denote the past information available on the response series and the past and
present information on the regressors. The distribution of Yt conditioned onFt−1 is assumed to
be a Gamma(µt, ν) or Inverse Gaussian(µt, ν), where µt = E(Yt|Ft−1) is positive and ν > 0

is the shape parameter of the conditional distribution. The conditional density of the GLARMA-
GAMMA model is defined in Equation (4), while the conditional density of the GLARMA-IG
model is given by

f(yt|Ft−1) = exp
{
ν

[
yt
2µ2

t

+
1

µt

]
+

1

2
log ν − 1

2
log(2πy3t ) +

ν

2yt

}
The linear prediction expression is given by

g(µt) = ηt = X⊤
t β + Zt

where the logarithmic function is used as the link function, Xt = (1, X1,t, . . . , Xk,t)
⊤ is a k-

dimensional vector of regressors observed for t = 1, ..., n, and β = (β0, β1, . . . , βk)
⊤ denotes

the regression coefficients. The term Zt =
∑∞

i=1 ζiet−i introduces the time-dependent struc-
ture into the model, with ζi as the parameters and et as the error term. After some mathematical
manipulations, the term Zt can be rewritten as

Zt = ϕ1(Zt−1 + et−1) + · · ·+ ϕp(Zt−p + et−p) + θ1et−1 + · · ·+ θqet−q

where ϕ = (ϕ1, ϕ2, ..., ϕp)
⊤ and θ = (θ1, θ2, ..., θq)

⊤ are the autoregressive and moving
average parameters, and the error terms are

et =
Yt − µt

µt
and et =

Yt − µt√
µ3
t
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for the Gamma and Inverse Gaussian distribution, respectively. The parameters β, ϕ, θ and ν

are estimated using maximum likelihood. Refer to Davis et al. [12] and Maia [13] for more
information.

3. Results and discussion
All analyses were conducted using the R software ([17]), a platform widely used for sta-

tistical analysis and time series modeling. R provides a wide range of specialized packages that
were employed to fit the models. The adjustments of the RARMA and GARMA models were
carried out with the help of the R-package PTSR (for more details, see Prass et al. [18]), while
for the ARMA model, we used the R-package stats. In the case of the GLARMA model, we
utilized custom codes developed by the authors, which are available upon request.

The selection and comparison of the models were based on the Akaike Information Cri-
terion (AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion
(HQ). These three measures are defined as follows respectively,

AIC = −2l(δ̂) + 2r,

BIC = −2l(δ̂) + r log(n), (6)

HQ = 2l(δ̂)

(
n

n−m

)
+ r log[log(n)]

where l(·) is the log-likelihood function, δ is the parameter vector estimate, n is the sample
size of the time series and r is the number of parameters in the model. The models were fitted
with different combinations of p and q (max(p, q) = 4), with selection based on the AIC,
BIC, HQ criteria, combined with the residual analysis. That is, the final selection of p and q

values involves choosing the smallest values according to the criteria mentioned, ensuring that
the model can capture the characteristics of the series and results in residuals that behave like
white noise. Additionally, in the comparison of forecast values between the models, we used
the following measures: Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE),
and Mean Absolute Scaled Error (MASE). The MSE, MAPE, and MASE measures can be
expressed as

MSE =
1

h0

h0∑
h=1

(yh − ŷh)
2,

MAPE =
1

h0

h0∑
h=1

|yh − ŷh|
|yh|

, (7)

MASE =
1

h0

h0∑
h=1

|yh − ŷh|
1

h−1

∑h0

h=2 |yh − yh−1|

respectively, where yh are the observed values, and ŷh are the predicted values for the forecast
horizon (h = 1, . . . , h0). The forecast uses a one-step approach, where the parameters are re-
estimated in each step. This methodology was also adopted in the works of Agosto et al. [19],
Maia et al. [20] and Mendes et al. [21].
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3.1. Trading volume of Banco Bradesco
The first data set refers to the trading volume of Banco Bradesco (U.S. Dollars (US$)).

The time series is available at Yahoo Financewebsite [22]. This positive continuous time series
was observed from 14 February 2022 to 10 February 2023, totaling 250 observations. Since
trading volumes are usually large-scale, we divided the series by one hundred million. The last
thirty observations of the series were removed to obtain accuracymeasures for choosing the best
model. This dataset has been analyzed by de Araújo et al. [6] under the BXII autoregressive
moving average (BXII-ARMA) time series model.

Table 1 presents descriptive statistics of the dataset, while Figure 1 displays the time
series of Banco Bradesco’s trading volume, along with its corresponding Autocorrelation Func-
tion (ACF) and Partial Autocorrelation Function (PACF). The ACF plot indicates a positive
correlation, with most observations falling outside the confidence interval (CI). In contrast, the
PACF plot shows that nearly all observations remain within the CI.

Table 1. Descriptive statistics for the trading volume of Banco Bradesco.

Minimum Median Mean Maximum Variance
US$ 0.126 US$ 0.332 US$ 0.356 US$ 1.485 US$ 0.025

Figure 1. Plots of the trading volume of Banco Bradesco from 14 February 2022 to 10 February 2023 (top) and its
associated ACF (bottom to the left) and PACF (bottom to the right).

We performed the Phillips-Perron (PP) test to verify the trading volume series’s stationar-
ity. The results confirmed that the series is stationary, with a p-value of 0.01. Subsequently, the
ARMA(3,1), RARMA(0,3), Gamma-GARMA(4,4), and GLARMA-GAMMA models, with
autoregressive components at lags 1, 5, and 6, were fitted to the time series. In Table 2, we
present the parameter estimates, the standard errors (SE), and the p-value for each estimate.
We observed that only the parameter ϕ2 is not significant at the 5% level. For the Gamma-
GARMA(4,4) model, only the parameters ϕ4, θ1, and θ4 were significant at the 5% level. Mean-
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while, for the RARMA and GLARMA models, all parameters were significant at the 5% level.
Table 3 presents the AIC, BIC, and HQ measures used to evaluate the fitted models, highlight-
ing the GLARMA model, which exhibited the lowest values. However, it is observed that the
measures for the GARMA model are quite close to those of the GLARMA model.

Table 2. Estimates, standard errors, and p values of the parameters for the ARMA, RARMA, Gamma-GARMA and
GLARMA-GAMMA adjustments in the Banco Bradesco’s trading volume time series.

Coef. Estimate SE p value Coef. Estimate SE p-value

ARMA(3,1) RARMA(0,3)

Int. 0.3548 0.0225 0.0000 α −1.2183 0.0744 0.0000
ϕ1 −0.4062 0.0868 0.0000 θ1 1.4985 0.1649 0.0000
ϕ2 0.5398 0.0777 0.0589 θ2 1.1429 0.3237 0.0004
ϕ3 0.1370 0.0725 0.0000 θ3 1.1465 0.2201 0.0000
θ1 0.9574 0.0623 0.0000 - - - -

Gamma-GARMA(4,4) GLARMA-GAMMA(1,5,6)

α −0.3834 0.2041 0.0603 Int. −1.0613 0.0735 0.0000
ϕ1 0.0103 0.1038 0.9210 ϕ1 0.4481 0.0567 0.0000
ϕ2 0.1596 0.1195 0.1816 ϕ5 0.1297 0.0550 0.0184
ϕ3 0.1625 0.0874 0.0630 ϕ6 0.1740 0.0557 0.0018
ϕ4 0.2823 0.0813 0.0005 ν 11.7766 1.1074 0.0000
θ1 1.1676 0.2224 0.0000 - - - -
θ2 0.5008 0.4396 0.2546 - - - -
θ3 0.4505 0.3387 0.1834 - - - -
θ4 −0.8959 0.2311 0.0001 - - - -
φ 12.2942 1.1567 0.0000 - - - -

Table 3. Information criteria for the best fits in each Banco Bradesco time series model
class.

Model AIC BIC HQ

ARMA(3,1) −277.1876 −256.8258 −280.7615
RARMA(0,3) −263.387 −249.8125 −264.6461
Gamma-GARMA(4,4) −388.0148 −354.0785 −391.1626
GLARMA-GAMMMA(1,5,6) −388.2893 −371.3211 −389.8632

The last 30 observations of Banco Bradesco’s trading volume series were used for fore-
casting. Table 4 presents the comparison metrics between the forecast values and the real ob-
servations. The results indicate that the RARMA model showed the lowest forecast accuracy
measures. However, since the differences in measures between the models are small, a more
in-depth analysis is needed to determine whether these differences are statistically significant.
For this, first, the nonparametric Friedman test was conducted to assess whether there were
significant differences between the predictions of each model, which was confirmed with a p-
value of 0.022. Next, we conducted more detailed analyses, still using the Friedman test, all
considering a significance level of 5%, obtaining the results: the ARMA model has forecast
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similar to the RARMA, GARMA, and GLARMA models, as there was no significant differ-
ence between them. The RARMAmodel differs from GARMA and GLARMA, indicating that
the predictions of these two models are significantly different from RARMA. The GARMA
model is similar to GLARMA, as there was no significant difference between them. Therefore,
the main conclusion is that, although ARMA is similar to the other three models in terms of
forecast, RARMA stands out with predictions different from those of GARMA and GLARMA,
while GARMA and GLARMA are similar to each other. Finally, Figure 2 compares the actual
and fitted values of Banco Bradesco’s trading volume, showing the close fit of the models.

Table 4. Forecasting performance comparison among different fitted models in each
Banco Bradesco time series class.

Model MSE MAPE MASE

ARMA(3,1) 0.159 1.138 1.882
RARMA(0,3) 0.159 1.101 1.807
Gamma-GARMA(4,4) 0.167 1.153 1.897
GLARMA-GAMMMA(1,5,6) 0.167 1.178 1.957

Figure 2. Observed and adjusted values of the RARMA, GLARMA and GARMA
models for the Banco Bradesco time series.

3.2. Trading volume of porto seguro
We now analyze the monthly trading volume of Porto Seguro, a Brazilian insurance com-

pany, for the period from January 2005 to April 2023, comprising a total of 220 observations.
The last 10 observations are reserved for forecasting, leaving n = 210 observations for model
fitting. To manage the large scale of the data, the series was divided by one hundred million.
The time series can be obtained in Yahoo Financewebsite [22]. Furthermore, in this application
we use the Dollar Price covariate, which was sourced from Investing.com website [23].

Table 5 provides the descriptive statistics of the series, while Figure 3 presents the time
series of monthly trading volume for the analyzed period, along with the corresponding autocor-
relation and partial autocorrelation functions. The ACF plot shows a positive correlation with
most points outside the CI, while the PACF plot has nearly all points within the CI.
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Table 5. Descriptive statistics for the trading volume of Porto Seguro.

Minimum Median Mean Maximum Variance

US$ 0.826 US$ 2.518 US$ 2.864 US$ 9.537 US$ 2.097

Figure 3. Plots of the monthly trading volume of Porto Alegre from January 2005 to June 2022 (top to the left) and its
associated ACF (bottom to the left) and PACF (bottom to the right).

First, the PP test was conducted to check the stationarity of the series, resulting in a p-
value of 0.01, indicating that the insurer’s trading volume series is stationary. The following
covariates were considered: the dollar opening price and a dummy variable representing the
peak around August 2014 to February 2015. This peak can be explained by a 32.9% increase in
net income reported by the insurer compared to the same period in the previous year. After a pre-
liminary analysis, the following models were fitted to the data: ARMA(1,1,2), RARMA(3,0),
Gamma-GARMA(3,0), and GLARMA-IG, with autoregressive components at lags 1 and 3.

Table 6 presents the parameter estimates, with respective standard errors and p-values
for each model. Considering a 5% significance level, the parameter β2 is not significant in
the ARMA and Gamma-GARMA model fits, while the parameter β1 is not significant in the
RARMA model fit. In Table 7, we compare the fit quality of the ARMA, RARMA, GARMA
and GLARMA models, noting that both, GARMA and GLARMA models, show superior per-
formance based on lower AIC, BIC, and HQ criteria.

Finally, forecasts were made for the last 10 observations removed from the series. To
evaluate the accuracy of these predictions for each model, we calculated the MSE, MAPE, and
MASE measures, with the results presented in Table 8. Figure 4 compares the actual trading
volume observations of Porto Seguro with the predicted values. Again, the Friedman test was
performed to verify the presence of significant differences between the forecast of all models,
which was confirmed with a p-value of 5.283×10−5. We then compared the predictions of each
model using the Friedman test, with a significance level of 5%. We obtained: the ARMAmodel
has predictions significantly different from the RARMA and GARMA models, but is similar
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to GLARMA. The RARMA model differs from both GARMA and GLARMA. The GARMA
model is different from GLARMA. Therefore, we conclude that the predictions of the ARMA
andGLARMAmodels show greater accuracy. The performancemetrics for the RARMAmodel
indicate the best results; however, when analyzing Figure 4, we observe the opposite.

Table 6. Estimates, standard errors, and p values of the parameters for the ARMA, RARMA, Gamma-GARMA and
GLARMA-IG adjustments in the Porto Seguro’s trading volume time series.

Coef. Estimate SE p value Coef. Estimate SE p-value
ARMA(1,1,2) RARMA(3,0)
- - - - α 0.606 0.199 0.002
β1 0.517 0.202 0.011 β1 0.062 0.041 0.136
β2 −0.386 0.596 0.517 β2 −0.628 0.247 0.011
ϕ1 0.919 0.047 0.0000 ϕ1 0.075 0.035 0.031
θ1 −1.684 0.087 0.000 ϕ2 0.056 0.031 0.071
θ2 0.684 0.086 0.000 ϕ3 0.102 0.035 0.004
Gamma-GARMA(3,0) GLARMA-IG(1,3)
α 0.242 0.096 0.012 Int. 1.017 0.252 0.000
β1 0.148 0.058 0.012 β1 0.167 0.055 0.002
β2 −0.131 0.225 0.560 β2 −0.515 0.186 0.006
ϕ1 0.261 0.072 0.000 ϕ1 0.409 0.090 0.000
ϕ2 0.158 0.070 0.024 - - - -
ϕ3 0.279 0.072 0.000 ϕ3 0.331 0.095 0.000
ν 8.726 0.836 0.000 ν 20.595 2.010 0.000

Table 7. Information criteria for the best fits in each model class for the Porto Seguro
time series.

   
       
Model AIC BIC HQ
ARMA(1,1,2) 651.092 671.146 647.474
RARMA(3,0) 637.910 657.993 635.970
Gamma-GARMA(3,0) 549.150 572.580 546.886
GLARMA-IG(1,3) 551.822 571.905 549.882
   

Table 8. Forecasting performance comparison among different fitted models in each
class for the Porto Seguro time series.

Model MSE MAPE MASE
ARMA(1,1,2) 17.112 1.016 3.937
RARMA(3,0) 8.055 0.696 2.706
Gamma-GARMA(3,0) 18.336 1.052 4.082
GLARMA-IG(1,3) 16.840 1.005 3.907
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Figure 4. Observed and adjusted values of the RARMA, GARMA, and GLARMA
model for the Porto Seguro time series.

4. Conclusion
The present study aimed to perform a comparative analysis of the ARMA, RARMA,

GARMA, and GLARMA models applied to financial data to identify the model with the best
performance in terms of fit and forecasting. Two financial time series were used, and the models
were fitted and evaluated based on model selection criteria such as AIC, BIC, and HQ. Forecast
accuracy measures included MSE, MAPE, and MASE.

In the first application, the GARMA and GLARMA models stood out for their goodness
of fit compared to the ARMA and RARMA models, exhibiting lower values for the AIC, BIC,
and HQ criteria. However, the ARMA and RARMAmodels presented more accurate results in
forecasting future observations. In the second application, GARMA and GLARMA obtained
the lowest values for the criteria, with the ARMA and GLARMA models standing out as the
most accurate in forecasting future observations.

Although the GARMA and GLARMA models demonstrated a better fit to the data, as
indicated by the lower values of the AIC, BIC, andHQ criteria, the ARMA and RARMAmodels
were more effective in forecasting future observations in the trading volume of Banco Bradesco
application. However, in the trading volume of Porto Seguro application, the GLARMAmodel
was the most accurate in both fitting and forecasting, but obtaining results similar to the ARMA
model in the forecast. This suggests that the choice of the ideal model depends on the objective
(fitting or forecasting) and the specific context of the application.

Future research is recommended to apply these models in other financial areas and to
consider additional models, such as BXII-ARMA ([6]) and CHARMA ([24]).
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