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Abstract: This paper analyses selected sub-indices listed on the Warsaw Stock Exchange 

(WSE) covering seven sectors: construction, IT, media, real estate, fuel, food, and 

telecommunications, from 3 January 2006 to 29 May 2020. We use daily, weekly, monthly, 

and quarterly data, resulting in 3600 daily, 751 weekly, 172 monthly, and 56 quarterly 

observations. The WIG index quotations were used to approximate the market portfolio and 

the Poland 10Y government bond yields for the risk-free rate. We have estimated the parameter 

β in CAPM regression using three different stochastic assumptions for the error term. The basic 

stochastic framework of the model utilises the generalised asymmetric student-t distribution 

(GAST). We have also estimated the parameter β based on the symmetric version of the GAST 

distribution and on the Gaussian one. These models can be treated as special cases of the basic 

framework. The estimates of the β parameter are influenced by the assumptions made about 

the error term. The data indicates that except for WIG-Paliwa, the Gaussian error term leads to 

larger β estimates than other non-Gaussian specifications. The inference about the shape 

parameters is not very certain, and the data does not strongly support the two-piece mechanism 

that enforces the asymmetry of the error term distribution. Furthermore, the estimates of the β 

parameter depend strongly on the frequency of the analysed series. 
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1. Introduction 

142 years ago, the introduction of probability distributions that differed from the 
Gaussian case occurred. This can be seen in the works of De Forest [1,2], Edgeworth 
[3], and Pearson [4,5]. In Genton’s book [6], several empirical examples were 
analysed to illustrate that there has been a quest for more flexible families of 
distributions than the Gaussian to serve as a sampling model, but this has not been 
achieved. Over the last four decades, there has been a desire to go beyond normality, 
as stated in the subtitle of Genton’s [6] book, particularly to properly model the 
empirical distribution of data that represents fluctuations observed in financial 
markets. 

Over the last fifty years, theoretical investigations in finance often assumed that 
the distributions of financial returns follow a Gaussian distribution. For example, the 
theory of pricing a European option explicitly assumes normality, as seen in the works 
of Black and Scholes [7] and Merton [8]. However, the theory of mean-variance 
portfolio selection, developed by Markovitz [9], does not require Gaussian returns. 
Still, it does assume that the distribution of asset returns can be characterised by their 
first and second moments. As a result, the utility function considered by a decision 
maker is a function dependent only on the mean and variance of portfolio returns. 

The Capital Asset Pricing Model (CAPM), developed by Sharpe [10] and 
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Treynor [11] and further advanced by Lintner [12] and others, stands out as one of the 
most significant outcomes of the Markovitz theory. Applications of the CAPM yield 
valuable insights into the risk associated with financial assets. The widespread 
adoption of the CAPM is primarily attributed to its ability to estimate the cost of equity 
(COE) capital for a firm or industry within a robust theoretical framework, as 
highlighted by Graham and Harvey [13]. The COE, representing the return percentage 
offered by a company or industry to its equity shareholders based on their investments, 
serves as a critical gauge for investors evaluating investment profitability. Subpar 
returns may prompt investors to pursue opportunities with higher potential returns. 
Furthermore, accurate COE estimations are essential for various reasons in industries 
that significantly impact the economy. In the banking sector, Altavilla et al. [14] 
emphasised that COE provides essential information for financial stability and the 
assessment of monetary policy transmission. Consequently, COE serves as a 
noteworthy measure not only for investors but also for regulatory and supervisory 
institutions. 

Kaplan and Peterson [15] explain that the CAPM-driven approach is popular 
among practitioners, especially investors, because there are no theoretically justified 
alternatives. However, in the empirical literature two decades ago, a consensus was 
established that the CAPM does not hold. As a result, CAPM-β cannot explain 
expected returns. Fama and French [16] reviewed various attempts to solve this issue. 
Andrei et al. [17] recently investigated why investors are still reluctant to give up the 
model despite the widespread rejection of the CAPM theory from an empirical point 
of view. They propose a theoretical framework that suggests the Capital Asset Pricing 
Model (CAPM) holds from the investors’ perspective. However, it fails to match the 
empirical evidence in one specific aspect: the securities market line (SML) appears 
empirically flat but occasionally becomes steeper, for example, when public 
information reduces investor disagreement. The study explains the results by Savor 
and Wilson [18], who found a strong correlation between expected returns and CAPM-
β on days when news about inflation, unemployment, or FOMC interest rate decisions 
is scheduled to be announced. 

The assumption that financial returns are normally distributed is often assumed 
in the existing literature on empirical asset pricing, despite evidence showing that this 
assumption is not empirically relevant. Since the 1960s, empirical analyses have 
largely failed to support this normality assumption. This has significant implications 
for the Capital Asset Pricing Model (CAPM). Researchers such as Black [19], Fama 
and French [20], Zhou and Yin [21], Wei [22], and Urom et al. [23] have found that 
the results of estimating the CAPM-β parameters can vary across different models, 
affecting the estimated beta values and the relationship between risks and market 
returns. 

Adcock [24] states that it's unnecessary to assume that returns follow a normal 
distribution to satisfy the CAPM axioms. He found that the family of skew-normal 
distributions (described in Azzalini and Dalla Valle [25]) is empirically important for 
UK stocks, and estimates of the CAPM β parameter change significantly when the 
sampling distribution allows for skewness. Adcock and Shutes [26] previously 
analysed the impact of assuming a student-t distribution for returns on the CAPM β 
estimates and found substantial effects on the estimation outcomes. These two papers 



Financial Statistical Journal 2024, 7(1), 5632.  

3 

are part of a wide range of research on the empirical relevance of the CAPM theory, 
considering non-standard stochastic assumptions that explicitly allow for heavy tails 
and/or asymmetry in the underlying distributions. Other works by Affleck-Graves 
[27], MacKinlay and Richardson [28], Zhou [29], Harvey and Siddique [30], Li [31], 
Theodosiou and Theodossiou [32], and more recently, Bao et al. [33], are examples of 
extensive research on the application of flexible non-Gaussian families of distributions 
in the problem of risk assessment using the CAPM. 

In this paper, we analyse the Capital Asset Pricing Model (CAPM) using a variety 
of distributions that go beyond the normal family. Specifically, we employ 
distributions from the generalised asymmetric student-t class developed by Harvey 
and Lange [34], which accounts for skewness and asymmetric tail thickness. 
Furthermore, the generalisation by Harvey and Lange [34] combines the student-t 
family of distributions with the Generalized Error Distributions (GED) class in a 
streamlined parametrisation. Our study focuses on the Warsaw Stock Exchange 
(WSE) indices. It examines the estimates of the β parameter for a selection of sector 
indices, including fuel (WIG-Paliwa), food (WIG-Spozywczy), telecommunications 
(WIG-Telekom), computers (WIG-Info), real estate (WIG-Nieruchomosci), media 
(WIG-Media), and construction companies (WIG-Budowlany) listed on the WSE. In 
our econometric analyses, we follow the main goals of the paper stated as: 
1) Analysis of the sensitivity of the CAPM β parameter estimates under a family of 

distributions allowing for heavy tails, skewness, and tail asymmetry. 
2) Analysis of the sensitivity of the performance of the CAPM to the frequency of 

analysed data (daily, weekly, monthly, and quarterly). 
In the following paper, we will first provide an overview of the generalised 

asymmetric student-t distribution proposed by Harvey and Lange [34]. We will discuss 
the symmetric version of the H&L distribution and the skewed and tail-asymmetric 
cases, each as separate sections within the generalised family. Chapter 3 will review 
some econometric strategies concerning the assumptions of the error term in the 
CAPM regression model. Finally, Chapter 4 will describe the data, the model 
framework, and the main empirical results. 

2. Parametric representation of skewness and tail asymmetry 

In a paper by Li and Nadarajah [35], it is mentioned that student’s t distribution 
and its generalisations have become the most popular models for economic and 
financial data. Our work will focus on analysing some of the generalisations of the 
student-t distribution proposed by Harvey and Lange [34]. These generalisations unify 
the family with the Generalized Error Distributions (GED), and the final construct 
goes beyond previous results by Zhu and Zinde-Walsh [36], Zhu and Galbraith [37], 
Fernández and Steel [38], and Theodossiou [39], among others. For more information, 
we refer to the literature overview and discussion by Harvey and Lange [34]. 

Previous empirical analyses have demonstrated the extraordinary flexibility of 
generalised families. For instance, Mazur and Pipień [40] studied TV-GARCH models 
with conditional distribution proposed by Zhu and Galbraith [37], while Mazur and 
Pipień [41] investigated coordinate-free multivariate distributions obtained based on 
Harvey and Lange [34] asymmetric-t class. 
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Consider a random variable with zero mode and unit scale z with the following 
density, parametrised by η > 0 and υ > 0: 

𝑝(𝑧|𝜂, 𝜐) = 𝐾(𝜂, 𝜐) ൬1 +
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and B(.,.) is the beta function; see Harvey and Lange [34]. The parameter υ > 0 
determines the shape around the mode, with υ = 2 leading to the student-t type shape. 
The parameter η > 0 controls the tail behaviour and determines the existence of 
moments only in the case where υ = 2. The advantage of the unification proposed by 
Harvey and Lange [34] is that it includes a list of well-known distribution families and 
offers elasticity by parametrising a very broad class of distributions. This links the 
properties of the student-t and GED families in an unconstrained but continuous form. 
In particular, when η → +∞, the broad GED with shape parameter υ is defined. For υ 
= 1, the Laplace distribution can be obtained, and υ = 2 defines the Gaussian 
distribution, provided that η → +∞. 

To introduce skewness in a distribution, one may use inverse scale factors as 
explained in Ferreira and Steel’s [42] work. The resulting density accounts for possible 
skewness around the mode in a manner proposed by Fernández and Steel [38], and 
similarly by Hansen [43] for a student-t distribution: 
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Harvey and Lange [34] alternatively parametrised Equation (2) by α ∈ (0, 1), with 
α = 0.5 restoring symmetry. The Arnold and Groeneveld [44] measure of skewness to 
the mode is referenced here. The distribution given by Equation (2) has an elegant 
property: 

P (z ≤ 0) = α (3)

It is important to note that the distribution of z, defined by Equation (2), may no 
longer have a zero mean, even though it remains unimodal; see Harvey and Lange 
[34]. 

It is possible to disrupt the symmetry in Equation (1) by implementing a two-
piece mechanism as demonstrated by Zhu and Galbraith [37] when they extended the 
student-t distribution. The resulting density distribution is a member of the two-piece 
skew family. 
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where the normalising constant KLR is given by the formula: 
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It is possible to consider a variable distributed according to the density in 
Equation (4) as a mixture of two distributions in Equation (1) with different parameters 
υ and η. These distributions are also renormalised to ensure that the resulting 
probability density function is continuous at the mode (which is zero). As with the 
construct defined by Equation (2), the expected value of the distribution given by 
Equation (4) may not be equal to zero (if it exists). The probability mass around the 
mode (which is zero) is not equally spaced. In their work, Harvey and Lange [34] 
provide the following function, which describes the probability that z is not positive: 

𝑃(𝑧 ≤ 0) =
𝐾(𝜂 , 𝜐)

𝐾(𝜂 , 𝜐) + 𝐾(𝜂ோ , 𝜐ோ)
 (5)

Combining both distributions presented in Equations (2) and (4), the following 
density for z can be considered: 

𝑝(𝑧|𝜂 , 𝜐 , 𝜂ோ , 𝜐ோ , 𝛼) = 𝐻ோ ⋅

⎩
⎪
⎨

⎪
⎧

൬1 +
1

𝜂
ቚ

𝑧

2𝛼
ቚ
జಽ

൰
ି

ఎಽାଵ
జಽ

 , 𝑧 ≤ 0

൬1 +
1

𝜂ோ
ฬ

𝑧

2(1 − 𝛼)
ฬ

జೃ

൰
ି

ఎೃାଵ
జೃ

 , 𝑧 > 0

 (6)

where the following formula gives the normalising constant HLR: 
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The density function in Equation (6) has a unit scale parameter and a zero mode. 
The probability that a random variable z is not positive is defined as follows (Harvey 
and Lange [34]): 

𝑃(𝑧 ≤ 0) =
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3. Empirical insights into CAPM regression 

The most important outcome from the CAPM, namely the β, is typically 
estimated by regressing the returns of individual stocks, portfolios of instruments, or 
branch indices on the overall market index, both adjusted for the risk-free return proxy. 
This is done according to the following regression model: 

𝑟௧ − 𝑟௧


= 𝛽(𝑟௧
 − 𝑟௧


) + ඥ𝜎ଶ𝑧௧, 𝑡 = 1, . . . , 𝑇 (8)

where rt denotes the return on an asset (it can also be a branch sub-index or a portfolio), 

𝑟௧
 denotes the return on the market portfolio, and 𝑟௧

 denotes the return on a risk-free 

asset. Additionally, t refers to the time the observations were taken, √𝜎ଶ is the scale 
parameter of the error term, and zt is a sequence of i.i.d. random variables with zero 
location and unit scale. 

The model framework presented by Equation (8) has been widely used in 
empirical papers and has influenced other methods such as Fama-MacBeth 



Financial Statistical Journal 2024, 7(1), 5632.  

6 

regressions. The sequence of zt can be assumed to follow a standardised Gaussian 
distribution, where σ2 refers to the variance. Furthermore, Equation (8) can be 
improved by adding an intercept in order to evaluate standard statistical tests for the 
CAPM theory. The CAPM theory, which imposes a zero restriction on the intercept in 
the null hypothesis, has been studied for decades, as detailed by Jensen et al. [45]. It’s 
worth noting that the assumptions behind the CAPM theory do not require returns to 
be normally distributed, as stated by Adcock [24]. 

Chamberlain [46] pointed out that the mean-variance optimisation criterion, the 
basis of portfolio optimisation and CAPM, is consistent with an investor’s portfolio 
decision-making only if the returns are elliptically distributed. Empirical asset pricing 
tests proposed by Gibbons et al. [47] are valid only under the normality assumption, 
which is a special case of elliptical distributions. Consequently, studies have been 
conducted to develop tests for cases where the distribution of returns is generally 
elliptical, including work by Affleck-Graves and McDonald [27], MacKinlay and 
Richardson [28], and Zhou [29]. 

However, the empirical distributions of financial returns do not fit the Gaussian 
case and, in many instances, the entire elliptical class. As a result, it is possible to relax 
the assumptions regarding zt and use richer parametrisation and more flexible 

sampling distributions for 𝑟௧ − 𝑟௧
 in Equation (8) that allow for asymmetry and heavy 

tails. This research direction has recently gained significant attention and is a viable 
alternative to estimating the conditional β using the M-GARCH framework or general 
multivariate volatility models. 

Numerous attempts have been made to explicitly define the distribution of 
financial returns. Harvey and Siddique [30] stressed the importance of integrating 
distributional asymmetry into the asset pricing model, emphasizing the economic 
significance of systematic skewness and its influence on risk premium. Adcock [24] 
examined the ramifications of assuming the Azzalini skew-normal distribution of 
returns in the CAPM model. Li et al. [31], Bao et al. [33], and others modelled the 
distribution of the error term in Equation (8) using asymmetric power distributions or 
asymmetric exponential power distributions. Theodossiou and Theodossiou [32] 
analyzed the sensitivity of β parameter estimates in light of outliers in the series of 
stock market returns, revealing substantial bias in OLS estimates in the case of non-
normal empirical distributions of financial returns. While Theodossiou and 
Theodossiou’s [32] feasible estimation procedure does not explicitly define the 
distribution of the error term in CAPM regressions, it is equivalent to the OLS 
procedure (under the Gaussian model) and, importantly, yields significantly different 
β estimates in the case of heavy-tailed and asymmetric data. The pursuit of reliable 
inference in linear regression models with heavy-tailed errors has a longstanding 
tradition in the empirical sciences and has been of particular interest in financial 
economics for decades. Shephard [48] has recently detailed consistent and 
asymptotically normal estimators of regression parameters in the context of heavy-
tailed predictors with heteroscedastic outcomes. The empirical illustration 
demonstrating the accuracy and utility of Shephard’s [49] method mainly focuses on 
the estimation of β coefficients within CAPM regressions. 
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4. Empirical results—Selected branch indices from WSE 

4.1. Data description and model specification 

In the empirical part of the paper, we analyse a set of selected sub-indices listed 
on the Warsaw Stock Exchange (WSE). The examined time series concern the indices 
of the construction (WIG-Budow), IT (WIG-Info), media (WIG-Media), real estate 
(WIG-Nrchom), fuel (WIG-Paliwa), food (WIG-Spozyw), and telecommunications 
sectors (WIG-Telekom). The time range of the data covers observations from 3 
January 2006 to 29 May 2020. In empirical research, we analyse daily, weekly, 
monthly, and quarterly data, giving 3600 daily, 751 weekly, 172 monthly, and 56 
quarterly observations, respectively. WIG index quotations were used to approximate 
the market portfolio, and the risk-free rate was based on the yields of the Poland 10Y 
government bonds. 

We have estimated the parameter β in regression Equation (8) using stochastic 
assumptions for zt as given by Equation (6). Our general model utilises the generalised 
asymmetric student-t distribution proposed by Harvey and Lange [35], and we refer to 
this specification as MFullHL. We have also estimated the parameter β using two 
special cases regarding the distribution of zt in Equation (8). The first one, MSymHL, 
is based on the distribution of zt given by Equation (1). It is a special case of MHL 
resulting from imposing three restrictions: α = 0.5, ηL = ηR = η, and υL = υR = υ in 
Equation (6). The second special case of MHL, denoted by MG, is the limiting one, 
referring to the case of the Gaussian distribution of zt. We can obtain it through the 
following set of restrictions: α = 0.5, υL = 2, υR = 2, ηL → +∞, and ηR → +∞. 

The models MG and MSymHL ensure that the expected value of the error term, 
denoted εt, equals zero (if it exists in the latter case). However, the model MHL is 
different in that possible skewness or asymmetry (or both) may distort the expectation 
of εt from having a zero modal value in Equation (8). As a result, the model Equation 
(8) complemented by an intercept is not identifiable. This implies that from a statistical 
perspective, there is no difference between an intercept and a non-zero expected value 
of εt. Therefore, the researcher must decide whether to include an intercept in Equation 
(8) and ensure that E(εt) = 0, or not include an intercept and find observational 
opportunities that would allow for E(εt) ≠ 0. The latter alternative can be exploited 
within the environments given by models that allow for skewness and/or asymmetry. 
Furthermore, within these models, it is possible to perform simple likelihood ratio tests 
of the Capital Asset Pricing Model (CAPM) theory, which posits that E(εt) = 0, against 
the alternative hypothesis of skewness, asymmetry, or both. 

4.2. Empirical analyses 

We have presented the results of the Maximu Likelihood (ML) estimation of 
parameters in Table 1. We have also reported the values of P (zt < 0) obtained 
considering all competing sampling distributions when analysing daily data. 
Additionally, we have calculated the log-likelihood values at the ML estimates. We 
want to highlight that the estimates of the β parameter are sensitive to the choice of 
assumptions regarding the error term. However, we expected differences to be much 
stronger than those reported. The analyses suggest that, except for WIG-Paliwa, β is 
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estimated to be larger in the case of the Gaussian error term (MG), compared to 
MSymHL or MHL. However, the risk assessment based on β is almost the same for 
both non-Gaussian specifications, as the β parameter is estimated to be almost the 
same value. Estimating parameter σ2 differs among models due to different 
interpretations, since it is the variance only in the case of MG. The inference about 
shape parameters is uncertain in all analysed sub-indices. The data clearly indicates 
that the error term departs from the Gaussian case. However, there is strong 
uncertainty about parameters ν and η. The data does not strongly support the two-piece 
mechanism enforcing asymmetry in model MHL. Although we report differences 
between νL and νR or ηL and ηR, the range of uncertainty determined by the standard 
errors suggests that these differences may not be statistically significant. Specifically, 
for the WIG-Info subindex, according to model MHL, the tail behaviour is definitely 

of a different nature on the left (𝜂𝐿 ≈ 8.83) than on the right (𝜂𝑅 ≈ 17.47). However, 
the standard errors, reaching 4.32 in the case of parameter ηR, indicate that a 
symmetric tails case is also supported. Additionally, shape parameters νL and νR are 
estimated to be less than 2 (η* = 2 indicates student-t shape), but the huge standard 
errors disable precise inference about this feature of the distribution of the error term. 
The same results are obtained for the WIG-Paliwa index. 

The p-values of the likelihood ratio (LR) tests, which are shown in Table 1, 
indicate that the Gaussian error term is not supported by the data. The null hypothesis 
is rejected for both MSymHL and MHL alternatives. However, differences between 
MSymHL and MHL are unclear. Only in the case of WIG-Nrchom and WIG-Media 
does the unconstrained model MHL receive stronger data support, and the restriction 
to the symmetric case (MSymHL) is rejected at a reasonable level of statistical 
significance. The p-values of the appropriate LR test are 0.0034 and 0.0255 for WIG-
Nrchom and WIG-Media, respectively. All remaining time series do not support the 
asymmetry obtained by the two-piece mechanism. 

There is another source of asymmetry in MHL, referring to the inverse scale 

factors mechanism, with skewness measure α ∈ (0, 1); see Equation (2). Empirical 
analyses conducted here yield a little data support against α = 0.5 (assuring symmetry 
in Equation (2)). With regard to the point estimates of the α parameter, it can be stated 
that WIG-Budow, WIG-Info, WIG-Media and WIG-Telekom indicate negative 

skewness (𝛼ො < 0.5), while WIG-Nrchom, WIG-Paliwa and WIG-Spozyw support 
positive skewness, but in case of the latter one, very weak. 

The mechanisms of the two-pierce and inverse scale factors are different in 
nature. Hence, the data may support different directions of asymmetry generated by 
both mechanisms. In the case of the two-piece mechanism, a heavier left tail indicates 
asymmetry to the left of zt in Equation (8), while a heavier right tail—indicates 
asymmetry to the right. A quantity of interest that summarises information of the scale 
of departure of the distribution of the error term from the symmetric case is the P (zt < 
0); see Equation (7) for MHL. Models MG and MSymHL are built on the basis of the 
error term with symmetric distribution, and hence they assure that P (zt < 0) = P (zt ≥ 
0) = 0.5. Consequently, formal statistical inference about P (zt < 0) is the possible only 
condition to the model MHL. The point estimates and standard errors of this function 
of interest are presented in Table 1. Except for WIG-Info, analysed sub-indices 
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support negative asymmetry of the error term in CAPM regression. As described 
previously, the results of inference about the shape and tails of the distribution of zt in 
Equation (8) were quite different when comparing estimation outcomes from different 
datasets. Great uncertainty about η and ν was in common. The estimation of P (zt < 0) 
seems to be characterised by the same level of statistical uncertainty in each analysed 
time series. The deviation from the symmetric case is not big but precisely estimated 
since the approximated standard error is not greater than 0.0046. 

The empirical analysis presented above was replicated for data on weekly, 
monthly, and quarterly frequency for each analysed sub-index. The resulting outcome 
is summarised in Figures 1 and 2, which show the estimated CAPM lines against the 
data points for WIG-Nrchom and WIG-Paliwa, respectively. The complete set of 
estimated CAPM lines is presented in Appendix in Figures A1–A3. The black line 
represents a hypothetical CAPM with the slope β = 1. The blue line corresponds to the 
estimated β under MG, while the red line is the case of MHL, which is almost the same 
as in the case of model MSymHL. WIG-Nrchom and WIG-Paliwa were chosen to 
demonstrate the sensitivity of the inference about β with respect to the frequency of 
the analysed time series. 
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Table 1. ML estimates and asymptotic standard errors (in brackets) of parameters and of P (zt < 0), natural logarithm of the ML likelihood values with the results of the LR 
test; the case of the daily data. 

Index Model β σ2 ηL υL ηR υR α P (zt < 0) Loglik 
p-value of LR test 

MG MSymHL 

WIG-Budow 

MG 
0.7408 
(0.0136) 

1.0508 
(0.0004) 

+∞ 2 +∞ 2 0.5 0.5 −5150.716   

MSymHL 
0.7077 
(0.0326) 

0.6469 
(0.2002) 

6.91 (0.48) 1.71 (1.02) ηL νL 0.5 0.5 −5068.580 p < 10−20  

MHL 
0.6998 
(0.0560) 

0.6474 
(0.3155) 

5.78 (1.06) 1.89 (3.01) 
8.70 
(4.87) 

1.55 (0.24) 0.4984 (0.0713) 0.5130 (0.0044) −5066.44 p < 10−20 0.1177 

WIG-Info 

MG 
0.6751 
(0.0129) 

0.9538 
(0.000374) 

+∞ 2 +∞ 2 0.5 0.5 −4994.399   

MSymHL 
0.6566 
(0.0449) 

0.6559 
(0.3306) 

11.01 (0.98) 1.64 (1.52) ηL νL 0.5 0.5 −4944.953 p < 10−20  

MHL 
0.6569 
(0.0149) 

0.6580 
(0.5375) 

8.03 (1.03) 1.79 (2.10) 
17.47 
(4.32) 

1.52 (5.19) 0.4869 (0.0542) 0.4995 (0.0043) −4943.265 p < 10−20 0.1849 

WIG-Media 

MG 
0.7268 
(0.0159) 

1.4507 
(0.000570) 

+∞ 2 +∞ 2 0.5 0.5 −5710.793   

MSymHL 
0.7111 
(0.0217) 

0.9420 
(0.1099) 

4.89 (1.89) 2.23 (0.09) ηL νL 0.5 0.5 −5633.865 p < 10−20  

MHL 
0.7125 
(0.0159) 

0.9517 
(0.1842) 

3.86 (3.82) 2.55 (0.17) 
8.47 
(3.99) 

1.86 (0.36) 0.4835 (0.0363) 0.5047 (0.0042) −5630.197 p < 10−20 0.0255 

WIG-Nrchom 

MG 
0.8617 
(0.0138) 

1.0862 
(0.000427) 

+∞ 2 +∞ 2 0.5 0.5 −5152.197   

MSymHL 
0.8244 
(0.1070) 

0.4692 
(0.3888) 

5.30 (0.15) 1.42 (2.37) ηL νL 0.5 0.5 −4906.878 p < 10−20  

MHL 
0.8213 
(0.0672) 

0.4652 
(0.2757) 

6.87 
(15.83) 

1.33 (0.18) 
3.75 
(0.27) 

1.64 (0.59) 0.5273 (0.0626) 0.5038 (0.0046) −4901.192 p < 10−20 0.0034 
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Table 1. (Continued). 

Index Model β σ2 ηL υL ηR υR α P (zt < 0) Loglik p-value of LR test 

WIG-Paliwa MG 1.0841 
(0.0153) 

1.3379 
(0.000526) 

+∞ 2 +∞ 2 0.5 0.5 −5590.365   

MSymHL 1.1061 
(0.1051) 

0.8803 
(0.2611) 

8.14 (0.64) 1.73 (0.55) ηL νL 0.5 0.5 −5526.729 p < 10−20  

MHL 1.1074 
(0.0147) 

0.8855 
(0.0330) 

14.86 (2.00) 1.61 (1.23) 6.48 
(2.84) 

1.76 (2.28) 0.5103 (0.0333) 0.5013 (0.0044) −5525.163 p < 10−20 0.2089 

WIG-Spozyw MG 0.6334 
(0.0161) 

1.4781 
(0.000581) 

+∞ 2 +∞ 2 0.5 0.5 −5736.596   

MSymHL 0.5765 
(0.0365) 

0.8718 
(0.2092) 

4.86 (0.43) 2.00 (0.89) ηL νL 0.5 0.5 −5629.440 p < 10−20  

MHL 0.5774 
(0.0582) 

0.8711 
(0.1165) 

4.77 (6.97) 2.13 (0.27) 5.18 
(8.44) 

1.85 (1.35) 0.5012 (0.2077) 0.5089 (0.0044) −5627.984 p < 10−20 0.2332 

WIG-Telekom MG 0.6752 
(0.0181) 

1.8720 
(0.000735) 

+∞ 2 +∞ 2 0.5 0.5 −6014.624   

MSymHL 0.6536 
(0.0480) 

1.0100 
(0.2053) 

4.03 (1.44) 2.40 (1.66) ηL νL 0.5 0.5 −5849.315 p < 10−20  

MHL 0.6547 
(0.0472) 

1.0123 
(0.0628) 

3.70 (2.99) 2.67 (0.19) 4.68 
(2.89) 

2.10 (0.28) 0.4997 (0.0424) 0.5118 (0.0043) −5847.148 p < 10−20 0.1145 
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Figure 1. Estimated CAPM lines for WIG-Nrchom against the data of different 
frequency. 

 
Figure 2. Estimated CAPM lines for WIG-Paliwa against the data of different 
frequency. 

In the case of WIG-Nrchom, depicted in Figure 1, the slope of the CAPM line 
becomes steeper as the frequency of the data decreases. Daily data suggests that β < 1 

for both models, but estimation based on the weekly time series results in 𝛽መ  that is 
almost equal to one. In the case of monthly data, inference about β differs across 

models, where model MG yields 𝛽መ ≈ 1.1560 (with the standard error 0.0609) and 

model MHL gives 𝛽መ ≈ 1.0000 (with the standard error 0.000885). The quarterly data 
set supports β < 1 for both models. 

The results of analysis of the second case (WIG-Paliwa) are summarised in 
Figure 2. The point estimates of the β are relatively similar in model MG and MHL 
for each analysed frequency of the data. However, they decrease as the frequency of 
data decreases. In particular, the daily data suggests that β > 1, and the weekly 
frequency gives a result where β is almost equal to one in both models. The monthly 
and quarterly series indicate that β < 1. 

5. Conclusion 

In this paper, we analysed CAPM regression under a class of distributions 
allowing for various exceptions from the Normal family. Namely, we assume the error 
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term belongs to the generalised asymmetric student-t class that Harvey and Lange [34] 
elaborated, allowing for skewness and asymmetric tail thickness. The Harvey and 
Lange [34] generalisation unifies the student-t family of distributions with the GED 
(Generalised Error Distributions) class in an elegant parametrisation. We focused on 
the Warsaw Stock Exchange (WSE) indices and analysed estimates of the β parameter 
for a set of selected branch sub-indices. 

For most analysed time series, the data suggests that β is estimated to be larger in 
the case of the Gaussian error term compared to models with error terms allowing for 
heavy tails and asymmetry. However, the risk assessment based on β is almost the 
same for all non-Gaussian specifications, as the β parameter is estimated to be nearly 
the same value. The data does not strongly support the two-piece mechanism enforcing 
asymmetry in the distribution of the error term. Only in the case of WIG-Nrchom and 
WIG-Media does the unconstrained model receive more vital data support, and the 
restriction to the symmetric distribution is rejected at a reasonable level of statistical 
significance. All remaining time series do not support the asymmetry obtained by the 
two-piece mechanism. 

In the paper, we also demonstrated how risk assessment—elaborated on the basis 
of estimation of the β parameter—may change with respect to the frequency of 
analysed time series. The main conclusion that arises from our research is that 
estimation of the β parameter may change across models with different assumptions 
imposed on the distribution of the error term and, more importantly, across different 
data frequencies. Consequently, the risk assessment resulting from the estimated 
CAPM model may not correspond to the analysed financial instrument only. The 
frequency at which the researcher observes the analysed time series plays as important 
a role as the original choice of the instrument. 
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Appendix 

 

Figure A1. Estimated CAPM lines, the case of daily data. 

 
Figure A2. Estimated CAPM lines, the case of weekly data. 
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Figure A3. Estimated CAPM lines, the case of monthly data. 

 
Figure A4. Estimated CAPM lines, the case of quarterly data. 


