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ABSTRACT 

This paper analyses selected sub-indices listed on the Warsaw Stock Exchange (WSE) covering seven sectors: 

construction, IT, media, real estate, fuel, food, and telecommunications, from 3 January 2006 to 29 May 2020. We use 

daily, weekly, monthly, and quarterly data, resulting in 3600 daily, 751 weekly, 172 monthly, and 56 quarterly 

observations. The WIG index quotations were used to approximate the market portfolio and the Poland 10Y government 

bond yields for the risk-free rate. We have estimated the parameter β in CAPM regression using three different stochastic 

assumptions for the error term. The basic stochastic framework of the model utilises the generalised asymmetric student-

t distribution (GAST). We have also estimated the parameter β based on the symmetric version of the GAST distribution 

and on the Gaussian one. These models can be treated as a special case of the basic framework. The estimates of the β 

parameter are influenced by the assumptions made about the error term. The data indicates that except for WIG-Paliwa, 

the Gaussian error term leads to larger β estimates than other non-Gaussian specifications. The inference about the shape 

parameters is not very certain, and the data does not strongly support the two-piece mechanism that enforces the 

asymmetry of the error term distribution. Furthermore, the estimates of the β parameter depend strongly on the frequency 

of the analysed series. 
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1. Introduction 

142 years ago, the introduction of probability distributions that 

differed from the Gaussian case occurred. This can be seen in the 

works of De Forest[1,2], Edgeworth[3], and Pearson[4,5]. In Genton’s 

book[6], several empirical examples were analysed to illustrate that 

there has been a quest for more flexible families of distributions than 

the Gaussian to serve as a sampling model, but this has not been 

achieved. Over the last four decades, there has been a desire to go 

beyond normality, as stated in the subtitle of Genton’s[6] book, 

particularly to properly model the empirical distribution of data that 

represents fluctuations observed in financial markets. 

Over the last fifty years, theoretical investigations in finance 

often assumed that the distributions of financial returns follow a 

Gaussian distribution. For example, the theory of pricing a European 

option explicitly assumes normality, as seen in the works of Black and 

Scholes[7] and Merton[8]. However, the theory of mean-variance 

portfolio selection, developed by Markovitz[9], does not require 

Gaussian returns. Still, it does assume that the distribution of asset 

returns can be characterised by their first and second moments. As a 

ARTICLE INFO 

Received: 3 April 2024 

Accepted: 21 May 2024 

Available online: 14 June 2024 

COPYRIGHT 

Copyright © 2024 by author(s). 

Financial Statistical Journal is published by 

EnPress Publisher, LLC. This work is licensed 

under the Creative Commons Attribution-

NonCommercial 4.0 International License 

(CC BY-NC 4.0). 

https://creativecommons.org/licenses/by-

nc/4.0/ 



2 

result, the utility function considered by a decision maker is a function dependent only on the mean and 

variance of portfolio returns. 

The Capital Asset Pricing Model (CAPM), developed by Sharpe[10] and Treynor[11] and further advanced 

by Lintner[12] and others, stands out as one of the most significant outcomes of the Markovitz theory. 

Applications of the CAPM yield valuable insights into the risk associated with financial assets. The widespread 

adoption of the CAPM is primarily attributed to its ability to estimate the cost of equity (COE) capital for a 

firm or industry within a robust theoretical framework, as highlighted by Graham and Harvey[13]. The COE, 

representing the returns percentage offered by a company or industry to its equity shareholders based on their 

investments, serves as a critical gauge for investors evaluating investment profitability. Subpar returns may 

prompt investors to pursue opportunities with higher potential returns. Furthermore, accurate COE estimations 

are essential for various reasons in industries that significantly impact the economy. In the banking sector, 

Altavilla et al.[14] emphasised that COE provides essential information for financial stability and the assessment 

of monetary policy transmission. Consequently, COE serves as a noteworthy measure not only for investors 

but also for regulatory and supervisory institutions. 

Kaplan and Peterson[15] explain that the CAPM-driven approach is popular among practitioners, 

especially investors, because there are no theoretically justified alternatives. However, in the empirical 

literature two decades ago, a consensus was established that the CAPM does not hold. As a result, CAPM-β 

cannot explain expected returns. Fama and French[16] reviewed various attempts to solve this issue. Andrei et 

al.[17] recently investigated why investors are still reluctant to give up the model despite the widespread 

rejection of the CAPM theory from an empirical point of view. They propose a theoretical framework that 

suggests the Capital Asset Pricing Model (CAPM) holds from the investors’ perspective. However, it fails to 

match the empirical evidence in one specific aspect: the securities market line (SML) appears empirically flat 

but occasionally becomes steeper, for example, when public information reduces investor disagreement. The 

study explains the results by Savor and Wilson[18], who found a strong correlation between expected returns 

and CAPM-β on days when news about inflation, unemployment, or FOMC interest rate decisions is scheduled 

to be announced. 

The assumption that financial returns are normally distributed is often assumed in the existing literature 

on empirical asset pricing despite evidence showing that this assumption is not empirically relevant. Since the 

1960s, empirical analyses have largely failed to support this normality assumption. This has significant 

implications for the Capital Asset Pricing Model (CAPM). Researchers such as Black[19], Fama and French[20], 

Zhou and Yin[21], Wei[22], and Urom et al.[23] have found that the results of estimating the CAPM-β parameters 

can vary across different models, affecting the estimated beta values and the relationship between risks and 

market returns. 

Adcock[24] states that it's unnecessary to assume that returns follow a normal distribution to satisfy the 

CAPM axioms. He found that the family of Skewed-Normal distributions (described in Azzalini and Dalla 

Valle[25]) is empirically important for UK stocks, and estimates of the CAPM β parameter change significantly 

when the sampling distribution allows for skewness. Adcock and Shutes[26] previously analysed the impact of 

assuming a student-t distribution for returns on the CAPM β estimates and found substantial effects on the 

estimation outcomes. These two papers are part of a wide range of research on the empirical relevance of the 

CAPM theory, considering non-standard stochastic assumptions that explicitly allow for heavy tails and/or 

asymmetry in the underlying distributions. Other works by Affleck-Graves[27], MacKinlay and Richardson[28], 

Zhou[29], Harvey and Siddique[30], Li[31], Theodosiou and Theodossiou[32], and more recently, Bao et al.[33], are 

examples of extensive research on the application of flexible non-Gaussian families of distributions in the 

problem of risk assessment using the CAPM. 

In this paper, we analyse the Capital Asset Pricing Model (CAPM) using a variety of distributions that go 
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beyond the Normal family. Specifically, we employ distributions from the generalised asymmetric student-t 

class developed by Harvey and Lange[34], which accounts for skewness and asymmetric tail thickness. 

Furthermore, the generalisation by Harvey and Lange[34] combines the student-t family of distributions with 

the Generalized Error Distributions (GED) class in a streamlined parametrisation. Our study focuses on the 

Warsaw Stock Exchange (WSE) indices. It examines the estimates of the β parameter for a selection of sector 

indices, including fuel (WIG-Paliwa), food (WIG-Spozywczy), telecommunications (WIG-Telekom), 

computers (WIG-Info), real estate (WIG-Nieruchomosci), media (WIG-Media), and construction companies 

(WIG-Budowlany) listed on the WSE. In our econometric analyses, we follow the main goals of the paper 

stated as: 

1) Analysis of the sensitivity of the CAPM β parameter estimates under a family of distributions allowing 

for heavy tails, skewness and tail asymmetry. 

2) Analysis of the sensitivity of the performance of the CAPM to the frequency of analysed data (daily, 

weekly, monthly and quarterly). 

In the following paper, we will first provide an overview of the generalised asymmetric student-t 

distribution proposed by Harvey and Lange[34]. We will discuss the symmetric version of the H&L distribution 

and the skewed and tail asymmetric cases, each as separate sections within the generalised family. Chapter 3 

will review some econometric strategies concerning the assumptions of the error term in the CAPM regression 

model. Finally, Chapter 4 will describe the data, model framework, and the main empirical results. 

2. Parametric representation of skewness and tail asymmetry 

In a paper by Li and Nadarajah[35], it is mentioned that student’s t distribution and its generalisations have 

become the most popular models for economic and financial data. Our work will focus on analysing some of 

the generalisations of the student-t distribution proposed by Harvey and Lange[34]. These generalisations unify 

the family with the Generalized Error Distributions (GED), and the final construct goes beyond previous results 

by Zhu and Zinde-Walsh[36], Zhu and Galbraith[37], Fernández and Steel[38], and Theodossiou[39], among others. 

For more information, we refer to the literature overview and discussion by Harvey and Lange[34]. 

Previous empirical analyses have demonstrated the extraordinary flexibility of generalised families. For 

instance, Mazur and Pipień[40] studied TV-GARCH models with conditional distribution proposed by Zhu and 

Galbraith[37], while Mazur and Pipień[41] investigated coordinate-free multivariate distributions obtained based 

on Harvey and Lange[34] asymmetric-t class. 

Consider a random variable with zero mode and unit scale z with the following density, parametrised by 

η > 0 and υ > 0: 

𝑝(𝑧|𝜂, 𝜐) = 𝐾(𝜂, 𝜐) (1 +
1

𝜂
|𝑧|𝜐)

−
𝜂+1
𝜐

 (1) 

where the normalising constant K(η, υ) is given by the formula: 

𝐾(𝜂, 𝜐) =
𝜐

2𝜂
1
𝜐

1

𝐵(
1
𝜐 ,
𝜂
𝜐)

 

and B(.,.) is the Beta function; see Harvey and Lange[34]. The parameter υ > 0 determines the shape around the 

mode, with υ = 2 leading to the student-t type shape. The parameter η > 0 controls the tail behaviour and 

determines the existence of moments only in the case where υ = 2. The advantage of the unification proposed 

by Harvey and Lange[34] is that it includes a list of well-known distribution families and offers elasticity by 

parametrising a very broad class of distributions. This links the properties of the student-t and GED families 

in an unconstrained but continuous form. In particular, when η → +∞, the broad GED with shape parameter υ 

is defined. For υ = 1, the Laplace distribution can be obtained, and υ = 2 defines the Gaussian distribution, 

provided that η → +∞. 
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To introduce skewness in a distribution, one may use inverse scale factors as explained in Ferreira and 

Steel’s[42] work. The resulting density accounts for possible skewness around the mode in a manner proposed 

by Fernández and Steel[38], and similarly by Hansen[43] for a student-t distribution: 

𝑝(𝑧|𝜂, 𝜐, 𝛼) = 𝐾(𝜂, 𝜐)

{
 
 

 
 
(1 +

1

𝜂
|
𝑧

2𝛼
|
𝜐

)
−
𝜂+1
𝜐
  , 𝑧 ≤ 0

(1 +
1

𝜂
|

𝑧

2(1 − 𝛼)
|
𝜐

)
−
𝜂+1
𝜐
  , 𝑧 > 0

 (2) 

Harvey and Lange[34] alternatively parametrised Equation (2) by α ∈ (0, 1), with α = 0.5 restoring 

symmetry. The Arnold and Groeneveld[44] measure of skewness to the mode is referenced here. The distribution 

given by Equation (2) has an elegant property: 

P (z ≤ 0) = α (3) 

It is important to note that the distribution of z, defined by Equation (2), may no longer have a zero mean, 

even though it remains unimodal; see Harvey and Lange[34]. 

It is possible to disrupt the symmetry in Equation (1) by implementing a two-piece mechanism as 

demonstrated by Zhu and Galbraith[37] when they extended the student-t distribution. The resulting density 

distribution is a member of the two-piece skew family. 

𝑝(𝑧|𝜂𝐿 , 𝜐𝐿 , 𝜂𝑅 , 𝜐𝑅) = 𝐾𝐿𝑅

{
 
 

 
 
(1 +

1

𝜂𝐿
|𝑧|𝜐𝐿)

−
𝜂𝐿+1
𝜐𝐿

  , 𝑧 ≤ 0

(1 +
1

𝜂𝑅
|𝑧|𝜐𝑅)

−
𝜂𝑅+1
𝜐𝑅

  , 𝑧 > 0

 (4) 

where the normalising constant KLR is given by the formula: 

𝐾𝐿𝑅 =
1

0.5
𝐾(𝜂𝐿 , 𝜐𝐿)

+
0.5

𝐾(𝜂𝑅 , 𝜐𝑅)

 

It is possible to consider a variable distributed according to the density in Equation (4) as a mixture of 

two distributions in Equation (1) with different parameters υ and η. These distributions are also renormalised 

to ensure that the resulting probability density function is continuous at the mode (which is zero). As with the 

construct defined by Equation (2), the expected value of the distribution given by Equation (4) may not be 

equal to zero (if it exists). The probability mass around the mode (which is zero) is not equally spaced. In their 

work, Harvey and Lange[34] provide the following function, which describes the probability that z is not 

positive: 

𝑃(𝑧 ≤ 0) =
𝐾(𝜂𝐿 , 𝜐𝐿)

𝐾(𝜂𝐿 , 𝜐𝐿) + 𝐾(𝜂𝑅 , 𝜐𝑅)
 (5) 

Combining both distributions presented in Equations (2) and (4), the following density for z can be 

considered: 

𝑝(𝑧|𝜂𝐿 , 𝜐𝐿 , 𝜂𝑅 , 𝜐𝑅 , 𝛼) = 𝐻𝐿𝑅 ⋅

{
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−
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 (6) 

where the following formula gives the normalising constant HLR: 

𝐻𝐿𝑅 =
1

𝛼
𝐾(𝜂𝐿 , 𝜐𝐿)

+
1 − 𝛼

𝐾(𝜂𝑅 , 𝜐𝑅)

 

The density function in Equation (6) has a unit scale parameter and a zero mode. The probability that a 
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random variable z is not positive is defined as follows (Harvey and Lange[34]): 

𝑃(𝑧 ≤ 0) =

𝛼
𝐾(𝜂𝐿 , 𝜐𝐿)

𝛼
𝐾(𝜂𝐿 , 𝜐𝐿)

+
1 − 𝛼

𝐾(𝜂𝑅 , 𝜐𝑅)

 (7) 

3. Empirical insights into CAPM regression 

The most important outcome from the CAPM, namely the β, is typically estimated by regressing the 

returns of individual stocks, portfolio of instruments or branch indices on the overall market index, both 

adjusted for the risk-free return proxy. This is done according the following regression model: 

𝑟𝑡 − 𝑟𝑡
𝑓
= 𝛽(𝑟𝑡

𝑚 − 𝑟𝑡
𝑓
) + √𝜎2𝑧𝑡 , 𝑡 = 1, . . . , 𝑇 (8) 

where rt denotes the return on an asset (it can also be a branch sub-index or a portfolio), 𝑟𝑡
𝑚 denotes the return 

on the market portfolio, and 𝑟𝑡
𝑓

 denotes the return on a risk-free asset. Additionally, t refers to the time the 

observations were taken, √𝜎2 is the scale parameter of the error term, and zt is a sequence of i.i.d. random 

variables with zero location and unit scale. 

The model framework presented by Equation (8) has been widely used in empirical papers and has 

influenced other methods such as Fama-MacBeth regressions. The sequence of zt can be assumed to follow a 

standardised Gaussian distribution, where σ2 refers to the variance. Furthermore, Equation (8) can be improved 

by adding an intercept in order to evaluate standard statistical tests for the CAPM theory. The CAPM theory, 

which imposes a zero restriction on the intercept in the null hypothesis, has been studied for decades, as detailed 

by Jensen et al.[45]. It’s worth noting that the assumptions behind the CAPM theory do not require returns to 

be normally distributed, as stated by Adcock[24]. 

Chamberlain[46] pointed out that the mean-variance optimisation criterion, the basis of portfolio 

optimisation and CAPM, is consistent with an investor’s portfolio decision-making only if the returns are 

elliptically distributed. Empirical asset pricing tests proposed by Gibbons et al.[47] are valid only under the 

normality assumption, which is a special case of elliptical distributions. Consequently, studies have been 

conducted to develop tests for cases where the distribution of returns is generally elliptical, including work by 

Affleck-Graves and McDonald[27], MacKinlay and Richardson[28], and Zhou[29]. 

However, the empirical distributions of financial returns do not fit the Gaussian case and, in many 

instances, the entire elliptical class. As a result, it is possible to relax the assumptions regarding zt and use 

richer parametrisation and more flexible sampling distributions for 𝑟𝑡 − 𝑟𝑡
𝑓

 in Equation (8) that allow for 

asymmetry and heavy tails. This research direction has recently gained significant attention and is a viable 

alternative to estimating the conditional β using the M-GARCH framework or general multivariate volatility 

models. 

Numerous attempts have been made to explicitly define the distribution of financial returns. Harvey and 

Siddique[30] stressed the importance of integrating distributional asymmetry into the asset pricing model, 

emphasizing the economic significance of systematic skewness and its influence on risk premium. Adcock[24] 

examined the ramifications of assuming the Azzalini skew-normal distribution of returns in the CAPM model. 

Li et al.[31], Bao et al.[33], and others modelled the distribution of the error term in Equation (8) using asymmetric 

power distributions or asymmetric exponential power distributions. Theodossiou and Theodossiou[32] analyzed 

the sensitivity of β parameter estimates in light of outliers in the series of stock market returns, revealing 

substantial bias in OLS estimates in the case of non-normal empirical distributions of financial returns. While 

Theodossiou and Theodossiou’s[32] feasible estimation procedure does not explicitly define the distribution of 

the error term in CAPM regressions, it is equivalent to the OLS procedure (under the Gaussian model) and 

importantly, yields significantly different β estimates in the case of heavy-tailed and asymmetric data. The 
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pursuit of reliable inference in linear regression models with heavy-tailed errors has a longstanding tradition 

in empirical sciences and has been of particular interest in financial economics for decades. Shephard[48] has 

recently detailed consistent and asymptotically normal estimators of regression parameters in the context of 

heavy-tailed predictors with heteroscedastic outcomes. The empirical illustration demonstrating the accuracy 

and utility of Shephard’s[49] method mainly focuses on the estimation of β coefficients within CAPM 

regressions. 

4. Empirical results—Selected branch indices from WSE 

4.1. Data description and model specification 

In the empirical part of the paper, we analyse a set of selected sub-indices listed on the Warsaw Stock 

Exchange (WSE). The examined time series concern the indices of the construction (WIG-Budow), IT (WIG-

Info), media (WIG-Media), real estate (WIG-Nrchom), fuel (WIG-Paliwa), food (WIG-Spozyw) and 

telecommunications sectors (WIG-Telekom). The time range of the data covers observations from 3 January 

2006 to 29 May 2020. In empirical research, we analyse daily, weekly, monthly, and quarterly data, giving 

3600 daily, 751 weekly, 172 monthly, and 56 quarterly observations respectively. WIG index quotations were 

used to approximate the market portfolio, and the risk-free rate was based on the yields of the Poland 10Y 

government bonds. 

We have estimated the parameter β in regression Equation (8) using stochastic assumptions for zt as given 

by Equation (6). Our general model utilises the generalised asymmetric student-t distribution proposed by 

Harvey and Lange[35] and we refer to this specification as MFullHL. We have also estimated the parameter β 

using two special cases regarding the distribution of zt in Equation (8). The first one, MSymHL, is based on 

the distribution of zt given by Equation (1). It is a special case of MHL resulting from imposing three 

restrictions: α = 0.5, ηL = ηR = η, and υL = υR = υ in Equation (6). The second special case of MHL, denoted 

by MG, is the limiting one, referring to the case of the Gaussian distribution of zt. We can obtain it through the 

following set of restrictions: α = 0.5, υL = 2, υR = 2, ηL → +∞, and ηR → +∞. 

The models MG and MSymHL ensure that the expected value of the error term, denoted εt, equals zero 

(if it exists in the latter case). However, the model MHL is different in that possible skewness or asymmetry 

(or both) may distort the expectation of εt from having a zero modal value in Equation (8). As a result, the 

model Equation (8) complemented by an intercept is not identifiable. This implies that from a statistical 

perspective, there is no difference between an intercept and a non-zero expected value of εt. Therefore, the 

researcher must decide whether to include an intercept in Equation (8) and ensure that E(εt) = 0, or not include 

an intercept and find observational opportunities that would allow for E(εt) ≠ 0. The latter alternative can be 

exploited within the environments given by models that allow for skewness and/or asymmetry. Furthermore, 

within these models, it is possible to perform simple likelihood ratio tests of the Capital Asset Pricing Model 

(CAPM) theory, which posits that E(εt) = 0, against the alternative hypothesis of skewness, asymmetry, or 

both. 

4.2. Empirical analyses 

We have presented the results of the Maximu Likelihood (ML) estimation of parameters in Table 1. We 

have also reported the values of P (zt < 0) obtained considering all competing sampling distributions when 

analysing daily data. Additionally, we have calculated the log-likelihood values at the ML estimates. We want 

to highlight that the estimates of the β parameter are sensitive to the choice of assumptions regarding the error 

term. However, we expected differences to be much stronger than those reported. The analyses suggests that, 

except for WIG-Paliwa, β is estimated to be larger in the case of the Gaussian error term (MG), compared to 

MSymHL or MHL. However, the risk assessment based on β is almost the same for both non-Gaussian 

specifications, as the β parameter is estimated to be almost the same value. Estimating parameter σ2 differs 
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among models due to different interpretations, since it is the variance only in the case of MG. The inference 

about shape parameters is uncertain in all analysed sub-indices. The data clearly indicates that the error term 

departs from the Gaussian case. However, there is strong uncertainty about parameters ν and η. The data does 

not strongly support the two-piece mechanism enforcing asymmetry in model MHL. Although we report 

differences between νL and νR or ηL and ηR, but the range of uncertainty determined by the standard errors 

suggests that these differences may not be statistically significant. Specifically, for the WIG-Info subindex, 

according to model MHL, the tail behaviour is definitely of a different nature on the left (𝜂𝐿̂ ≈ 8.83) than on 

the right (𝜂𝑅̂ ≈ 17.47). However, the standard errors, reaching 4.32 in the case of parameter ηR, indicate that 

a symmetric tails case is also supported. Additionally, shape parameters νL and νR are estimated to be less than 

2 (η* = 2 indicates student-t shape), but the huge standard errors disable precise inference about this feature of 

the distribution of the error term. The same results are obtained for the WIG-Paliwa index. 

The p-values of the likelihood ratio (LR) tests, which are shown in Table 1, indicate that the Gaussian 

error term is not supported by the data. The null hypothesis is rejected for both MSymHL and MHL 

alternatives. However, differences between MSymHL and MHL are unclear. Only in the case of WIG- Nrchom 

and WIG-Media does the unconstrained model MHL receive stronger data support, and the restriction to the 

symmetric case (MSymHL) is rejected at reasonable level of statistical significance. The p-values of the 

appropriate LR test are 0.0034 and 0.0255 for WIG-Nrchom and WIG-Media, respectively. All remaining time 

series do not support the asymmetry obtained by the two-piece mechanism. 

There is another source of asymmetry in MHL, referring to the inverse scale factors mechanism, with 

skewness measure α ∈ (0, 1); see Equation (2). Empirical analyses conducted here yield a little data support 

against α = 0.5 (assuring symmetry in Equation (2)). With regard to the point estimates of the α parameter, it 

can be stated that WIG-Budow, WIG-Info, WIG-Media and WIG-Telekom indicate negative skewness (𝛼̂ <

0.5), while WIG-Nrchom, WIG-Paliwa and WIG-Spozyw support positive skewness, but in case of the latter 

one, very weak. 

The mechanisms of the two-pierce and inverse scale factors are different in nature. Hence, the data may 

support different directions of asymmetry generated by both mechanisms. In the case of the two-piece 

mechanism, a heavier left tail indicates asymmetry to the left of zt in Equation (8), while a heavier right tail—

indicates asymmetry to the right. A quantity of interest that summarises information of the scale of departure 

of the distribution of the error term from the symmetric case is the P (zt < 0); see Equation (7) for MHL. Models 

MG and MSymHL are built on the basis of the error term with symmetric distribution, and hence they assure 

that P (zt < 0) = P (zt ≥ 0) = 0.5. Consequently, formal statistical inference about P (zt < 0) is the possible only 

condition to the model MHL. The point estimates and standard errors of this function of interest are presented 

in Table 1. Except for WIG-Info, analysed sub-indices support negative asymmetry of the error term in CAPM 

regression. As described previously, the results of inference about the shape and tails of the distribution of zt 

in Equation (8) were quite different when comparing estimation outcomes from different datasets. Great 

uncertainty about η and ν was in common. Estimation of P (zt < 0) seems to be characterised by the same level 

of statistical uncertainty in each analysed time series. The deviation from the symmetric case is not big but 

precisely estimated since the approximated standard error is not greater than 0.0046. 

The empirical analysis presented above was replicated for data on weekly, monthly, and quarterly 

frequency for each analysed sub-index. The resulting outcome is summarised in Figures 1 and 2, which show 

the estimated CAPM lines against the data points for WIG-Nrchom and WIG-Paliwa, respectively. The 

complete set of estimated CAPM lines is presented in Appendix on Figures A1–A3. The black line represents 

a hypothetical CAPM with the slope β = 1. The blue line corresponds to the estimated β under MG, while the 

red line is the case of MHL, which is almost the same as in the case of model MSymHL. WIG-Nrchom and 

WIG-Paliwa were chosen to demonstrate the sensitivity of the inference about β with respect to the frequency 
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of the analysed time series. 
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Table 1. ML estimates and asymptotic standard errors (in brackets) of parameters and of P (zt < 0), natural logarithm of the ML likelihood values with the results of the LR test; the case of the daily 
data. 

Index Model β σ2 ηL υL ηR υR α P (zt < 0) Loglik p-value of LR test 

MG MSymHL 

WIG-Budow MG 0.7408 

(0.0136) 

1.0508 

(0.0004) 

+∞ 2 +∞ 2 0.5 0.5 −5150.716   

MSymHL 0.7077 

(0.0326) 

0.6469 

(0.2002) 

6.91 (0.48) 1.71 (1.02) ηL νL 0.5 0.5 −5068.580 p < 10−20  

MHL 0.6998 

(0.0560) 

0.6474 

(0.3155) 

5.78 (1.06) 1.89 (3.01) 8.70 

(4.87) 

1.55 

(0.24) 

0.4984 (0.0713) 0.5130 (0.0044) −5066.44 p < 10−20 0.1177 

WIG-Info MG 0.6751 
(0.0129) 

0.9538 
(0.000374) 

+∞ 2 +∞ 2 0.5 0.5 −4994.399   

MSymHL 0.6566 
(0.0449) 

0.6559 
(0.3306) 

11.01 (0.98) 1.64 (1.52) ηL νL 0.5 0.5 −4944.953 p < 10−20  

MHL 0.6569 

(0.0149) 

0.6580 

(0.5375) 

8.03 (1.03) 1.79 (2.10) 17.47 

(4.32) 

1.52 

(5.19) 

0.4869 (0.0542) 0.4995 (0.0043) −4943.265 p < 10−20 0.1849 

WIG-Media MG 0.7268 
(0.0159) 

1.4507 
(0.000570) 

+∞ 2 +∞ 2 0.5 0.5 −5710.793   

MSymHL 0.7111 
(0.0217) 

0.9420 
(0.1099) 

4.89 (1.89) 2.23 (0.09) ηL νL 0.5 0.5 −5633.865 p < 10−20  

MHL 0.7125 
(0.0159) 

0.9517 
(0.1842) 

3.86 (3.82) 2.55 (0.17) 8.47 
(3.99) 

1.86 
(0.36) 

0.4835 (0.0363) 0.5047 (0.0042) −5630.197 p < 10−20 0.0255 

WIG-Nrchom MG 0.8617 
(0.0138) 

1.0862 
(0.000427) 

+∞ 2 +∞ 2 0.5 0.5 −5152.197   

MSymHL 0.8244 
(0.1070) 

0.4692 
(0.3888) 

5.30 (0.15) 1.42 (2.37) ηL νL 0.5 0.5 −4906.878 p < 10−20  

MHL 0.8213 
(0.0672) 

0.4652 
(0.2757) 

6.87 
(15.83) 

1.33 (0.18) 3.75 
(0.27) 

1.64 
(0.59) 

0.5273 (0.0626) 0.5038 (0.0046) −4901.192 p < 10−20 0.0034 

WIG-Paliwa MG 1.0841 
(0.0153) 

1.3379 
(0.000526) 

+∞ 2 +∞ 2 0.5 0.5 −5590.365   

MSymHL 1.1061 
(0.1051) 

0.8803 
(0.2611) 

8.14 (0.64) 1.73 (0.55) ηL νL 0.5 0.5 −5526.729 p < 10−20  

MHL 1.1074 
(0.0147) 

0.8855 
(0.0330) 

14.86 (2.00) 1.61 (1.23) 6.48 
(2.84) 

1.76 
(2.28) 

0.5103 (0.0333) 0.5013 (0.0044) −5525.163 p < 10−20 0.2089 
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Table 1. (Continued). 

Index Model β σ2 ηL υL ηR υR α P (zt < 0) Loglik p-value of LR test 

MG MSymHL 

WIG-Spozyw MG 0.6334 
(0.0161) 

1.4781 
(0.000581) 

+∞ 2 +∞ 2 0.5 0.5 −5736.596   

MSymHL 0.5765 
(0.0365) 

0.8718 
(0.2092) 

4.86 (0.43) 2.00 (0.89) ηL νL 0.5 0.5 −5629.440 p < 10−20  

MHL 0.5774 
(0.0582) 

0.8711 
(0.1165) 

4.77 (6.97) 2.13 (0.27) 5.18 
(8.44) 

1.85 
(1.35) 

0.5012 (0.2077) 0.5089 (0.0044) −5627.984 p < 10−20 0.2332 

WIG-Telekom MG 0.6752 
(0.0181) 

1.8720 
(0.000735) 

+∞ 2 +∞ 2 0.5 0.5 −6014.624   

MSymHL 0.6536 
(0.0480) 

1.0100 
(0.2053) 

4.03 (1.44) 2.40 (1.66) ηL νL 0.5 0.5 −5849.315 p < 10−20  

MHL 0.6547 
(0.0472) 

1.0123 
(0.0628) 

3.70 (2.99) 2.67 (0.19) 4.68 
(2.89) 

2.10 
(0.28) 

0.4997 (0.0424) 0.5118 (0.0043) −5847.148 p < 10−20 0.1145 
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Figure 1. Estimated CAPM lines for WIG-Nrchom against the data of different frequency. 

 
Figure 2. Estimated CAPM lines for WIG-Paliwa against the data of different frequency. 

In the case of WIG-Nrchom, depicted in Figure 1, the slope of the CAPM line becomes steeper as the 

frequency of the data decreases. Daily data suggests that β < 1 for both models, but estimation based on the 

weekly time series results in 𝛽̂ that is almost equal to one. In the case of monthly data, inference about β differs 

across models, where model MG yields 𝛽̂ ≈ 1.1560 (with the standard error 0.0609) and model MHL gives 

𝛽̂ ≈ 1.0000 (with the standard error 0.000885). The quarterly data set supports β < 1 for both models. 

The results of analysis of the second case (WIG-Paliwa) are summarised in Figure 2. The point estimates 

of the β are relatively similar in model MG and MHL for each analysed frequency of the data. However, they 

decrease as the frequency of data decreases. In particular, the daily data suggests that β > 1, and the weekly 

frequency gives a result where β is almost equal to one in both models. The monthly and quarterly series 

indicate that β < 1. 

5. Conclusion 

In this paper, we analysed CAPM regression under a class of distributions allowing for various exceptions 

from the Normal family. Namely, we assume the error term belongs to the generalised asymmetric student-t 

class that Harvey and Lange[34] elaborated, allowing for skewness and asymmetric tail thickness. The Harvey 

and Lange[34] generalisation unifies the student-t family of distributions with the GED (Generalised Error 

Distributions) class in an elegant parametrisation. We focused on the Warsaw Stock Exchange (WSE) indices 

and analysed estimates of the β parameter for a set of selected branch sub-indices. 

For most analysed time series, the data suggests that β is estimated to be larger in the case of the Gaussian 

error term compared to models with error terms allowing for heavy tails and asymmetry. However, the risk 
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assessment based on β is almost the same for all non-Gaussian specifications, as the β parameter is estimated 

to be nearly the same value. The data does not strongly support the two-piece mechanism enforcing asymmetry 

of the distribution of the error term. Only in the case of WIG-Nrchom and WIG-Media does the unconstrained 

model receive more vital data support, and the restriction to the symmetric distribution is rejected at reasonable 

level of statistical significance. All remaining time series do not support the asymmetry obtained by the two-

piece mechanism. 

In the paper, we also demonstrated how risk assessment—elaborated on the basis of estimation of the β 

parameter—may change with respect to the frequency of analysed time series. The main conclusion that arises 

from our research is that estimation of the β parameter may change across models with different assumptions 

imposed on the distribution of the error term and, more importantly, across different data frequencies. 

Consequently, the risk assessment resulting from the estimated CAPM model may not correspond to the 

analysed financial instrument only. The frequency at which the researcher observes the analysed time series 

plays as important role as the original choice of the instrument. 
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Appendix 

 

Figure A1. Estimated CAPM lines, the case of daily data. 

 
Figure A2. Estimated CAPM lines, the case of weekly data.  
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Figure A3. Estimated CAPM lines, the case of monthly data. 

 
Figure A4. Estimated CAPM lines, the case of quarterly data. 


