
Computer Software and Media Applications 2024, 7(1), 6736.

https://doi.org/10.24294/csma.v7i1.6736

1

Article

Mockplug: A high-fidelity mocking tool for plugging functional

requirements into existing web applications

Diego Firmenich1,*, Leonardo Morales1,2,3, Gastón Mura 1, Nicolás Calfuquir 1

1 DIT, Departamento de Informática Trelew, Facultad de Ingeniería, Universidad Nacional de la Patagonia, Comodoro Rivadavia U9100,

Argentina
2 Patagonian Institute of Social and Human Sciences (IPCSH), Centro Nacional Patagónico, National Council for Scientific and Technical

Research, Puerto Madryn U9120, Argentina
3 Imaging Science Laboratory, Department of Electrical and Computer Engineering, Universidad Nacional del Sur, Bahía Blanca B8000,

Argentina

* Corresponding author: Diego Firmenich, dafirmenich@ing.unp.edu.ar

Abstract: Mockplug is a browser extension that allows end users to specify their

requirements for any existing web application through high-fidelity mockups. These mockups

are built based on web augmentation techniques. This new way of specifying the

requirements contains the intrinsic potential that the mockup is built on top of the application

itself with elements of the same nature, containing technical information about the

requirements in relation to application components from its origin automatically. This has

great potential when it comes to being used as an input during the software development

process. In this article, we disclose and describe the use and potential of this tool in two

totally different approaches to building web software.

Keywords: web engineering; web applications; requirements engineering

1. Introduction

The use of mockups and prototyping techniques in software development has

been a longstanding practice, dating back several decades. These methods have been

recognized for their effectiveness in facilitating communication between engineers

and end-users [1,2].

In recent years, there has been a shift towards more user-centric approaches,

where end-users are actively involved in the requirements definition process. Tools

that allow end-users to express their needs using text and layout tools have gained

prominence [3,4]. These tools empower end-users to visually specify their

requirements, leading to a better understanding of their needs by the development

team.

Some model-driven approaches, such as Mockup-driven development [5],

propose the evolution of prototypes into more formal models. However, despite their

potential benefits, the adoption of such approaches is not widespread due to

methodological challenges [6].

Overall, while mockups and prototyping remain valuable techniques in software

development, the trend is towards greater involvement of end-users in the

requirements definition process, facilitated by user-friendly tools that enable them to

express their needs more effectively.

Mockplug is an innovative tool that empowers end-users to create high-fidelity

mockups directly within existing web applications. By leveraging the existing

CITATION

Firmenich D, Morales L, Mura G,

Calfuquir N. Mockplug: A high-

fidelity mocking tool for plugging

functional requirements into existing

web applications. Computer Software

and Media Applications. 2024; 7(1):

6736.

https://doi.org/10.24294/csma.v7i1.6736

ARTICLE INFO

Received: 29 May 2024

Accepted: 19 June 2024

Available online: 5 September 2024

COPYRIGHT

Copyright © 2024 by author(s).

Computer Software and Media

Applications is published by EnPress

Publisher, LLC. This work is licensed

under the Creative Commons

Attribution (CC BY) license.

https://creativecommons.org/licenses/

by/4.0/

Computer Software and Media Applications 2024, 7(1), 6736.

2

application as a canvas, Mockplug streamlines the mockup creation process and

facilitates more accurate representation of user needs.

One of the key advantages of Mockplug is its augmentation techniques, which

enable end-users to interact with the web application in a familiar environment. By

allowing users to select, remove, move, and add elements within the application,

Mockplug ensures that the mockups closely align with the userôs requirements and

preferences. Moreover, the ability to collect components from different parts of the

same application or even from different web applications enhances the flexibility and

customization options available to end-users. This feature enables users to leverage

existing design elements efficiently and facilitates the creation of comprehensive and

cohesive mockups.

Overall, Mockplug is a valuable tool for enhancing the collaboration between

end-users and developers in the software development process. By providing users

with the means to visually specify their needs directly within the application

interface, Mockplug facilitates clearer communication and promotes a more user-

centric approach to design and development.

Compared to traditional mockup methods, this approach offers significant

advantages. Firstly, users are spared the tedious task of starting their designs from

scratch or constantly updating them with each app version. This saves time and

effort, allowing for a more efficient workflow.

Secondly, these new artifacts for requirement definition not only make the

process quicker and more visually intuitive, but also offer a unique advantage. By

using the same elements as the application itself, they can potentially incorporate

functionalities that directly interact with the original software. This means that users

can create mockups that not only represent the look and feel of the final product but

also simulate its functionality to some extent.

From the developerôs perspective, this represents a paradigm shift in how

requirements are defined and understood. It opens up new possibilities for

collaboration and innovation. Developers can gain insights into user needs more

directly, leading to more accurate and effective software development. Additionally,

depending on the nature of the software being developed, this approach can offer

various benefits. For instance, in complex projects, it can lead to better alignment

between design and development teams, reducing the risk of misunderstandings or

misinterpretations of requirements.

In the realm of traditional web application development, integrating this type of

requirement definition into the process offers notable advantages. It simplifies

requirements elicitation, making it easier for developers to understand and

implement user needs. Additionally, it has the potential to influence developersô

integrated development environments (IDEs), streamlining the development process

further [7].

In the context of web augmentation artifacts created by end users, exemplified

by platforms like Crowdmock [8], these requirements serve a crucial role. Users,

even those without extensive programming skills, can construct and share software

using various tools. One significant advantage is the automatic generation of source

code, which includes all references to the relevant elements of interest in the DOM

tree. We refer to these references as DOM Elements of Interest (DEOIs). This

Computer Software and Media Applications 2024, 7(1), 6736.

3

eliminates the need for users to manually search for these references in the

Document Object Model (DOM), enhancing efficiency and usability.

This offers the advantage of automatically generating source code with all

DEOIs, eliminating the need for users to manually search for these references on the

target site and hard-code them in the source. Furthermore, this automation opens up

the possibility for end users of the artifact to actively participate in the ongoing

maintenance of the artifact, including updating DEOI references [9], which is often

required when elements of the DOM Tree of web applications change for any reason.

Since Mockplug is a browser extension, users simply need to visit the extension

marketplace and install it in their browser. Currently, it is available exclusively for

the Chrome browser and is seamlessly integrated with the Trello application. This

integration allows users to request permission to add stories to the Kanban board lists

of developers who own the web applications of interest. Additionally, there are two

discontinued branches for the Firefox browser in the repository. These branches,

instead of being integrated with Trello, are integrated with the CrowdMock platform

[8].

In this article, we present this tool in a stable experimental version. In section 2,

we describe the fundamental background that gives rise to its operation. In section 3,

we outline its architecture, main functionalities, and how to obtain the software for

evaluation. In section 4, we provide two examples of usage in two completely

different scenarios where we have conducted experiments. Finally, in section 5, we

incorporate a discussion section on relevant aspects, followed by the conclusions in

section 6.

2. Web augmentation background

The web augmentation technique is an approach to software development that

dispenses with the creation of a new application, opting instead for the modification

and enhancement of an existing website. Through this methodology, additional

content is superimposed, the design is altered and the siteôs navigation capabilities

are expanded, with the purpose of adapting and personalizing the userôs experience,

in order to improve performance and satisfaction [10].

We should think of this alteration as a layer over the original site, thus

highlighting the non-intrusive character of the technique [11].

Web augmentation helps to meet user needs that were not originally identified

or taken into account during web page design [12]. The adaptations made on web

pages (in content, style or behavior) can take place on the web server, using a special

proxy, or by modifying the web pages displayed in the web browser. The second

case, called client-side, is the most common. Regarding the collaborative aspect, a

web augmentation tool can be personal, can be shared and edited with other users,

asynchronously or synchronously. The second approach (collaborative development)

has gained greater prominence in recent years.

In the paper of Aldalur et al. [11], the authors highlight the benefits of using WA

tools in End-User Development environments, referred to as ñprogramming to

achieve the result of a program primarily for personal, rather than public useò [13].

This is because web augmentation helps to realize this vision in the context of the

Computer Software and Media Applications 2024, 7(1), 6736.

4

web, as it helps to meet user needs that were not identified or considered during the

initial design of the website. At the center of this dynamic, initiatives emerge such as

the Web platform proposed for modeling web augmentations that abstract the back-

end complexity for users of client-server applications [14]. As a result, the authors

developed a tool that provides an end-to-end web experience for the design and

execution of Web Augmentations, which require both client-side and server-side

components.

3. Software description

3.1. Software architecture

As a browser extension, Mockplug comprises three main components that

interact with each other through asynchronous messaging, as illustrated in Figure 1.

The primary interface of the application is housed within the popup component,

which constructs and presents the main user interface.

Figure 1. Message handling examples between the main Mockplug components.

The other two fundamental components are the background and the content.

The background component handles tasks such as image processing, preference

management, and communication with the Trello REST API. Conversely, the content

component is responsible for interacting with the augmented web application

through its DOM tree. Both components initialize listeners to await incoming

Computer Software and Media Applications 2024, 7(1), 6736.

5

messages from other components.

There is a message exchange between the content and background components,

but only the content component requests the background to execute certain actions

and return results. Conversely, there are no requests from the background component

to the content component. Unlike the background and content components, the

popup component does not listen for messages. Instead, it serves as the graphical

interface of the extension and triggers actions for the other components.

Figure 2 illustrates the Mockplug class diagram, showcasing the

implementation of design patterns such as the factory method for creating different

widget types, strategy for handling diverse methods of element insertion into the

DOM tree of the specified web application, and command for seamless undo and

redo functionalities.

Figure 2. Mockplug class diagram.

3.2. Software functionalities

Figure 3 displays the Mockplug main menu, providing the end user with the

ability to drag and drop elements onto the website to define a high-fidelity mockup.

In this example, the user has added a red button labeled óYouTube Videosô and a

thought annotation to clarify their requirement. Each added element features its own

menu of options, allowing the user to perform various actions related to it. In Figure

3, the menu options for the thought annotation are highlighted, enabling the user to

move it, adjust font size, remove it, or flip it horizontally or vertically.

Computer Software and Media Applications 2024, 7(1), 6736.

6

Figure 3. Mockplug main menu.

In addition to buttons and thought bubbles, users can also add form, content,

and annotation widgets from the main menu. These include text inputs, passwords,

selections, lists, paragraphs, images, and post-its, among others. Furthermore, users

have the option to select existing elements within the web application and

incorporate them into the mockup. Additionally, users can gather new elements from

any location on the web for later use in the mockup. In Figure 4, for example, videos

were collected from YouTube.

Figure 4. Mockplug pocket menu.

3.3. Software distribution

The Chrome Web Store is the official online store for users of the Google

Chrome browser. By way of contextualization, in February 2024, Google Chrome

absorbed more than 64% of the browser market [15,16]. Considering that there are

approximately 5.3 billion monthly active Internet users, an estimated 3.46 billion

Computer Software and Media Applications 2024, 7(1), 6736.

7

people worldwide use it. In the Chrome Web Store, users can choose themes,

extensions and apps to customize their browsing experience. Mockplug is distributed

through this official repository. Figure 5 shows the front page of the extensionôs

entry in the Chrome Web Store (https://bit.ly/mockplug).

Figure 5. Mockplug in chrome web store.

4. Illustrative examples

4.1. Traditional web development

The data collection process described in the following example involves

scientists equipped with a mobile application for recording flora-related data directly

in situ [17]. These mobile applications facilitate real-time data capture during

extensive flora surveying expeditions conducted along the pathways of each

campaign. Upon completion of these expeditions, scientists return to the laboratory,

where the collected data is synchronized with the LeafLab web application.

Figure 6 illustrates a section of the LeafLab interface, showing a scientist

reviewing the list of visits conducted along a track.

From this part of the application, the scientist can download a spreadsheet with

the collected data, as well as view the photos taken during each survey, and finally

access the complete list of species identified during the same. However, the user

desires the ability to visualize the routes taken on a map, with each survey point

represented by a red marker.

Figure 7 illustrates how, to specify their requirement, using Mockplug on the

LeafLab web application accessed in the laboratory via their web browser, the user

has added a map displaying the routes taken in some location. To indicate how to

access the map, they have added a link titled ómapô in each of the previously

described menu options. In this way, they have added five elements: two links, a

representative map figure, and also clarified their needs by incorporating two

Computer Software and Media Applications 2024, 7(1), 6736.

8

annotations, one in the form of a thought bubble and the other in the form of a post-it

note.

Figure 6. LeafLab web application.

Figure 7. Mockplug modeling over leaf lab web application example.

Then, as depicted in the same Figure 7, the user communicates their

requirement by completing a form where they provide a title for their need and

accompany it with a user story. As illustrated in Figure 8, this user story is

automatically listed on the Kanban boards of the Leaf Lab application developers.

The user story includes an image of the mockup model created by the user, and once

it is on a Trello card, developers can understand the user requirements at a glance.

Computer Software and Media Applications 2024, 7(1), 6736.

9

Figure 8. Mockplug model on Trello.

4.2. Web augmentation development

In this example, we illustrate how Mockplug enables end users to create web

augmentation artifacts based on defined requirements. As depicted in Figure 9, a

Wikipedia user has extracted elements from YouTube search results corresponding to

the title of the Wikipedia page they were reading. Specifically, the requirement

dictates that upon browsing a Wikipedia page, the first four videos from the YouTube

search results are automatically embedded.

Figure 9. Mockplug model version for Wikitube artifact.

This requirement is indeed authentic, as evidenced by the existence of the

Wikitube augmentation artifact shared by a member of the GreasyFork augmentation

artifacts community (https://greasyfork.org/es/scripts/12423-wikitube-youtube-on-

