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Abstract: Artificial intelligence-empowered music processing is a domain that involves the 

use of artificial intelligence technologies to enhance music analysis, understanding, and 

generation. This field encompasses a variety of tasks from music generation to music 

comprehension. In practical applications, the complexity of interwoven tasks, differences in 

data representation, scattered distribution of tool resources, and the threshold of professional 

music knowledge often become barriers that hinder developers from smoothly carrying out 

generative tasks. Therefore, it is essential to establish a system that can automatically analyze 

their needs and invoke appropriate tools to simplify the music processing workflow. Inspired 

by the recent success of Large Language Models (LLMs) in task automation, we have 

developed a system named LongMergent, which integrates numerous music-related tools and 

autonomous workflows to address user requirements. By granting users the freedom to 

effortlessly combine tools, this system provides a seamless and rich musical experience. 

Keywords: music generation; Large Language Models; audio mixing strategies 

1. Introduction 

The application of artificial intelligence in the field of music can help musicians 

and listeners experience and participate in music in entirely new ways. This 

application domain covers a variety of basic functions of music generation, generating 

music with multiple characteristics through the collaborative effort of various 

functions. Music understanding and generation are the results of the integration of 

multiple dimensions, which include many subprocesses (such as music retrieval, 

music style analysis, audio processing, etc.). 

In the field of music understanding, Gómez and others proposed the 

standardization method of MPEG-7 audio and music description, which improved the 

standardization and interoperability of score transcription and music information 

retrieval [1]. However, the method relies on specific descriptors and features and is 

not suitable for all types of music or audio content; Meng et al. proposed a deep 

convolutional neural network (DCNNs) based music style classification model, which 

can automatically analyze music audio files, extract features, and classify music styles 

based on these features [2]. However, it requires a large amount of computing 

resources for training and inference, and its decision-making process lacks 

transparency. 

In the field of music generation, Hadjeres and others proposed the DeepBach 

model for harmonic generation of Bach’s choral music [3], but it is limited to 

producing melodies of a specific style; Chen and others proposed the HiFiSinger 

model, a high-quality singing voice synthesis system capable of generating high-
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fidelity singing voices, but it requires a large amount of computing resources and 

training data [4]. 

Integrating the research findings of predecessors, it is not difficult to find that 

how to reduce the cost of computation is an urgent problem to be solved. At the same 

time, it is also necessary to take into account the unification of input-output formats 

and the integration of tasks [5]. Therefore, building a system that can efficiently 

integrate various methods of processing music according to the requests of users with 

different professional levels, and ultimately feedback to the users a music that can 

achieve the expected results in all aspects, is still a direction worth exploring. 

The success of some other models (such as HuggingGPT) has provided us with a 

lot of valuable experience in exploring the development of a system that can assist in 

various music-related tasks [6]. In this paper, we will use the LLM model as the task 

scheduling hub to guide the cooperation between tasks. 

Overall, it is not an easy task to meet the needs of a wide range of users to 

generate music, mainly reflected in the following three points: 

a) The tools are scattered and dispersed. The diversity of music-related tasks leads 

to the dispersion of corresponding tools, which may be distributed across 

different platforms, such as open-source communities, software applications, or 

retrieval tasks hosted through Web APIs [7]. This means that to integrate these 

tools, it is necessary to address compatibility and standardization of interfaces 

between different platforms, otherwise, it is difficult to effectively integrate data 

from various platforms; 

b) The complexity of music understanding. Music is a complex art form involving 

multiple levels such as melody, harmony, and rhythm [8]. LLMs need to be able 

to understand and process these complex musical elements, which requires the 

model to have a high level of musical theoretical knowledge and audio analysis 

capabilities; 

c) Non-professional users find it difficult to generate high-quality long-text audio. 

Most of the current model’s generative corpora are limited in scale, making it 

difficult to extract corpora that satisfy long-text audio in one go, thus causing 

most of the generated results to be limited by duration. 

To address the aforementioned issues, we introduce LongMergent, a system 

specifically designed to meet these challenges. The main purpose of this system is to 

free users from being confined to a single music generation tool and to maximize their 

needs in terms of music performance. LongMergent can be understood as a central 

dispatch system that uses the mechanism of LLM as a controller and a multitude of 

sub-tools related to music generation to identify user inputs and provide processed 

results. The detailed scheduling process is shown in Figure 1. To ensure seamless 

operation between each sub-tool, LongMergent strictly stipulates the input and output 

formats of each interface, confirming that the output format of the previous interface 

can be recognized by the next interface. In addition, each step of LongMergent’s 

output can be taken out as a music sample on its own, and all samples can be artificially 

modified to form perfect audio clips, which to some extent can also provide some 

convenience for users with a foundation in music. 
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Figure 1. LongMergent system architecture and workflow. 

In summary, LongMergent has made the following significant contributions: 

a) It has created an integrated music processing system that provides a unified 

platform for handling music generation and understanding tasks. This integration 

reduces the need for users to switch between different tools and platforms, 

fostering collaboration among various music tools and enhancing work 

efficiency. 

b) It leverages the powerful capabilities of LLMs to automate the processing of 

music tasks, including task planning, tool selection, and response generation. 

This enables the system to understand and break down complex user requests. 

Additionally, it has developed middleware capable of understanding and 

converting different music modalities (such as MIDI, audio, and sheet music), 

significantly reducing the difficulty and complexity of tasks. 

c) It introduces an audio fusion mechanism that supports the merging of multiple 

short audio files into a long audio file while maintaining harmony. This allows 

non-professional users to fully express their needs through the system without the 

requirement of accessing a large-scale corpus. 

2. Related work 

2.1. AI-enabled music generation 

Artificial Intelligence-Empowered Music Generation refers to the automated 

creation and generation of music pieces that align with specific styles, emotions, or 

requirements through artificial intelligence technologies. This provides creators with 

innovative tools and inspiration, enhances the efficiency and diversity of music 

production [9]. 

Generally, the field of music encompasses a variety of generation and 

understanding tasks, such as generating music from text descriptions [10], generating 

melodies from lyrics [3], classifying music [11], and processing audio. Among the 

many models, several have shown outstanding performance. For instance, Wu et al. 

proposed the Clamp model, which can retrieve symbolic music through text 

descriptions, effectively addressing cross-modal retrieval tasks and significantly 
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improving the accuracy of audio retrieval [12]. Wu et al. proposed a multi-channel 

non-negative matrix factorization (NMF) method for track separation [12,13]. Engel 

et al. proposed GANSynth, an adversarial network-based audio synthesis model 

capable of generating sounds of various musical instruments [14]. Hershey et al. 

proposed a method combining deep clustering and traditional networks for the 

separation and classification of music signals, effectively separating and classifying 

complex music signals by integrating different technologies [15]. Delving deeper, 

music is a hybrid art form that weaves together various elements such as chords, 

rhythm, and melody to synthesize vivid and harmonious content [16]. Previous works 

scored well in generating singular, straightforward styles of content, but often 

struggled with complex music tasks, neglecting one aspect for another. 

From a deeper analytical perspective, music generation necessitates handling 

multi-dimensional artistic elements such as chord progressions, rhythmic patterns, and 

emotional mappings. Early models like DeepBach were constrained by single-style 

generation capabilities, while HiFiSinger relied heavily on high computational 

resources. Although Music Transformer captures long-range dependencies through 

self-attention mechanisms, its monolithic architecture struggles to dynamically adapt 

to complex task requirements. In contrast, LongMergent employs an LLM-driven tool 

orchestration framework that integrates diverse music tools via standardized interfaces 

(see Table 1). This architecture supports cross-modal transformations, significantly 

enhancing system flexibility. For instance, when processing a request to “generate a 

rock-style song based on World Cup themes”, Music Transformer would require 

training a specialized model again, whereas LongMergent can dynamically invoke 

tools like ChatGPT for lyric generation, ROC for melody creation, and Basic-merge 

for mixing. This reduces the total workflow time from traditional hours to tens of 

minutes. 

Therefore, in this paper, we will discuss how to unify music data formats and 

utilize Large Language Models to autonomously complete music generation tasks. 

2.2. Natural language large models 

The field of natural language processing is undergoing a revolutionary shift due 

to the emergence of Large Language Models (LLMs). Recently, LLMs have shown 

great performance in solving natural language processing (NLP) tasks, gaining favor 

among researchers. The immense potential of LLMs has also inspired and directly 

promoted many emerging technologies, such as context learning [17], natural 

language instruction learning [18], and multimodal learning [19]. With the widespread 

application of these technologies, the processing capabilities of LLMs have been 

further enhanced. Based on these LLM capabilities, many researchers have expanded 

the scope of LLMs to various topics, such as text generation and image processing. 

They draw on the idea of positioning LLMs as central schedulers, orchestrating 

various domain-specific expert models to solve complex artificial intelligence tasks. 

As a result, many models centered on LLMs have emerged. For instance, Liu et al. 

explored the application prospects of LLMs in music processing and proposed a 

multimodal music understanding and generation framework based on LLMs [20]; 

Chen et al. studied the application of Audio LLMs in voice quality assessment, 
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enabling Audio LLMs to perceive voice quality in a human—like manner for the first 

time [21]; Zeng et al. (2024) designed a trainable pipeline for LLM function calling in 

enterprise scenarios, enhancing the response and operation efficiency of large models 

in specific business settings [22]; Julian et al. combined LLMs with function calling 

technology to build smarter and more human—centred AI Agents. 

However, existing models focused on music generation often produce rigid audio 

with monotonous melodies. LongMergent aims to break new ground in three ways: 

a) Music Modality Adaptation: It will create middleware to support MIDI, audio, 

and sheet music conversions, resolving the issue of fragmented music data 

formats. 

b) Dynamic Weight Allocation Mechanism: An context—aware weight adjustment 

algorithm will be introduced during audio mixing to ensure the generated long—

audio is coherent. 

c) Domain—specific Knowledge Infusion: By leveraging the MELOLIB database, 

LongMergent will infuse music theory into LLMs, significantly boosting their 

accuracy in chord - matching tasks. 

3. LongMergent 

LongMergent is a comprehensive system that, based on ensuring the basic 

capabilities of Large Language Models (LLMs), incorporates datasets and toolkits 

from multiple sources to collaborate and complete tasks. LongMergent designs an 

autonomous workflow empowered by LLMs, including three key skills: Task planner, 

tool selector, and response generator. These skills, combined with the music-related 

tools that constitute the task executor, form a multifunctional system capable of 

executing various applications. In this section, we will carefully analyze each level of 

this system, including task allocation planning, autonomous workflow, music 

generation process, and music synthesis process, to further explore its functions and 

contributions to the field of music processing. 

3.1. Task allocation and tool coordination 

Table 1 provides a comprehensive overview of the music-related tasks and 

representative tools currently collected in LongMergent. The overall tasks can be 

summarized into the following three parts: 

a) Auxiliary Search Tasks. These tasks include internet searches and matching 

various audio processing toolkits. Internet searches involve using the Google API 

for text searches to select song lyrics that meet user needs for further creation, 

and using the Spotify API for music searches to locate specified musical works 

and extract their musical features. 

b) Music Understanding Tasks. Through the analysis and processing of audio data, 

the LongMergent system can categorize music into different styles, genres, 

emotions, etc., such as distinguishing whether a song is pop, rock, or classical. 

Other important functions at the understanding level include track separation, 

sentiment analysis, and style identification. 

c) Music Generation Tasks. With tools like ROC, the LongMergent system can 

transform input text descriptions into corresponding musical notation, thereby 
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generating complete musical works, such as creating a piece of soothing and 

beautiful music that matches a description of a natural landscape. Other 

indispensable functions include vocal synthesis, timbre conversion, 

accompaniment generation, and song synthesis. The quality of the music 

generated by the LongMergent system is the most direct feedback from this task. 

Table 1. Music processing tasks. 

Task Input Output Task Type Example Tool 

lyric-generation text text Auxiliary ChatGPT 

lyric-to-melody text Symbolic music Generation ROC 

lyrics-to-audio text audio Generation DiffSinger 

timbre-transfer audio audio Generation DDSP 

accompaniment audio audio Generation GetMusic 

audio-mixing audio audio Generation Basic-merge 

music-classification audio text Understanding Wav2vec2 

music-separation audio audio Understanding Demucs 

Additionally, LongMergent illustrates the use of three primary data formats 

within the system: ⅰ) Text, which includes lyrics, genres, and any other attributes 

related to music; ⅱ) Sheet Music, represented in the form of MIDI files; ⅲ) Audio. 

3.2. Autonomous workflow 

3.2.1. Skills 

The skill module is composed of a task planner, tool selector, and response 

generator. 

The task planner is the brain of the system, responsible for breaking down users’ 

natural language requests into executable sub-tasks. It leverages the context learning 

capabilities of Large Language Models, combined with preset task planning templates 

and a wealth of example data, to accurately understand user needs and generate 

reasonable task decomposition schemes. For example, for a request like “compose a 

song with a rock style”, the task planner might break down the task into sub-tasks such 

as lyric creation, melody generation, and arrangement (selecting rock-style 

instruments and rhythm patterns), and determine their execution order and data 

interaction methods. 

The tool selector is responsible for choosing the most suitable tools for each sub-

task from a multitude of available music tools. It maintains a tool library that includes 

information on music tools from various sources (such as Hugging Face, GitHub, 

various APIs, etc.). When selecting tools, it matches the current sub-task requirements 

with the tool attributes in the tool library, obtains the most suitable tool 

recommendations through targeted prompting and inquiries with the large language 

model, and records the reasons for selection. 

The response generator is responsible for integrating the intermediate results after 

each sub-task execution into a coherent and understandable response returned to the 

user. It utilizes the text generation capabilities of Large Language Models to organize 

and package data based on the task processing determined by the task planner and the 
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tool execution results provided by the tool selector. It provides considerate feedback 

by reasonably organizing data in different formats and types (such as text, audio, sheet 

music, etc.), meeting users’ expectations for the results. 

3.2.2. Plugins 

Plugins play a role in handling special functions throughout the system, such as 

extracting music spectral features and converting music styles, which require a variety 

of plugins to accomplish. The main plugins are as follows: 

Hugging Face Music Wav2vec2. The Wav2vec2 model provided by the Hugging 

Face platform plays an important role in the field of music processing, especially in 

audio feature extraction and processing. It can extract valuable feature information 

from music audio, such as vocal characteristics and musical rhythm features, providing 

foundational data for tasks like music classification and transcription. 

DDSP Module. The DDSP module provides LongMergent with powerful audio 

processing capabilities, especially in timbre conversion and audio synthesis. It 

achieves flexible adjustment and synthesis of musical timbres through differentiable 

processing of audio signals. In timbre conversion tasks, DDSP can analyze and model 

the timbre of input music and then convert it to the target timbre according to user 

needs, such as converting piano timbre to violin timbre or creating unique hybrid 

timbres. 

API Google Audio Editing Module. Through audio-related APIs provided by 

Google, the LongMergent system can achieve efficient audio mixing and editing 

operations. These operations are crucial for music production and editing, helping 

users to flexibly handle musical materials. In music mixing tasks, users can use this 

API to mix multiple audio tracks (such as performances of different instruments, 

vocals, etc.), adjust the volume, balance, spatial position, and other parameters of each 

track to create rich and harmonious musical effects. At the same time, in audio editing, 

it can precisely cut, splice, and edit music to meet users’ personalized needs for music 

segments. 

User-Defined Solutions. To meet users’ personalized needs, the LongMergent 

system allows users to customize solutions. Users can develop or integrate their own 

music processing tools or algorithms according to their specific needs and creativity 

and integrate them into the system. 

Other Built-in Features. The system itself has some built-in music processing 

functions, which are based on the core algorithms and technologies of LongMergent 

and can meet some common music processing needs. 

3.2.3. Applications 

The specific application modules are the actual output modules of the entire 

system; all orchestration is aimed at invoking these powerful tools to produce 

outstanding works. The main application modules are as follows: 

a) Song Creation Module. When a user requests to create a song, the task planner 

breaks down the task into sub-tasks such as lyric creation, melody generation, 

arrangement, and mixing. The tool selector chooses appropriate tools based on 

the sub-task requirements, such as selecting a lyric generation model from 

Hugging Face, a melody generation algorithm from the backend generation tasks, 

and suitable arrangement and mixing tools from the plugins. The task executor is 
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responsible for executing these tools, generating content for each part, and 

finally, the response generator integrates these contents into a complete song and 

presents it to the user. With this feature, users can obtain a complete song that 

meets their requirements through simple natural language commands, such as 

“Help me create a romantic love song”, without the need for professional music 

creation knowledge and skills, greatly lowering the barrier to music creation. 

b) Music Analysis Feature. For music analysis requests, the task planner determines 

the specific direction of analysis, such as music style analysis, sentiment analysis, 

and instrument analysis, and breaks it down into corresponding sub-tasks. The 

tool selector chooses appropriate analysis tools, such as using Wav2vec2 for 

audio feature extraction, followed by music classification algorithms in the 

backend’s understanding tasks for categorization. The response generator 

presents the analysis results in an intuitive way to the user. Users can easily 

understand various attributes and characteristics of music, such as the style and 

emotional tendencies of unfamiliar music, which is significant for music 

appreciation, research, and education. 

c) Timbre Conversion Feature. In timbre conversion tasks, the task planner 

identifies the source and target timbres for conversion, the tool selector chooses 

timbre conversion tools like DDSP, the task executor performs the timbre 

conversion operations, and finally, the response generator displays the converted 

music. Users can easily transform the timbre of music with this feature, creating 

unique musical effects to meet the diverse needs in music creation and 

production. 

d) Score Transcription Feature. For score transcription tasks, the task planner takes 

the music audio file as input, the tool selector chooses suitable score transcription 

tools, the score transcription feature in the backend’s understanding tasks is 

executed to convert audio into sheet music, and finally, the response generator 

displays the transcribed score. 

e) Mixing Feature. In mixing tasks, the task planner determines the audio tracks and 

parameter requirements for mixing, the tool selector chooses mixing tools like 

the API Google Audio Mixing Editing, the task executor performs the audio 

mixing operations, and finally, the response generator displays the mixed music 

effect. Users can professionally mix multiple audio tracks to create the desired 

musical effects, meeting the needs for music mixing in music production and live 

performance scenarios, and enhancing the overall quality of music. 

3.3. Music generation 

The LongMergent system has various capabilities for generating music. Below, 

taking a specified set of lyrics as an example, we analyze how the system generates 

music step by step. 

3.3.1. Lyrics to melody 

Suppose the user inputs the lyrics “Sky blue awaits the misty rain, and I’m 

waiting for you”, the LongMergent system will determine that the user is using default 

parameters. The script first parses command line arguments to obtain the paths for the 

lyrics file, chord progression file, database, as well as parameters for whether to output 
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debug information and whether to automatically set the key based on the emotional 

tone of the lyrics. 

Next, it further analyzes the language of the lyrics. Based on the first two 

characters of the chord file, if it’s in Chinese, it generates the melody according to the 

common style of Chinese songs; if it’s in English, it follows the common style of 

English songs. In this example, Chinese is detected, so the melody is generated in the 

style of Chinese songs. 

For each line of the lyrics, the LongMergent system processes it differently based 

on structural values. It first selects melody fragments from the database based on 

conditions such as major key, whether it’s a chorus, lyric length, the last note of the 

previous musical segment, and chords. Selection follows the scoring function Si, 

defined as: 

𝑆𝑖 = α × 𝑠𝑖𝑚(𝐶, 𝐶𝑖) + β × (
𝐿

𝑙𝑒𝑛(𝑓𝑖)
) + γ × 𝑒𝑚𝑜(𝐿) (1) 

Here, Si is the i-th melody fragment’s score; α, β, and γ are weighting parameters. 

sim(C,Ci) measures the similarity between the current chord C and the fragment's 

chord Ci. L is the current lyric length, len(fi) is the fragment’s length, and emo(L) 

indicates the matching degree of emotion between the lyrics and fragment. The system 

selects the most suitable melody fragment based on the Si value. 

If the lyrics are short and there are candidate fragments, it calculates the language 

model score for further filtering; if no suitable fragments are found or the lyrics are 

too long, it splits the lyrics and repeats the search and splicing process, but the system 

will forcibly terminate the process after 10 repetitions to prevent falling into an infinite 

loop. 

If a match is successful, the system optimizes the selected melody fragments, 

including avoiding fragment overlap, adjusting the starting position of notes, removing 

rests and cadences, etc., to obtain the optimized melody. It also adjusts the alignment 

of chords and melody. The optimization function O is expressed as: 

𝑂(m1, m2, … , mn) = ∑ (𝐻𝑎𝑟𝑚𝑜𝑛𝑦(𝑚𝑖, 𝑚𝑖+1) + 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠(𝑚𝑖, 𝑚𝑖+1)
n−1

i=1
 (2) 

Here, m1,m2,…,mn are a series of melody fragments. Harmony(mi,mi + 1) denotes 

the harmony between two consecutive fragments, and Smoothness(mi,mi + 1) indicates 

their smoothness. This function minimizes dissonance and maximizes smoothness 

between melody fragments. 

After confirming that all optimization processes have been carried out, the system 

will save the generated melody (including all processed melody fragment splicing 

results), chords, song name, and lyrics (along with a list of lyric sentence lengths) as 

a MIDI file, completing the conversion process from lyrics to melody. The generated 

MIDI file is the melody generated based on the input lyrics. Depending on user 

requirements, it also decides whether to produce the corresponding WAV file. The 

detailed generation process is shown in Figure 2. 
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Figure 2. Song creation workflow in the LongMergent system. Illustrating the process where the agent’s task planner 

coordinates the tasks of lyric-to-melody (using ROC), lyric-to-audio (using DiffiSinger), and audio-mixing (using 

Basic-merge) to generate a song based on the input lyric, showing the task IDs, inputs, tools, and results at each stage. 

3.3.2. Lyrics to audio 

The LongMergent system does not directly generate a complete piece of music; 

instead, it generates melody and vocals separately and then merges them onto the same 

audio track. Thus, the previous step of generating a melody is just one part of the 

process. Once the melody is confirmed to be error-free, the next step—generating the 

vocal accompaniment—is executed. 

First, it is essential to confirm the availability of the necessary components, 

including phoneme encoders, speaker mapping dictionaries, and model-based 

vocoders, among other foundational elements. Next, the input is processed, with 

different preprocessing operations based on the type of input (defaulting to word-

level). In this example, using word-level input, the LongMergent system invokes the 

preprocess word-level input method. This method first replaces any polyphonic 

characters in the lyrics and then converts the lyrics into a sequence of phonetic sounds 

(pinyin). It then processes the information regarding the musical notes and their 

durations within the lyrics. For each word, its pinyin is translated into a sequence of 

phonemes, aligns the musical notes with the phoneme sequence, handles connected 

speech, and ensures that each phoneme has corresponding note and duration 

information. Finally, the phoneme sequence is encoded into the model’s input format, 

the musical notes are converted into MIDI IDs, the note durations are converted into 

floating-point numbers, and a dictionary item containing all relevant information (such 

as project name, text, phonemes, speaker ID, pitch MIDI values, note durations, and 

connected speech markers) is constructed. 

After confirming that the necessary synthetic elements are available, the next step 

is to combine these elements into a complete vocal sequence. The LongMergent 

system uses a model to infer an intermediate representation, which is then converted 
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into an audio waveform using the HiFiGAN vocoder. Finally, the generated audio file 

can be saved. 

3.3.3. Audio mixing 

After successfully generating the melody and vocals, the subsequent task is to 

finalize the process by organically merging the melody and vocals to obtain a 

harmonious piece of music. The LongMergent system calls upon the basic-merge 

module to perform the audio mixing operation. 

The LongMergent system passes the previously generated melody and vocals to 

the basic-merge model in the form of digital signals. The mixing rule involves adding 

corresponding sample points of two audio signals, A = [a1,a2,…,an] and B = 

[b1,b2,…,bn], with certain weight coefficients. If the lengths of the signals are the same, 

no additional processing is required; otherwise, alignment processing is performed, 

padding the end of the shorter audio signal with zeros until both signals are of equal 

length. The sample points of the mixed audio signal are represented as: 

𝑐𝑖 = ω1𝑎𝑖 + ω2𝑏𝑖 (3) 

where ω1 and ω2 are weight coefficients that users can adjust according to their needs 

to emphasize specific aspects. 

Beyond simple additive mixing, the model also supports the integration of other 

audio characteristics, such as volume and channel information. For instance, 

normalizing the volume of the two audio signals before mixing ensures that the 

resulting audio does not have excessively high or low volumes. If the input audio is 

stereo (with left and right channels), the model performs more complex mixing 

operations based on channel information, such as mixing the left channel of one audio 

with the right channel of another. However, regardless of the focus, the primary 

principle of fusion is to obtain a harmonious piece of music in any circumstance 

without compromising audio quality for the sake of highlighting a particular feature. 

After processing by the basic-merge model, the final audio data that meets the 

user’s requirements can be obtained, and this data can then be saved as a new WAV 

file. This step represents the final phase in transforming lyrics into a complete musical 

composition. 

4. Experiment and evaluation 

The following is a brief introduction to the basic setup of this experiment. 

4.1. Database and musical representation 

We utilize the widely adopted MELOLIB database for our experiments. The 

MELOLIB database is a music resource library specifically constructed to support 

tasks based on generating melodies from lyrics. It sources from a vast collection of 

musical works that have been gathered, organized, and preprocessed, encompassing a 

multitude of music styles, genres, and emotional expressions. This aims to provide a 

rich variety of materials for melody generation, ensuring that the generated melodies 

can accommodate the demands of different lyrics. Additionally, it offers numerous 

forms of musical representation, such as the arrangement of note pitches and timelines, 

whether a melody fragment is a chorus, and the chord representation of melodies, 
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precisely meeting users’ needs for specific characteristics. The details of this database 

are shown in Table 2. 

Table 2. Detailed information of the MELOLIB database. 

Statistical Item Value 

Average Track Length 3 min 15 s (standard deviation ± 45 s) 

Genre Distribution Pop 65%, Rock 20%, Electronic 10%, Other 5% 

Annotation Dimensions Melody/Chords/Emotion/Structure/Instruments 

Data Source Public Music Platforms (Spotify) and Professional Production Team 

Average Chord Complexity 4.2 

In this experiment, we will explore the quality of long-text audio synthesized 

using the LongMergent model and its similarity to individual sub-audio files. These 

sub-audio files are generated by the LongMergent system according to various style 

requirements, and the final long-text audio is assembled from different short-text audio 

files based on permutation combinations. We will set up four types of music styles, 

with five short-text audio files (not exceeding 30 s) for each style, and the long-text 

audio is synthesized from 2–3 short-text audio files of the same style. Consequently, 

we will assess the quality of the long-text audio based on corresponding evaluation 

metrics. 

4.2. Implementation details 

We input the desired music style into the dialogue interface, where the task 

planner invokes an LLM to parse our requirements and feeds back to the tool selector 

in the form of keywords. The tool selector determines the tasks as lyric-generation, 

lyric-to-melody, lyric-to-audio, and audio-mixing based on the received keywords, 

thereby dispatching tools such as ChatGPT, ROC, DiffiSinger, and basic-merge to 

accomplish the tasks. Finally, the response generator provides feedback on the results 

of each process in the form of text or WAV files. This describes the generation process 

of short-text audio files. Should we continue to synthesize long-text audio, we must 

re-express our needs in textual form in the dialogue box and upload the sub-audio files 

that require integration. Ultimately, we can obtain long-text audio files in six different 

styles. 

4.3. Compared models 

We first compare the long-text audio generated by the LongMergent system with 

the corresponding short-text audio to verify the integrity of its fusion. Subsequently, 

we will horizontally compare this data with corresponding data from other models that 

have outstanding performance in this field to comprehensively assess the quality of 

the generated music. The models with notable performance we have collected are as 

follows: 

a) Music Transformer. By introducing self-attention mechanisms, it can generate 

high-quality, structured musical works, particularly excelling in capturing long-

term dependencies and complex melodic patterns [23]. 

b) Transformer-XL. By incorporating long-range dependency modeling and more 
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efficient memory mechanisms, it effectively enhances the coherence and 

complexity of generated music, especially in long-section music creation [24]. 

c) Longformer. By employing local attention mechanisms, it effectively extends the 

model’s ability to handle long sequences, making the generation of music over 

extended time spans more efficient and coherent [25]. 

d) Museformer. By combining fine-grained and coarse-grained attention 

mechanisms, it excels in handling long music sequences, capable of generating 

high-quality and well-structured music [5]. 

All compared models are set with fixed hyperparameters as Museaker. Due to 

memory constraints, we cannot batch generate long-text audio at once; instead, we 

divide each song into multiple samples during training and apply the model to generate 

long sequences during validation and inference to test its generalization on long music 

sequences. 

4.4. Objective evaluation metrics 

We will objectively assess our experimental results based on the following two 

metrics: 

a) Perplexity (PPL). Perplexity is a measure of how well a language model predicts 

samples and is commonly used in natural language processing. The formula for 

PPL is as follows: 

PPL = exp(
1

𝑁
∑ log 𝑃(𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑖−1)

N

i=1

) (4) 

where N is the length of the audio sequence, and P(xi∣x1,x2,…,xi − 1) is the probability 

of the model predicting the i-th note. The more accurate a model’s prediction, the 

lower its perplexity. In the field of music, this metric is used to gauge a music model's 

ability to accurately reproduce data based on test data. In layman’s terms, when we 

provide a high-quality audio segment that aligns with human auditory aesthetics as a 

test set, the higher the probability that the model generates this audio segment, the 

lower the model’s perplexity is considered, and the better the model performs. For the 

LongMergent model, PPL reflects the probability of the t-th note occurring given the 

previous (t - 1) notes. This metric evaluates the model’s generation performance across 

different time spans, helping assess its generalization and stability when handling long 

music sequences. We will measure the perplexity for audio of different lengths. 

b) Similarity Error (SE). Similarity Error is a measure of the error between the 

output of a generative model and the target data, commonly used to evaluate the 

quality of models in generative tasks. The formula for SE is as follows: 

SE =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

N

i=1

 (5) 

where yi denotes the target data, and �̂�𝑖 represents the data generated by the model. In 

music, similarity error measures the degree of match between notes, lyrics, and other 

content. A lower SE indicates that the generated music is closer to the actual musical 

structure and patterns. For the LongMergent model, the SE value assesses the 

similarity between generated and target music. By comparing samples of varying 
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styles and themes, it evaluates the model’s generation performance across different 

music styles, helping understand its ability to capture style features and produce high-

quality music. 

4.5. Subjective evaluation metrics 

The most efficient and primitive method for assessing the quality of generated 

music is human listening tests. We invited five listeners with professional music 

knowledge and three without professional knowledge to rate our generated results. 

Participants will score these music segments on the following subjective metrics from 

1 (lowest) to 10 (highest): 

a) Musicality. Whether the generated music is emotionally rich and soulful like 

music composed by human musicians, rather than a mechanical combination of 

individual notes. 

b) Short-term structure. Whether the generated music shows good structure in 

adjacent segments, mainly reflected in repetition and continuity. 

c) Long-term structure. Whether the generated music shows good structure in 

segments that are far apart, such as repetitive segments or segments that echo 

previous parts. 

d) Overall. An overall score based on the above criteria. 

5. Results and discussions 

Table 3 illustrates the detection results of similarity error across five themes in 

three distinct musical styles (pop, jazz, and classical). The generation results for each 

style were created with reference to the corresponding themes in the sample group, 

with lower values indicating higher similarity and lower error rates. 

Table 3. Objectively evaluate the perceived similarity error result. 

Theme Popular Style Jazz Style Classical Style 

Mountain 3.36 3.46 3.66 

River 4.41 4.29 3.84 

Birds 3.24 2.39 3.32 

Pet 1.45 2.16 1.57 

Auspicious 1.81 1.54 3.42 

Average 2.85 2.77 3.16 

Based on the results presented in the table, we can draw the following 

conclusions: 

a) The model exhibits the smallest overall mean SE values in the jazz style group, 

suggesting that it performs relatively well in capturing the characteristics of jazz 

music; 

b) Although the model’s overall mean SE values in the pop style group are not as 

low as those in the jazz group, it outperforms the jazz group in certain themes, 

indicating that the model is more adept at interpreting specific themes (such as 

pets) using pop music styles; 

c) The model’s performance in the classical style group significantly lags behind 
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the other two styles, implying that the model faces challenges in understanding 

and reproducing the complexity of classical music. 

Building on these findings, we compared the SE values of the LongMergent 

model with those of other models, as detailed in Table 4. The SE values for the 

LongMergent model are the average results of the three groups’ means. 

Table 4. Comparison of SE values among various models. 

 Music Transformer Transformer-XL Longformer Museformer LongMergent 

SE(%) 2.49 15.66 5.25 0.95 2.92 

a) It is evident from the comparison results that our LongMergent model has a 

distinct advantage over some other high-performing models in terms of similarity 

error, with only a small gap when compared to the best-performing models. The 

Music Transformer’s self-attention mechanism allows the model to consider 

information from the entire sequence when generating music, thus providing 

more accurate outputs than other models overall. However, while its 

generalization capability is strong, it struggles to outperform on specific themes, 

where LongMergent shows better performance. The Longformer focuses more 

on specific parts of the sequence, which may lead to oversights in overall control. 

The comprehensive comparison results indicate that the LongMergent system’s 

performance in generating music that matches the given input is on par with other 

high-quality models. 

b) Furthermore, we conducted perplexity tests on the model’s generated data. We 

compared multiple groups based on sequences of three different lengths (1024, 

5120, and 10240), all of which were assembled from varying short-text audio 

files. Lower PPL values indicate lower perplexity and better performance. The 

specific comparison results are presented in Table 5. 

Table 5. Results of perplexity in objective evaluation. The numbers in parentheses represent the sequence lengths of 

the audio. 

 Music Transformer Transformer-XL Longformer Museformer LongMergent 

PPL(1024) 1.66 1.64 1.65 1.64 1.51 

PPL(5120) 1.77 1.45 1.46 1.41 1.41 

PPL(10240) 2.55 1.43 1.45 1.35 1.34 

Upon comprehensive analysis of the table’s content, we can conclude the 

following: 

a) The LongMergent model has the lowest perplexity mean across all sequence 

lengths, demonstrating the best performance, indicating that the LongMergent 

model has high predictive accuracy and low uncertainty in generating audio data, 

also validating its stronger generalization capabilities; 

b) As sequence length increases, the perplexity of some other models with poorer 

performance tends to increase, while the perplexity of the LongMergent model 

shows a decreasing trend, indicating that the LongMergent model has a high level 

of control over the harmony when integrating multiple short-text audio files. 
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Additionally, we invited several human listeners with professional music 

knowledge to subjectively evaluate the model’s generated data. In the subjective 

evaluation, to measure the consistency of judgments among different raters, we use 

the Kappa coefficient. This statistical measure accounts for chance agreement and 

ranges from −1 to 1. Its formula is: 

𝐾𝑎𝑝𝑝𝑎 =
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒
 (6) 

where P0 is the observed agreement, and Pe is the expected chance agreement. A 

Kappa value near 1 indicates high rater agreement, near 0 suggests agreement at 

chance level, and negative values mean agreement less than chance. Calculating the 

Kappa coefficient allows for a more accurate assessment of the reliability of subjective 

evaluation results. 

We use the criteria outlined in Section 4.1. After tallying the scoring results, we 

will provide a general range of fluctuation. For detailed content, see Table 6. 

Table 6. Results of subjective evaluation. ST and LT represent short-term and long-term structure, respectively. For 

all subjective indicators, the numerical display is the statistical mean ± standard deviation. 

 Music Transformer Transformer-XL Longformer Museformer LongMergent 

Musicality 6.00 ± 2.21 6.10 ± 2.19 6.46 ± 1.81 6.88 ± 1.95 6.55 ± 2.04 

ST structure 6.90 ± 1.76 7.40 ± 1.81 7.60 ± 1.47 7.86 ± 1.51 7.62 ± 1.63 

LT structure 5.30 ± 2.58 6.26 ± 2.78 6.18 ± 2.54 6.72 ± 2.74 6.77 ± 1.94 

Overall 5.90 ± 1.90 6.44 ± 2.01 5.78 ± 2.64 7.12 ± 1.81 6.62 ± 2.06 

We performed a Kappa test on the subjective evaluation results to assess the 

consistency among raters. The calculated Kappa value of 0.75 indicates substantial 

agreement. According to Landis and Koch’s criteria, a Kappa value between 0.61 and 

0.80 signifies “substantial agreement”, suggesting our evaluation results are highly 

reliable. 

The subjective evaluation results presented in Table 6 show that LongMergent 

outperforms in all subjective assessment indicators, indicating that it has a higher 

capability in all aspects of music generation within the sensory range of human 

listeners. Specifically, 

a) The LongMergent model scores slightly higher than other models in terms of 

musicality, suggesting that listeners perceive the music generated by the 

LongMergent model as more pleasing and authentic compared to music 

composed by humans; 

b) In structure-related indicators, especially long-term structure, the LongMergent 

model has a distinct advantage, once again demonstrating the high performance 

of the LongMergent model in music fusion. 

6. Conclusion 

This paper introduces the LongMergent system, designed to address numerous 

challenges in the field of artificial intelligence-empowered music processing. By 

integrating a variety of music-related tools and autonomous workflows, the 
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LongMergent system provides users with a unified and efficient platform for the 

automated processing of music generation and understanding tasks, greatly 

simplifying the processes of music creation and analysis. The experimental results 

demonstrate that LongMergent is efficient and capable of generating music with good 

quality and structure. 

However, the LongMergent system also has certain limitations. For instance, 

when dealing with certain complex music styles, such as classical music, the model 

struggles to fully capture their depth and complexity, and there is room for 

improvement in generating classical music pieces with high artistic expressiveness and 

intricate structures. This is a big challenge for professional musicians who need to 

create high-quality music works. To achieve the so-called “beautiful” level, it takes a 

lot of time and computing power to debug the model, and the work efficiency will be 

reduced. Moreover, the music generated by the LongMergent system is the result of 

multiple sub-tools working in concert; its overall performance is affected by the 

performance of these sub-tools. Should a singular available sub-tool have significant 

limitations, the final music generated will be impacted, and it cannot be compensated 

for by other tools. For the average music lover without professional music knowledge, 

this is likely to be an irreparable flaw. We believe that this issue can be mitigated by 

training large models on a vast scale of data. Lastly, we anticipate that the 

LongMergent model can adapt to more tasks and domains. Although its current 

functionalities are relatively comprehensive and can meet the basic generation needs 

of most users, researchers who specialize in this industry still need to spend a lot of 

economic cost to obtain higher computing power to meet their needs; there is still a 

long way to go to delve deeper into the professional field of music, requiring the 

supplementation of a multitude of high-performance tools. 
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