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ABSTRACT

Nanocomposites are high performance materials which reveal rare properties. Nanocomposites have an estimated
annual growth rate of 25% and fastest demand to be in engineering plastics and elastomers. Their prospective is so
prominent that they are valuable in numerous areas ranging from packaging to biomedical applications. In this review,
the various types of matrix nanocomposites are discussed highlighting the need for these materials, their processing
approaches and some recent results on structure, properties and potential applications. Perspectives include need for
such future materials and other interesting applications. Being environmentally friendly, applications of nanocomposites
propose new technology and business opportunities for several sectors of the aerospace, automotive, electronics
and biotechnology industries.
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phases demonstrates dimensions in the nanometre range!'*. The word

structures of nanometer dimensions is primitive. In the fourth century,
Roman glassmakers were formulating glasses encompassing nanosized
COPYRIGHT metals. Nanocomposite materials have materialized as appropriate sub-

stitutes to incredulous restrictions of micro-composites. They are also
Copyright © 2020 Sajad Hussain Din et al.

_ J testified to be the resources of 21st century in the view of having
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EnPress Publisher LLC. This work is li- design rareness and property groupings that are not found in conven-
censed under the Creative Commons Aliribu- tional composites”!. Nevertheless, they pose preparation challenges
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cense (CC BY-NC 4.0). associated to the regulator of basic arrangement and stoichiometry in
hitp://creativecommons.org/licenses/by/4.0/ the nanocluster phase. Nanocomposites are high performance materials

demonstrating rare property arrangements®®. Their potential is so
conspicuous that they are beneficial in numerous areas ranging from
packaging to biomedical applications. In this paper, the various types
of matrix nanocomposites are presented underlining the need for these
materials. Their processing methods, structure, properties and potential
applications are discussed”'?,

Nanocomposites suggest rare properties that ascend from their
small size, large surface area, and the relations of phases at their inter-
faces. They are striking for their prospective to develop performance of
drugs, catalysts, biomaterials and other high value added materials. It

has been reported that deviations in particle properties can be observed
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when the particle size is less than a particular level,

1,12 . .
IL121 - Ag dimensions reach

called ‘the critical size
the nanometre level, interactions at phase interfac-
es become mostly enhanced. Additionally, unearth-
ing of carbon nanotubes and their successive use to
formulate composites demonstrating some of the
unique carbon nanotubes related mechanical, ther-
mal and electrical properties, added a new and fas-
cinating dimension to this area. Currently, nano-
composites offer new technology and business
opportunities for all zones of industry, in addition to

being environmentally friendly!*"*!.

2. Prospects of nano-composites

Nanocomposites offer an exceptionally exten-
sive range of prospective applications from elec-
tronics, optical communications and biological sys-
tems to new materials. Many possible applications
have been explored and many devices and systems
have been considered. More potential applications
and new devices are being proposed. It is evidently
impossible to recapitulate all the devices and appli-
cations that have been studied. It is interesting to
note that the applications of nanocomposites in di-
verse fields have clearly different demands, and
thus face different challenges, which necessitate

16181 " The reinforcements re-

different approaches!
fract the crack and deliver connecting elements,
deterring further opening of the crack. The inte-
grated phase experiences and phase transition in
conjunction with the volume increase introduced by
the stress field of a propagating crack, contributing
for the toughening and strengthening processes. The
potential of ceramic matrix nanocomposites, chiefly
the Al,O3/SiC system, was exposed by the revolu-
tionary work of Niihara. The toughening mecha-
nism was based on the crack-bridging role of the
nanosized reinforcement. The merger of high stren-
gth nano-fibres into ceramic matrices has per-mitted
the preparation of advanced nanocomposites with
high toughness and superior failure character-istics
compared to the sudden failures of ceramic materi-
alsl1920]

Space mission projects implicate ultra-light-
weight space-crafts. These spacecraft devices are
mobile mechanical parts such as gyroscopes, gears,

solar arrays, antennae, drives, sunshields, rovers,

radars, solar concentrators, and reflector arrays.
These parts will have to be manufactured from
flexible, appropriate materials, which can be folded
or packaged into small volumes. This is needed
since the structure consisting of ultra-lightweight
parts would be deployed mechanically into a large
ultra-lightweight functioning. It is imperative that
the above mentioned characteristics should be
available in one single material. Similarly, rocket
propellants are prepared from a polymer-Al/Al,O;

nanocomposite to improve ballistic performan-
cel2123]

2.1 Processing of nanocomposites

Ceramic metallic nanocomposite matrix mate-
rials include Al,O3, SiC, SiN, etc., while metal ma-
trices employed in metal matrix nanocomposites are
mainly Al, Mg, Pb, Sn, W and Fe, and a whole
range of polymers, e.g. vinyl polymers, condensa-
tion polymers, polyolefins, and speciality polymers
are used in polymer matrix nanocomposites. Both
synthetic and natural crystalline reinforcements
have been used, such as Fe and other metal powders,
clays, silica, TiO, and other metal oxides. Similarly,
carbon nanotubes are prepared mostly by chemi-
cal/vapour deposition methods. In the case of car-
bon nanotubes, use of surfactants, oxidation or che-
mical functionalization of surfaces is some of the
techniques employed. Physical blending and in-situ
polymerization are used for improving dispersion in
the case of carbon nanotube-reinforced polymer
composites, while alignment of carbon nanotubes
could be achieved by techniques such as ex-situ
techniques®***".

2.2 Structure and properties of nanocomp-
osites

The structure of nanocomposites consists of
the matrix materials, containing the nanosized rein-
forcement components in the form of particles,
whiskers, fibres, nanotubes, etc. Various techniques
have been employed to characterize the nanocom-
posites, including atomic force microscopy (AFM),
scanning tunnelling microscopy (STM), Fourier
transformed infrared spectroscopy (FTIR), X-ray
photoelectron spectroscopy (XPS), nuclear magnet-
ic resonance (NMR), differential scanning calorim-
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etry (DSC), scanning and transmission electron mi-
croscopy (SEM/TEM), etc. Simultaneous small an-
gle X-ray scattering (SAXS) and X-ray diffractom-
etry (XRD) studies have been recently used for
quantitative characterization of nanostructures and
crystallite structures in some nanocomposites®**.
Briefly, the density of single walled carbon
nanotubes is less than one sixth of that of steel
while the density of multi walled carbon nanotubes
is one half of that of Al. Tensile strengths of single
walled carbon nanotube and multi walled carbon
nanotubes are reported to be in a range much higher
than of high strength steel, while Young’s modulus
values are comparable to those of diamond. They
exhibit tremendous resilience, in that they can sus-
tain bending to large angles and restraightening
without damage, in which they differ from the plas-
tic deformation of metals and the brittle fracture of
carbon fibres. Similarly, theoretical thermal and
electrical conductivities are comparable with that of
diamond, with an almost negligible thermal expan-
sion coefficient. They also exhibit high thermal sta-
bility both in air and in vacuum, compared to the
lower values obtained for metal wires in microchips,
and high parallel and perpendicular magnetic sus-

ceptibilities™ ",

2.3 Ceramic matrix nanocomposites (CM-
NO)

The most common methodologies for prepara-
tion of CMNC, are conventional powder method,
polymer precursor route, spray pyrolysis, vapour
techniques and chemical methods, which include
the sol-gel process, colloidal and precipitation ap-
proaches and the template synthesis. Ceramics are
usually brittle and easily fractured as consequence
of crack propagation. Ceramics are made suitable
for engineering applications through the incorpora-
tion of a ductile metal phase or another ceramic into
the matrix. This leads to improved mechanical pro-
perties such as hardness and fracture toughness, wh-
ich occur as a result of the relationship between the
different phases, matrix and reinforcements, at the

phase boundaries™'>?,

3. Ceramic matrix-discontinuous
reinforcement nanocomposite sys-
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tems

There is a significant improvement in the stren-
gth of the nanocomposite compared with its micro-
counterpart. The fracture strength is noticeably high-
er because of the higher interfacial interaction be-
tween the particles in nanocomposites. Besides,
AlLO3-5 to 15% SiC systems exhibited superficial
grooves of plastic deformation compared to the in-
tergranular fracture observed in monolithic mater-
ials. Furthermore, at 1673 K and tension of 200
MPa, Si;N, fails after 0.4 hours at 0.3% strain,
whereas the SizN4/10% SiC nanocomposite does not
fail even after 1,000 hours at 1.5% strain. Coming to
morphological studies, microstructures of some ce-
ramic matrix nanocomposites of Al,O; and Fe,Os
contain a good distribution of Co and Ni nano-parti-

cles*3,

3.1 Ceramic matrix-carbon nanotube sys-
tems

When the volume content of carbon nanotubes
is lower than 5 vol. %, both bending strength and
fracture toughness increase with increasing volume
of carbon nanotubes. However, loadings higher than
5% cause decrease in these two properties. At 5
vol. %, the increment in strength and fracture
toughness, compared with that of monolithic SiO,,
is up to 65 and 100%, respectively. This increase in
mechanical properties is due to the large aspect ra-
tio and excellent mechanical properties of carbon
nanotubes, according to the theory of short fibre-
reinforced composites””>". The decrease in bend-
ing strength at high loading is due to the limitation
caused by carbon nanotubes during densification, as
they express a higher probability for agglomeration.
Also, the higher the loading of carbon nanotubes,
the higher is their pull out from the matrix during
stress transfer. Unusual behaviours such as high
contact-damage resistance without a corresponding
enhancement in toughness have also been reported
in AlLOs/nanotube composites. The micro-hardness
of these systems increases as the carbon nano-tube
content is increased up to 4 wt. (%). This is probably
due to grain size effects and the rein-forcement role
of carbon nanotubes. As the carbon nanotube con-
tent increased above 10 wt. (%), wear losses also

notably increased™**"!,



Preparation of SiC/carbon nanotubes showed a
10% upgradation in the strength and fracture tough-
ness as compared to the monolithic ceramics. These
results were attributed to nanotube/matrix debond-
ing and crack deflection. As a consequence, many
attempts have been made to improve mechanical
properties through the incorporation of carbon
nanotubes in ceramic matrices. However, the de-
tected improvements were not as intense as ex-
pected. Single walled carbon nanotubes applied in
the reinforcement of ceramic composites through
spark-plasma sintering, resulted in a 194% increase
in fracture toughness over pure alumina. A 24%
increase in fracture toughness over the matrix was
observed in nanograined Al,O; composite contain-
ing 10 vol. % multi walled carbon nanotubes, which
was attributed to the oxidation of carbon nano-
tubes before dispersion. In this case, the material
was produced in three conditions, viz., mixed, hot
pressed (1573 K) and sintered to near theoretical

density!*'™*.

3.2 Metal Matrix Nanocomposites (MM-
NC)

The discovery of new alloys has been escort-
ed by major developments. The bronze was initiat-
ed by the discovery that intimate mixing of copper
and tin, yielded a much stronger metal than copper.
Regardless of methods of synthesis, most nanocry-
stalline based metal-metal nanocomposites exhibit a
remarkable resistance to grain growth. Thermal sta-
bility and the mechanisms involved in nanocrystal-
line materials are not only related to the microstuc-
tural and compositional parameters but also associa-
teed to porosity, impurity, grain size distribution,
texture and microstrain resulted during the pro-
cessing of nanocrystalline materials. The simple
mixing of two different metal nanocomposites will
transpire with new properties. Nanocomposite sys-
tems such as carbon nanotubes, have been exten-
sively studied. There has been a continuous increase
in the number of publications on the subject, in-
cluding reviews from time to time. In the case of
PMNC, reviews deal with processing aspects, in-
cluding those on layered silicates, conducting
and biodegradable polymer-based systems, fibre
reinforced structure, morphology and property as-

pects as well as with applications and perspectives,
including key opportunities and challenges in the
development of structural and functional fibre nano-
composites!*.

The techniques used for the processing of met-
al matrix-nanocomposites are spray pyrolysis, lig-
uid metal infiltration, rapid solidification, vapour
techniques, electrodeposition and chemical methods,
which include colloidal and sol-gel processes. Fe-
based nanocomposites are prepared by solidification
techniques. Branagan stresses on “devitrified nano-
composite steel”. The formation of nano-phases was
explained by the high nucleation frequency within
the limited time for growth of grains before
impingement. Use of ultrasound helped to improve
the wettability between the matrix and the parti-

cles*7*8,

3.3 Metal-discontinuous reinforcement sys-
tems

The a-Fe/FeyCy/FesB system provides a good
example of how unique properties may arise from
metal nanocomposites. Vickers hardness values of
these two forms of the alloy produced by Branagan
and Tang were found to be 10.3 and 11 GPa in the
assolidified condition. The ribbon variety showed
increased hardness with increasing heat treatment
temperature, showing a maximum of 16.2 GPa at
973 K and there after decreasing to 10.5 GPa at
1123 K. This can be compared to the decreasing
trend of the ingot type (8 and 6.6 GPa at 873 and
973 K respectively). The Al/SiC system also illus-
trates the advantages of metal nano-composites
compared to their micro counterparts. There is a
linear increase in hardness with increasing volume
fraction of the harder phase (SiC) until the maxi-
mum value of 2.6 GPa for the sample that contains
10 vol. % of SiC. The values of Young’s and shear
modulus increase significantly with increasing SiC
content, suggesting the formation of a nanocompo-
site material containing a brittle phase (SiC) em-
bedded in the ductile Al matrix. Al/SiC nanocom-
posite exhibits notably higher Young’s modulus and
hardness than its micro counterpart. For example,
the nanocomposite shows 12.6% increase in hard-
ness and 105.1% in Young’s modulus. Also, Al/Pb
nanocomposites exhibit improved frictional fea-
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tures!¥-!

4. Metal matrix-carbon nanotube
composites

Electrical properties of an Al/carbon nanotube
system measured between 4.2 K and room temper-
ature revealed an increase from 4.9 to 6.6 uQ cm at
room temperature for 1 and 4 wt. (%) carbon nano-
tubes, but a decrease to 5.5 pQ cm for 10 wt. (%)
carbon nanotube), compared to the value of 3.4 pQ
cm for the Al matrix. At lower temperatures, resis-
tivity of all composites decreased linearly, as in the
case of metals, with an abrupt drop of about 90%.
On the other hand, compression testing of these
Al-carbon nanotube composites exhibited identical
stress strain curves for both the composite without
the precursor and pure Al, except for large elastic
strain, while those with the precursor, though simi-
lar in shape, exhibited increased compression
stresses. At a higher multi walled carbon nanotube
loading (1.6 vol. %), proof stress increased seven
fold, in contrast to a not so significant enhancement
in polymer-carbon nanotube composites. The en-
hanced mechanical property has been attributed to
the confinement of the Al matrix by the multi

2-
walled carbon nanotubes on nanoscale®>>,

4.1 Strengthening mechanisms in metal ma-
trix-composites

Upon cooling, dislocations form at the rein-
forcement/matrix interface due to the thermal mis-
match. The thermally induced dislocation punching
results in indirect strengthening of the matrix. In
age-hardenable matrix-materials, the thermally in-
duced dislocations serve as heterogeneous nuclea-
tion sites for precipitate formation during the aging

treatment[5 6’57].

4.2 Polymer matrix-discontinuous reinforce-
ment (non-layered) nanocomposites

The reinforcing materials engaged in the fab-
rication of polymer nanocomposites can be catego-
rized according to their dimensions. Examples
comprise spherical silica, metal particles and semi-
conductor nanoclusters. The second kind of rein-
forcement is formed by nanotubes or whiskers,
which contain two dimensions in the nanometre

scale and one larger, forming an extended structure.
Carbon nanotubes and cellulose whiskers, broadly
studied as reinforcing nanofillers, can be included
in this second category”*®. The third type of rein-
forcement is characterized by only one dimension
in the nanometre range. In this group, the filler
contains sheets one to a few nanometres thick and
hundreds to thousands nanometres long. This fami-
ly is called polymer-layered nano-composites. Ma-
ny synthetic and natural crystalline hosts that are
able, under specific conditions, to intercalate a
polymer have been described. Examples include
graphite, metal chalcogenides, clays, layered sili-
cate and layered double hydroxides. Nanocompo-
sites based on clay and layered silicates have been
usually explored due to the handiness of clay start-
ing materials and their eminent intercalation chem-
istry[61—63]‘

4.3 Polymer nanocomposites with layered
reinforcements

Although the chemistry of polymers towards
layered silicates has long been known, the field of
polymer layered silicate nanocomposites has gained
inspiring attention. Firstly, the results obtained on
Nylon-6  (N6)/montmorillonite
which showed that a small concentration of layered
silicate lead to notable changes in thermal and me-
chanical properties. Secondly, the observation by
Vaia et al. is possible to melt-mix polymers with
layered silicates, without the use of organic solvents.
The incorporation of montmorillonite into a Ny-
lon-6 matrix has led to a noteworthy enhancement

nanocomposites,

in its mechanical properties. The Young’s modulus
(or tensile modulus), for example, of pure Nylon-6
(1.11 GPa) was strongly upgraded when the nano-
composite was formed. The Nylon-6/MMT with a
filler content of 4.1 wt. (%) gave a value of 2.25
GPa, which corresponds to an increase of 102.7%.
Also, regarding Nylon-6 nanocomposites, a strong
interaction between matrix and silicate layers oc-
curs via formation of hydrogen bonds. This behav-
iour can also be supported by propene-modified
maleic anhydride (PP-MA)/LS nanocomposite-
§l64-66]

Exfoliated Nylon-6 and intercalated PMMA

nanocomposites exhibited a prodigious increase in
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the stress at break. This can be due to the polar
(PMMA) and ionic interactions (Nylon-6 grafted
onto the layers) between the matrix and the silicate
layers. This increase is larger in Nylon-6 nanocom-
posites. On the other hand, propylene-based nano-
composites displayed only a small enhancement in
tensile stress, which can be explained by the lack of
interfacial adhesion between non-polar PP and po-
lar-layered silicates. However, addition of maleic
anhydride-modified polypropylene to the polypro-
pylene matrix has confirmed to be effective in the
intercalation of the PP chains and the maintenance
of the ultimate stress at a satisfactory level. This
finding is attributed to the weak interactions at the
polystyrene-clay interface. It is imperative to note
that in previous compositions in which polar inter-
actions were developed, strengthening at the filler
matrix interface was observed. Usually, when LS
are dispersed in thermoplastics such as PMMA, PS
or PP, the elongation at break is reduced®”’". The
reported decrease in elongation is from 150% in
pure PP matrix, to 105% for a 6.9 wt. (%) non-in-
tercalated clay micro-composite. On the other hand,
in a nanocomposite filled with 5 wt. (%) silicate
layers, the more noticeable drop was 7.5%. Con-
versely, this loss in eventual elongation did not oc-
cur in elastomeric epoxy or polyol polyurethane
matrices. In these cases, introduction of the nano-
clay in cross-linked matrices causes a rise of the
elongation at break. While a drop in the elongation
at break can be perceived for the conventional
composite, a minor improvement in this property
can be observed for the intercalated nanocompo-
sitel”' 7!,

Finally, exfoliated nanocomposites exhibit a
large increase in the elongation at break. This is
probably due to the plasticizing effect of the galler-
ies, their contribution to the formation of dangling
chains and conformational effects at the clay-matrix
interface. The combination of improved stiffness
(Young’s modulus), toughness (stress at break) and
elasticity (strain at break) makes elastomeric nano-
composites suitable candidates for the generation of
a new family of high performance materials. Polyi-
mide is another example of a polymer matrix mate-
rial showing an increase in both stress and elonga-
tion at break. For example, when filled with mont-
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morillonite exchanged with hexadecylammonium,
these properties increase with the filler loading at
least up to 5 wt. (%). At higher filler contents, both
properties drop towards values lower than those
described for the filler-free matrix due to the for-
mation of non-exfoliated aggregates which make
these composites more brittle!’*”!,

Another nanocomposite system studied in
great detail is Nylon-6 protonated aminododecanoic
acid, which has been studied for its impact resistan-
ce properties. The nanocomposite synthesized by
in-situ intercalative poly-merization had its Izod
impact strength reduced from 20.6 to 18.1 J/m
compared with the pure matrix when 4.7 wt. (%) of
nanoclay was incorporated. Charpy impact testing
displayed a similar reduction from 6.21 kJ/m* to
6.06 kJ/m’ for the 4.7 wt. (%) nanocomposite.
There is good resistance to impact, high Young’s
modulus, good flexural modulus and a notable en-
hancement in the heat distortion temperature, going
from 338 K for pure Nylon-6 to more than 423 K
for the nanocomposite, have allowed this material
to replace glass fibre-reinforced nylon or polypro-
pylene in the production of timing belt covers of

: L [76-78
automotive englnes[ ]

5. Conclusions

Innovative technologies necessitate materials
exhibiting unique properties and upgraded perfor-
mance. Therefore, nanocomposites are appropriate
materials to meet the developing demands arising
from scientific and technologic advances. Pro-
cessing methods for different types of nano-com-
posites pose challenges, thus giving opportunities
for researchers to overcome the problems faced
with nanosized materials. They propose better per-
formance over counterpart materials and are subse-
quently appropriate materials to overcome the re-
strictions of many presently prevailing materials
and devices. Many applications previously exist.
These materials have much potential in engineering
field. Due to high mechanical properties, gas barrier,
flame related properties, and the market for these
materials have been projected in various sectors.
Thus, all types of nano-composites offer opportuni
ties and rewards, creating new world wide interest
in these new materials.
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