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ABSTRACT

A theoretical investigation of the effect of an inverse parabolic potential on third harmonic generation in cylindrical
quantum wires is presented. The wave functions are obtained as solutions to Schrodinger equationsolved within the
effective mass approximation. It turns out that peaks of the third harmonic generation susceptibility (THGS) associated
with nanowires of small radii occur at larger photon energies as compared to those associated with quantum wires of
larger radii. The inverse parabolic potential red-shifts peaks of the THGS, and suppresses the amplitude of the THGS.
THGS associated with higher radial quantum numbers is diminished in magnitude and blue-shifted, as a function of the
photon energy. As a function of the inverse parabolic potential, the THGS is still characterized by peaks, which shift to
lower values of the potential as the photon energy increases.
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1. Introduction

Advances in nanofabrication techniques have endowed the scientific community with an avenue of obtaining
nanostructures of different sizes and geometries!!3]. These nanostructures have applications in many disciplines like
medicine*’], chemical sensing!®, optoelectronics!” ®, energy physics®!'! and gas sensingl!?l. An attractive feature of
nanostructures is the emergence of quantization when charge carriers are confined to nanoscopic regions. The charge
carriers occupy quantum states with associated energies, which are dramatically different from the bulk values.
Electrons can make transitions between states if they absorb or lose energy which equals transition energies. This
energy could be associated with photons, phonons or any other elementary excitation. Transition energies are the
differences between energies of states between which transitions can take place, and can be modified by changing the
size of the nanostructure or by changing the intrinsic electric potential of the nanostructure!!3l. The ability of electrons to
make transitions between different states renders nanostructures invaluable to nanodevice applications. Some of the
interesting phenomena are non-linear optical processes. By making more than one transition to higher states,
followed by a transition to a lower states, energy of radiation can be multiplied as required. nth harmonic generation is
generation of electromagnetic wave with frequency n times the frequency of the input radiation. Examples are second
harmonic generation (SHG), wherein the frequency of the incident radiation is doubled, third harmonic generation
(THG), where the frequency is tripled, and so forth. However, THG has been shown to be more versatile than SHG in
imaging samples!'4l, It is thusinstructive to study THG. Khodard theoretically studied third harmonic generation (THG)
in a double ring shaped quantum dot and found that phonons have a significant effect on the third harmonic generation
susceptibility (THGS)!'*. THGS can also be modified by the geometry of the nanostructure!!®l. The effects of electric
and magnetic fields on THGS in a Morse quantum well have also been investigated!!”).  Bahari et al also looked at
THG in multilayered nanoshells, and found that the THGS strongly depends on the thicknesses of the nanoshells!!®!,
THG has been experimentally achieved and studied!®], and utilized, for example, to cool beryllium ions?°l,

In this communication, the effect of the inverse parabolic potential on the THGS of cylindrical quantum wires is

investigated. The inverse parabolic potential is superimposed on an infinite cylindrical square well (ICSW). This paper
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has the following organizational structure: Section 2 deals with the theoretical treatment of the problem, Section 3

relates the results and discussions, and the conclusions are laid in Section 4.
2. Theoretical Framework

The envisaged system is a free standing cylindrical quantum wire (CQW) of radius R and very long length hosting
a negatively charged strand coincident with the axis of the wire, nonetheless considered to be much smaller than the
radius of the nanowire. Through appropriate nanopatterning of the cylinder by varying the lattice composition, an

intrinsic confining electric potential of the form

V(P)=%,U0’5R2(%—1J (p<R)
(1)

and infinity elsewhere, may be realized. Here, # is the effective mass of the electron and s the angular frequency
associated with the classical harmonic oscillator. The Hamiltonian in cylindrical coordinates with this type of potential

is separable, and the electron wave function can be cast in the form '//(p ’¢’Z): C””F(p )eXp(ikZZ)EXp(im('b), where Co is

the normalization constant, k. is the axial wave number and " is the azimuthal quantum number that quantifies the

quantized angular momentum of the electron. The radial portion of the electron wave function, F(p)

second order differential equation (Schrodinger equation)

1d [p dF(p)J N {i_fz‘ £, ~V(0) _:')’_j}F(p): 0.

pdp dp

, satisfies the
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where £ is the radial confinement energy. For the inverse parabolic potential (Eq. 1), the radial component of the
Schrodinger equation is solvable in terms of the Bessel functions [13]

F(p)=CiJ,(xp)+ C,Y,, (k). 3)
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In the above, K \/ﬂ ( mi *HO )/ h and SR / . The nature of the Bessel Y function is such that

it is divergent at the origin (# 0 ), as such has to be discarded ( G :0) in the case of a solid cylinder, which leaves
the radial wave function as

F (P):J v (’(,0) 4)
Imposing the condition that the electron wave function must vanish at the walls of the quantum wire due to the
infinite potential outside the wire avails an expression for the determination of the energy eigen values for the electron

as
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where 70m are the zeroes of the Bessel J function.

Third harmonic generation susceptibility

Consider the system under the influence of an electromagnetic field E(t)= Eexplion)+ Eexp(-ior) jcident

along the z direction. We can invoke the time-dependent Liouville equation to investigate the evolution of the

single electron state density matrix #

% :%[ﬁo () 5, ), -1, (5- 5, ©

with o being the unperturbed Hamiltonian of the system (with the electromagnetic radiation switched off),

~ME(t)=—erE(t)

Y being the unperturbed density matrix and the perturbing term being , where ¢ is the

. L . 5(0) .
electronic charge and Ui is the relaxation rate of £ to 2 . Here, [ denotes the quantum mechanical
commutator. The above equation (Eq. (6)) can be solved using an iterative approach

A=Y 570)
" (7

where
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The dependence of the electric polarization of the quantum wire on the electromagnetic field can be written
as
P(t)= (50;((] JEe' + 50132)52 + 50;(5,)562"“” + 501§2§3e3i”’ )+ cc 9)
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where “0 is the absolute dielectric permittivity of classical vacuum while 4, 40 | 42¢ and 43¢ are

the linear, optical rectification, second harmonic generation and third harmonic generation susceptibilities,
respectively 2!, c.c. is complex conjugate of the terms in the brackets. The THGS can be expressed as [1°]
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where ¢ is the electronic density, ' K i >‘ the matrix elements of the dipole moment and

@i = (E/ -/ ) the transition frequency.
3. Results and Discussion

The parameters used in these calculations are
P, =107m™> ) &, =8.854x10"" F/m

0.067m, , Where M s the free electron mass, relevant to GaAS
al, =hly =hly, =hls, =Al

>

crystals. The other relevant parameters are:

hF20=hF31=hF/2[151’ where hF:2.156(meV) (18]
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Figure 1; The dependence of the product of the matrix elements on the inverse parabolic potential for a quantum wire of

radius of R = 1004, for the radial quantum numbers 1=1,2 and 1= 3

Figure 1 illustrates the variation of the product of the matrix elements, MMy, M33Mg , with strength of the
inverse parabolic potential in a quantum wire of radius R = 100A. The three graphs have been generated for the
radial quantum numbers 1 = 1, 2 and | = 3, as indicated. The overall effect of the inverse parabolic potential is to
increase the magnitude of MoMiMosMso | This is due to the fact that this potential tends to dilate the radial wave
functions of electrons, which enhances the radial position vector. This effect is opposite to those ofthe magnetic
M01M12M23M30 M01M12M23M30

field and the parabolic potential, which tend to suppress (22, The variation of

corresponding to higher radial quantum numbers is characterized by local minima and maxima, which are due to
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the effect of the inverse parabolic potential on the electron wave functions 131,
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Figure 2 depicts the (1 = 1) THGS as a function of the photon energy for a cylindrical nanowire without the

Figure 2; THGS as a function of the photon energy in an ICSW ( has ). The solid plot is for a quantum wire of radius R =

intrinsic inverse parabolic potential ( hay =0meV) ). The solid plot corresponds to a cylindrical quantum wire of
radius R = 100A while the dashed is associated with R = 120A. As can be appreciated from the figure, the peaks
of the THGS become red-shifted as radius of the nanowire increases. This is due to the relaxation of the electron
wave functions as the radius increases, which decreases radial confinement energy and consequently dwindles
transition energies. The shifting of the peaks to lower photon energies is accompanied by increase in the
magnitude of the THGS, which can be attributed to enhancement of the magnitude of the radial position vector as

the radius increases. Additionally, the peaks of the THGS converge as the radius of the specimen is increased.
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Figure 3; The variation of the THGS with the photon energy for a quantum wire of radius R = 100A without the inverse
parabolic potential hay =0{meV) (solid plot) and with the inverse parabolic potential of strength hay =20(meV) (dashed plot)
The effect of the inverse parabolic potential on the THGS can be viewed in figure 3, which depicts the THGS as a
function of the photon energy for a cylindrical quantum wire of radius of R = 100A. The solid plot represents THGS of
an infinite cylindrical square well (ICSW) ( hay =0(meV) ) while the dashed curve is of a nanowire with an inverse
parabolic potential of strength hay =20(meV’) superimposed on the ICSW. The inverse parabolic potential affects the
lower states than it does the higher, therefore it naturally decreases transition energies. This manifests as the red-shifting
of peaks of the THGS. In addition, the inverse parabolic potential moves the peaks apart. This can be advantageous in
cases where the peaks of the THGS need to be distinct from each other, for research and/or practical purposes. Another

advantageous effect of the inverse parabolic potential is the enhancement of the THGS peaks at very low energies (in
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this case, below the 40 meV region).
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Figure 4; THGS as a function of energy of the radiation field for an ICSW (ha)o - O(me V)
radial quantum numbers [ =1, 2 and 1 =3

In figure 4, the THGS corresponding to an ICSW (ha)o :O(meV)) has been plotted as a function of the photon
energy for the first three radial quantum numbers, 1 = 1, 2 and 1 = 3. The radius of the nanowire is R = 100A. Transition
energies associated with higher radial quantum numbers are greater than those associated with lower radial quantum
numbers, hence the peaks of the THGS corresponding to higher radial quantum numbers occur at higher photon
energies. Although not shown here for succinctness, the inverse parabolic potential will also red-shift the peaks of the
THGS associated with higher radial quantum numbers. It can be seen from the figure that increasing the radial quantum
number decreases the magnitude of the THGS, attributable to reduced overlapping of the radial electron wave functions
which determine the THGS (Eq. 10).
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Figure 5; The dependence of the THGS on strength of the inverse parabolic potential in a quantum wire of radius R = 100A. The
wire is irradiated with an electromagnetic field of energy ha = 40(meV) . The solid plot is for radial quantum number 1 = 1 while the

dashed is for 1= 2
Figure 5 illustrates the dependence of the THGS on strength of the inverse parabolic potential for fixed photon

( heo =40(meV’) ) in a cylindrical quantum wire of radius R = 100A. The solid curve represents the THGS

energy
corresponding to 1 = 1 while the dashed curve is associated with 1 = 2. For a given photon energy, peaks of the THGS
associated with greater radial quantum number occur at high values of the inverse parabolic potential. This is because,
as already mentioned, transition energies associated with greater radial quantum numbers are usually higher than those
of lower 1 values. Concomitantly, high values of ha are required to reduce transition energies corresponding to large 1

to equal the photon energy.
4. Conclusion

The effect of the inverse parabolic potential on third harmonic generation in a cylindrical quantum wire has been

investigated. The inverse parabolic potential is superimposed on an infinite cylindrical square well. The wave functions
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were obtained by solving the Schrodinger equation within the effective mass approach. The third harmonic generation
susceptibility corresponding to a quantum wire of larger radius is red-shifted and greater in magnitude than the THGS
corresponding to a quantum wire of a smaller radius. The inverse parabolic potential red-shifts peaks of the THGS, and
enhances peaks in the low energy region. The THGSs associated with greater radial quantum numbers have relatively

small magnitude compared to those corresponding to lower values of the radial quantum number.
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