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Abstract: Graphene has been ranked among one of the most remarkable nanostructures in the 

carbon world. Graphene modification and nanocomposite formation have been used to expand 

the practical potential of graphene nanostructure. The overview is an effort to highlight the 

indispensable synthesis strategies towards the formation of graphene nanocomposites. 

Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, 

or others) to attain the desired end material. Common fabrication approaches like the in-situ 

method, solution processing, and melt extrusion have been widely involved to form the 

graphene nanocomposites. Moreover, advanced, sophisticated methods such as three- or four-

dimensional printing, electrospinning, and others have been used to synthesize the graphene 

nanocomposites. The focus of all synthesis strategies has remained on the standardized 

graphene dispersion, physical properties, and applications. However, continuous future efforts 

are required to resolve the challenges in synthesis strategies and optimization of the parameters 

behind each technique. As the graphene nanocomposite design and properties directly depend 

upon the fabrication techniques used, there is an obvious need for the development of advanced 

methods having better control over process parameters. Here, the main challenging factors may 

involve the precise parameter control of the advanced techniques used for graphene 

nanocomposite manufacturing. Hence, there is not only a need for current and future research 

to resolve the field challenges related to material fabrication, but also reporting compiled 

review articles can be useful for interested field researchers towards challenge solving and 

future developments in graphene manufacturing. 
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1. Introduction 

Due to the technical utilization of graphene nanostructures, considerable 
literature has been reported on the structure and synthesis methods [1]. Particularly, 
matrix-nanofiller compatibility has been found important to enhance the optical, 
electronic, thermal, mechanical, and other important properties of the graphene 
nanocomposites [2,3]. Consequently, the miscibility effects in the nanocomposite 
nanostructure resulted in synergistic property improvements in the high-tech 
nanomaterial [4]. The interfacial interactions in the matrix-nanofiller system greatly 
depend on the synthesis strategies used [5]. In this context, choice of an appropriate 
synthesis method may lead to advanced nanocomposite with superior physical features 
[6]. Traditional methods used to form the polymer/graphene nanocomposites include 
the in situ, solution, and melt methods [7]. In addition, various efficient advanced 
processes have been used to form the graphene nanocomposites, like printing, spinning 
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lithography, and several others [8,9]. Consequently, thermoplasts, thermosets, and 
conjugated matrices have been filled with graphene nanoparticles to attain superior 
properties and applications [10–12]. The resulting graphene nanocomposites have 
enhanced physical properties due to suitable processing techniques applied to gain 
improved interfacial aspects of these nanomaterials [13]. 

Hence, noteworthy chemical and physical properties of graphene have been 
widely inspected by the researchers over the past decades. Graphene has been used in 
numerous potential fields due to its high surface area and excellent electrical, 
mechanical, thermal, and other structural and physical characteristics. Consequently, 
graphene has been found applicable for energy devices, electronics, sensors, 
nanocomposites, biomedical devices, drug delivery, and tissue engineering. To 
enhance the practical use of graphene nanocomposite in technical fields, it has been 
found important to fabricate the graphene-based materials by opting for appropriate 
synthesis strategies. Advanced fabrication techniques have well-controlled parameters 
to attain specific properties of graphene nanocomposites for desired end applications. 

This review focuses on the designs and synthesis strategies for the high-
performance graphene nanocomposites. According to analysis, this article is novel to 
present manufacturing approaches of novel graphene-derived nanocomposites. For 
graphene nanocomposites, various traditional and modified methods have been used. 
Developments in the synthesis techniques of graphene nanocomposites can enhance 
the technical potential of these nanomaterials. Consequently, the designing, features, 
and appropriate processes for the graphene nanocomposites have been explained here. 
Literature research reports so far have been observed on the fabrication of graphene-
based nanomaterials using appropriate synthesis strategies. However, no compiled 
review article is seen on technical fabrication techniques and comprehensive debates 
towards structural developments using modified methods and controlled parameters. 
The aim or objective of this review is to develop a comprehensive article on the most 
frequently used methods for graphene nanomaterial synthesis. Accordingly, the 
resulting graphene nanocomposites have been discussed under numerous categories 
of solution, melt, and other fabrication techniques in this article. Then, the design, 
characteristics, and applications of the nanocomposites have been explained with 
respect to the fabrication methods used. Thus, such a specific overview on graphene 
nanocomposite fabrication has not been seen in literature before, with well-explained 
recent literature and an outline. Despite the advancements so far, devoted future 
research efforts are still required on the fabrication of high-performance 
nanocomposite to overcome the related design and parameter control challenges. 

2. Graphene 

Graphene is a two-dimensional single nanosheet of sp2 hybridized carbons [14]. 
Detection of graphene is linked back to 2004 [15]. Graphene has been formed using 
many technical approaches, like exfoliation approaches, laser methods, chemical 
vapor deposition, and chemical synthesis approaches [16]. Graphene has been 
explored for a range of structural and physical features [17]. Graphene has countless 
enhanced features, including a very high Young’s modulus of 1 TPa, electron 
mobilization of 3000–5000 W/mK, and thermal conductivity of around 200,000 
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cm2V−1s−1 [18]. Essential properties of graphene have been found to be dependent on 
the graphene nanostructure [19]. Owing to van der Waals forces, the nanosheet 
displays wrinkling effects [20]. To augment the structural features of graphene, the 
nanosheet has been functionalized to introduce oxygen-bearing groups on the surface 
[21]. Such a surface functional graphene nanosheet with hydroxyl, carbonyl, epoxide, 
carboxylic acid, etc. groups has been often termed graphene oxide. Graphene and some 
linked nanostructures are shown in Figure 1. Graphene and derivative nanostructures 
own fine electronic, mechanical, thermal, and chemical characters [22]. Consequently, 
applications of graphene have been observed towards electronics as well as energy 
devices and countless other technological sectors [23,24]. 

 
Figure 1. Graphite to graphene and graphene oxide and interconversions. 

3. In situ technique towards graphene nanocomposites 

One of the simple and efficient methods for the formation of graphene 
nanocomposites is the in situ polymerization, or in situ method [25]. This synthesis 
strategy has been found effective for better graphene dispersion [26]. Fine nanoparticle 
scattering in turn generated better interactions in matrix-nanofiller phases [27]. The 
main benefits of the in situ synthesis strategy include the environmental friendliness, 
use of non-toxic solvents, room-temperature processing, and one-step processes 
involved to form the graphene nanocomposites [28]. Subsequently, countless 
graphene nanocomposite designs have been reported using the in situ synthesis 
strategy [29]. The in situ technique is a facile, low-cost, and environmentally benign 
method to physically or covalently functionalize graphene nanosheets. In this method, 
monomers are in situ polymerized in the presence of graphene or graphene oxide to 
form the nanocomposites. In situ polymerization has been used as a common method 
for the polymerization of ε-caprolactam monomer to form the polyamide 6 backbone 
[30]. Adding 1–2 vol.% graphene contents along with ε-caprolactam monomer during 

in situ polymerization resulted in a reasonable electrical conductivity of ∼0.028 Sm−1. 
In addition, the resulting in situ polymerized polyamide 6/graphene nanocomposites 
have revealed the superior thermal conductivity of around 0.27 Wm−1K−1 [31,32]. In 
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situ synthesis strategy has also led to enhanced mechanical properties of the polyamide 
6/graphene nanocomposites [33]. Elevated tensile strength and Young’s modulus were 
found with a 0.1 wt.% graphene nanofiller addition. The improved properties were 
accredited to the mutual interactions between the matrix and nanofillers leading to 
compatibility effects. Xu et al. [33] synthesized the polyamide 6 and graphene-derived 
nanocomposites using the in situ polymerization method. The caprolactam monomer 
was in situ polymerized by the ring-opening polymerization reaction [34]. The 
reaction was carried out in the presence of graphene oxide nanoparticles to follow the 
in situ process (Figure 2). This method involved the use of 6 aminocaproic acid for 
an in situ process. This technique caused fine dispersion of monomers as well as 
graphene nanoparticles in solvent medium, followed by the in situ polymerization to 
form the polyamide 6/graphene nanocomposite. Figure 3 displays the stress strain 
curves of unfilled polyamide 6 as well as 0.01 and 0.1 wt.% nano-additive reinforced 
graphene nanocomposites. The 0.01 and 0.1 wt.% graphene-loaded nanocomposite 
had tensile strengths of 84 and 123 MPa, respectively, relative to the neat matrix (56 
MPa). Hereafter, the mechanical properties of the nanocomposites were found to be 
more than 50% higher than the unfilled matrix. Hence, this method has been suggested 
to minimize the nanoparticle dispersion responsible for improved features of the 
nanomaterials. 

 
Figure 2. In situ synthesis strategy of graphene nanocomposite by in situ ring 
opening polymerization of caprolactam occurring in the presence of graphene oxide 
[33]. Reproduced with permission from ACS. 

 
Figure 3. Stress strain curves of neat polyamide 6 and nano-graphene (NG) 
nanocomposites with 0.01 and 0.1 wt.% graphene additions [33]. Reproduced with 
permission from ACS. 
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Polystyrene, another commodity thermoplastic, has also been polymerized by in 
situ technique [35,36]. In the presence of styrene monomer and graphene dispersion, 
the in situ polymerization method is applied using surfactants [37,38]. Styrene 
monomer is absorbed on graphene surface and then polymerized, leading to fine 
dispersion of nanoparticles and compatibility with the matrix [39,40]. In this way, in 
situ-produced nanocomposite had fine interactions leading to high electron conduction, 
heat stabilization, glass transition, and other improved properties [41,42]. Poly(methyl 
methacrylate) and graphene-derived nanocomposites have also been formed using the 
in situ method and polymerizing the methyl methacrylate monomers [43,44]. Physical 
as well as covalent bindings have been observed between the poly(methyl 
methacrylate) and graphene nanoparticles [45]. Reports on waterborne polyurethane 
and graphene-based in situ-formed nanomaterials have also been found in the literature 
[46,47]. Here again, interfacial interactions between matrix and nanofiller led to 
enhanced performance, thus depicting the efficiency of the in situ technique [48]. 

4. Solution strategies for graphene nanocomposites 

Another common synthesis strategy to form graphene nanocomposites is solution 
casting, solution synthesis, or solvent-based processing approaches [49,50]. The 
solvent method is facile and low-cost for the formation of graphene nanocomposites 
[51]. In this technique, polymers are dissolved in a suitable solvent, and graphene 
nanosheets are also dispersed in an appropriate solvent [52]. Both the dispersions are 
mixed and stirred to form a homogeneous nanocomposite mixture (Figure 4). The 
nanocomposite formation occurs through the solvent evaporation step. Numerous 
thermoplastic polymers have been successfully formed by solution technique [53,54]. 
For example, polystyrene and graphene-based nanocomposites have been prepared 
using solution processing [55]. N-methyl-2-pyrrolidinone was used as a solvent to 
dissolve polystyrene and disperse graphene nanoparticles. The addition of 10 wt.% 
nanofiller enhanced the electrical conductivity of the polystyrene matrix to 1.5 × 10−7 
Sm−1 [56]. In this concern, the microstructure and matrix-nanofiller interactions in 
solution-formed nanomaterials have been investigated [57]. 

 
Figure 4. A simple route of solution method. 
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Figure 5. (a) Electrical conductivity versus filler content for neat polystyrene (PS) and 
its nanocomposites; (b) Double-logarithmic plot of electrical conductivity versus ϕ-
ϕc, where ϕ is the filler volume fraction and ϕc is the percolation threshold; and (c) 

Transmission electron microscopy image of PS:PLA (6:4) composite with ∼0.46 

vol.% (∼1.0 wt.%) graphene additives. The selective localization of graphene in the 
polystyrene region is evident from the image [58]. PS/CNT = polystyrene/carbon 
nanotube; PS = polystyrene; PLA = poly (lactic acid); PS/PLA = polystyrene/poly 
(lactic acid). Reproduced with permission from ACS. 
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Qi et al. [58] synthesized polystyrene/graphene, polystyrene/graphene/poly 
(lactic acid), and polystyrene/carbon nanotube nanocomposites using solution 
strategy. Figure 5 demonstrates an increase in the electrical conductivity of the 
polystyrene/graphene nanocomposites with the addition of 0.1 to 0.69 vol.% 
nanofiller. High electrical conductivity of 3.49 Sm−1 was observed with 1.1 vol.% 
graphene contents. Nanoparticle dispersion formed a conducting network in the matrix 
to improve the electrical conductivity values at the percolation threshold. Furthermore, 
double-logarithmic plots of the polystyrene/graphene (0.33 vol.%) and 
polystyrene/carbon nanotube (0.50 vol.%) nanocomposites depicted values at 3.80 and 
2.58, respectively. Transmission electron microscopy image of polystyrene/poly(lactic 
acid) blend showed two-phase morphology. Graphene nanoparticles can be seen 
dispersed in the polystyrene matrix. 

Poly (methyl methacrylate) and graphene-based nanocomposites have been 
reported using the solution technique [59]. These nanomaterials have been studied for 
morphology, electrical conductivity, and mechanical characters [60]. The poly(methyl 
methacrylate) filled with 2.0 wt.% graphene contents had a high electrical conductivity 
of 0.04 Sm−1. Enhancement in electrical conductivity was attributed to the formation 
of interlinked graphene networks in the matrix [61]. Polyethylene and graphene based 
nanocomposites were also formed using the solution method [62,63]. Similarly, 
poly(vinyl alcohol) and graphene-based nanomaterials have been developed using the 
solvent method [64]. Inclusion of 6.5 vol.% graphene to the matrix led to a high 
conductivity of 0.06 Scm−1. In addition, the Young’s modulus of poly(vinyl alcohol) 
was enhanced by 58% [65]. Consequently, the low-cost, simple, and ecofriendly 
solution technique has been applied to a variety of thermoplastics and graphene 
nanofillers. The resulting high-performance nanocomposites have superior dispersion, 
electrical and thermal conductivity, glass transition temperature, thermal stability, and 
mechanical strength performances [66,67]. 

5. Melt strategy for graphene nanocomposites 

 
Figure 6. Schematic of melt strategy. 

Subsequently, numerous thermoplastic matrices have been melt processed with 
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graphene nanoparticles [75]. Polystyrene and graphene-based nanocomposites have 
been developed using melt blending [76,77]. These nanomaterials have revealed fine 
dispersion and electron conduction features. Shen and colleagues [78] industrialized 
the polystyrene and graphene derivative nanocomposites through melt blending. 
Figure 7 shows a schematic for the development of π-π stacking interactions in melt 
blending of polystyrene/graphene nanomaterials. Due to high shear forces, polymer 
chains are inserted between the graphene nanosheets. Figure 8 reveals the 
thermogravimetric analysis of the polystyrene/functional graphene nanocomposites. 
Inclusion of 5 to 60 wt.% nanofiller considerably boosted the thermal stability of the 
polystyrene matrix. 

 
Figure 7. Schematic for the formation of π-π stacking during melt blending [78]. PS 
= polystyrene. Reproduced with permission from ACS. 

 
Figure 8. Thermogravimetric analysis curves of nanocomposites. PSFG = 
polystyrene/functional graphene. 5, 10, 30, 60 = nanofiller contents in designations 
[78]. Reproduced with permission from ACS. 

The graphene-filled polypropylene nanocomposites were processed using the 
melt blending technique for enhanced electrical, thermal, and mechanical features 
[79]. The elevated performance was attributed to the interfacial interactions in the 
matrix-nanofiller [80]. Melt-processed graphene-filled polyethylene and polyethylene 
terephthalate nanocomposites have been developed with elevated strength features 
[81,82]. The poly(methyl methacrylate) nanocomposites with graphene have also been 
prepared through melt blending practice [83]. The melt strategy has been found facile, 
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low-cost, and large-scale processable [84,85]. Controlling the reaction temperature, 
time, and shear and extrusion rate may define fine dispersion in the polymeric matrices 
[86,87]. 

6. More synthesis strategies 

For graphene nanocomposites, solution approaches have been applied as 
effective methods; however, complex posttreatments must be used for solvent 
evaporation [88]. A range of other synthesis strategies have been found effective for 
the formation of graphene nanocomposites. Essential processing techniques include 
three- or four-dimensional printing approaches [89]. Among printing methods, 
stereolithography [90], inkjet printing [91], selective laser sintering [92], direct ink 
writing [93], fused deposition modeling [94], and others have been used. Printing 
techniques have been used to enhance the dispersion as well as the end properties and 
performances of the graphene nanomaterials [95,96]. Choice of a particular printing 
technique has been found critical to form the desired material and properties. 
Accordingly, the performance of printed material relies on the polymer type, 
nanoparticle dispersion, interactions, and printing parameters. The direct three-
dimensional printing involves the extrusion of viscous material from the pressurized 
syringe to form the three-dimensional shapes. The fused deposition modeling printing 
performs with controlled filament extrusion. By controlling the printing parameters, 
product quality can be managed. The selective laser sintering uses high power lasers 
to fuse the powder, and product resolution depends upon the powder specifications, 
laser power, and scan speed. Electrospinning has also been adopted as an efficient and 
sophisticated method to form the high-tech nanomaterials [97,98]. By using 
electrospinning, finely reinforced graphene nanocomposites have been designed 
[98,99]. This technique may include a syringe, spinneret, collector, and voltage-based 
system [100,101]. Resulting electrospun graphene nanocomposite nanofibers have 
been tested for high electrical, mechanical, thermal, and other advanced technical 
features [102]. Table 1 displays essential details of some literature-reported graphene-
filled nanocomposite designs formed using efficient synthesis strategies. Hence, the 
manufacturing technique relies on the inherent features of graphene nanomaterials. 

Table 1. Specs of graphene nanocomposites thru various synthesis strategies. 

Matrices Nanofiller Manufacturing Ref. 

Polystyrene Graphene In situ polymerization [35] 

Polyamide 6 Graphene In situ polymerization [31] 

Polyamide 6 Graphene In situ polymerization [32] 

Polystyrene Graphene Solution method [56] 

Poly (methyl methacrylate) Graphene Solution method [60] 

Poly (methyl methacrylate) Graphene Solution method [61] 

Poly (vinyl alcohol) Graphene Solution method [64] 

Polystyrene, polycarbonate, polypropylene, high density polyethylene, low 
density polyethylene 

Graphene Melt compounding [75] 

Poly (methyl methacrylate), polystyrene, polybutyl acylate Graphene Atom transfer radical polymerization [103]  

Polystyrene, poly (methyl methacrylate), poly (vinyl fluoride) Graphene Colloid method [104] 
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7. Scenarios and conclusions 

Graphene nanocomposites have been designed using several simple and 
sophisticated synthesis strategies (Figure 9) [105]. Choice of a particular technique 
always relies on the cost, ease of processing, and opportunities for large-scale 
production [106,107]. Accordingly, graphene dispersion, matrix-nanofiller 
interactions, and interface developments were influenced. Consequently, suitable 
synthesis technique has been found important to improve the nanocomposite features 
and end uses of the graphene nanocomposites [108]. Here, each synthesis method 
owns relevant advantages and disadvantages towards the formation of graphene 
nanomaterials [109]. 

 
Figure 9. Synthesis strategies for graphene nanocomposites. 

Solution synthesis is a simple method; however, this may include the drawback 
of using toxic solvents. The in situ technique, on the other hand, has resolved this issue 
by using environmentally friendly solvents [110]. The melt method has also been 
found beneficial, avoiding the use of any toxic solvent. Sometimes the melt extrusion 
method may have the drawback of poor graphene dispersion in the nanocomposites. 
Therefore, the nanofiller dispersion depends on the type of synthesis strategy used. 
Sophisticated techniques like printing and electrospinning have been found effective 
to form well-dispersed high-performance graphene nanocomposites [111]. However, 
these techniques have drawbacks of high cost and limitations for large scale processing 
[112,113]. Moreover, nanoparticle aggregation has been found challenging in 
sophisticated techniques like coating and prating [114]. Beside studying the 
experimentally processed graphene nanocomposites, theoretical approaches like 
molecular dynamics or simulation must be applied for graphene nanomaterials [115]. 
Henceforth, research efforts have focused on the use of appropriate synthesis 
techniques and controlled processing parameters to attain high-performance graphene 
nanocomposites. Main application areas recognized for the well-processed graphene 
nanocomposites include batteries, supercapacitors, solar cells, fuel cells, coatings, 
membranes, engineering structures,  space, automobiles, and other transportation 
sectors. 

In short, this article summarizes the synthesis strategies widely used for the 
formation of graphene nanocomposites. Most importantly, in situ strategy, solution 
processing, melt blending, printing, spinning, and numerous other methods can be 
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adopted for the development of efficient graphene-filled nanomaterials. Here, a 
suitable method may reveal fine graphene dispersion, matrix-nanofiller associations, 
and physical property enhancements. In this context, important microstructure, 
electrical, thermal, and mechanical features were improved with the graphene 
additions. Consequently, the nanocomposite performance was enhanced by 
controlling the parameters of the synthesis strategies used. Future progress on the 
processing of graphene nanocomposites may lead to the development of advanced 
next-level approaches for the formation of high-tech nanomaterials. 

Conflict of interest: The authors declare no conflict of interest. 
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