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Abstract: Among carbon nanoparticles, fullerene has been observed as a unique zero-

dimensional hollow molecule. Fullerene has a high surface area and exceptional structural and 

physical features (optical, electronic, heat, mechanical, and others). Advancements in fullerene 

have been observed in the form of nanocomposites. Application of fullerene nanocomposites 

has been found in the membrane sector. This cutting-edge review article basically describes 

the potential of fullerene nanocomposite membranes for water remediation. Adding fullerene 

nanoparticles has been found to amend the microstructure and physical features of the 

nanocomposite membranes in addition to membrane porosity, selectivity, permeation, water 

flux, desalination, and other significant properties for water remediation. Variations in the 

designs of fullerene nanocomposites have resulted in greater separations between salts, desired 

metals, toxic metal ions, microorganisms, etc. Future investigations on ground-breaking 

fullerene-based membrane materials may overcome several design and performance challenges 

for advanced applications. 
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1. Introduction 

Benefits of membrane skills have been observed for technical utilization due to 
low cost, efficient working, low energy consumption, and scaled-up processing [1]. In 
traditional membrane technologies, pressure-driven membrane assemblies have been 
used for filtration [2]. Developments in this field have led to the implication of 
polymer-based membranes and materials. Consequently, numerous polymers have 
been used as filtration membranes to enhance their robustness, selectivity, 
permeability, and desalination performance at low pressure [3,4]. Polymeric 
membranes have been fabricated using a range of techniques, such as simple solution 
casting, phase inversion, sol-gel procedures, and efficient electrospinning techniques 
[5–7]. The efficiency of polymeric membranes has been found to be reliable on the 
surface area, microstructure, porosity, crystallinity, hydrophilicity, etc., enhancing 
flux, fouling resistance, and desalination performances [8–10]. In this regard, applying 
nanocomposite membranes instead of pristine polymeric membranes has been found 
advantageous [11]. Consequently, carbon nanostructures like graphene, carbon 
nanotubes, nanofibers, etc. have been employed to develop nanocomposite 
membranes [12,13]. Most competent fullerene nanoparticles have been applied to 
polymeric membranes [14]. Hence, water remediation has been investigated using 
polymer- and fullerene-derived nanocomposite membranes [15–17]. 
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This state-of-the-art article presents fullerene-filled nanocomposite membranes 
for water purification. Inclusion of fullerene in filtration membranes caused significant 
effects on the separation performances owing to the high surface area, pore size, 
porosity, surface roughness, and other surface properties [18]. Fullerene-based 
membranes revealed fine potential to overcome the performance challenges of the 
filtration of unwanted pollutants [19]. 

2. Fullerene 

Fullerene is a hollow, symmetrical carbon nano-allotrope with sp2 hybridization 
[20,21]. Owing to structural features, π conjugation has been observed in the fullerene 
molecule [22]. This cage-shaped nanostructure has a size of about 1 nm. Its discovery 
dates back to 1985 [23]. Fullerene molecules have been found as C20, C24, C60, C70, 
C120, etc., depending upon the number of carbon atoms in the hollow ball-like ring 
structure (Figure 1) [24]. Fullerene C60 is the most frequently adopted form, known 
as buckminsterfullerene. This marvelous molecule has been studied for its optical, 
electronic, mechanical, thermal, and biomedical properties [25]. A number of 
techniques have been used to form the fullerene molecules, like the plasma method, 
chemical vapor deposition, arc discharge, and many others [26,27]. Advancements in 
fullerene research have been observed in the form of nanocomposite structures 
[28,29]. For nanocomposite formation, the solubility of fullerene molecules has been 
considered [30]. Various solvents like water, poly(vinylpyrrolidone), and organic 
solvents have been used for fullerene molecules [31]. Consequently, better-processed 
fullerene nanomaterials have been applied for photovoltaics, optoelectronics, sensors, 
and biomedical applications [32–35]. Furthermore, high-performance fullerene-based 
nanocomposite membranes have been designed. The membrane performance was 
dependent upon the type of fullerene molecules, dispersions, and interactions with the 
matrix materials used [36]. 

 
Figure 1. Some fullerene molecules. 

3. Nanocomposite membranes 

Various technological sectors have focused on the application of membranes 
[37,38]. In this regard, membranes have been effectively applied for the removal of 
environmental contaminants from water [39]. Most importantly, polymer-based 
nanocomposite membranes have been designed with numerous potential benefits for 
water separation [40]. Accordingly, the pollutants from ground, domestic, sea, and 
industrial water have been removed using the advanced membranes [41]. The 
membrane filtration efficiency definitely relies on the permeability and selectivity 
features [42]. Moreover, nanocomposite membranes have been explored for improved 
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physicochemical properties [43,44]. Important membrane features studied in this 
regard include porosity, hydrophilicity, selectivity, fouling, mechanical, and heat 
stability [45]. A range of different filtration nanocomposite membranes have been 
prepared, such as microfiltration, nanofiltration, ultrafiltration, reverse osmosis, mixed 
matrix, and so on [46,47]. The membrane properties also depend on the nanofiller 
type, quantity, and dispersion features of the polymeric systems [48]. For 
nanocomposite membrane formation, various nanocarbon nanoparticles have been 
used, including graphene, carbon nanotubes, nanodiamonds, etc. [49,50]. Similarly, 
wide-ranging polymers have been adopted to form efficient membranes [51]. For 
example, reports on polysulfone- and graphene-based nanocomposite membranes 
have been observed [52,53]. The polysulfone/graphene nanocomposite membranes 
were fabricated using the phase inversion technique [54]. These membranes have been 
investigated for crystallinity, morphology, and matrix-nanofiller interactions, 
enhancing their physical properties and water remediation performance [55]. 
Similarly, countless polymer/nanocarbon nanomaterials have been reported for 
membrane applications. 

4. Fullerene in nanocomposite membranes for water remediation 

Fullerene-filled nanocomposite membranes have been prepared and examined for 
membrane properties like desalination, toxic ion removal, metal ion removal or 
recovery, and microorganism separation from water [56]. Various toxic metals like 
lead, mercury, arsenic, etc. have been removed using the efficient fullerene-filled 
membranes [57–59]. The separation performance of these membranes relies on the 
porosity and surface defects of these membranes [60,61]. Perera and colleagues [62] 
reported on fullerene-based reverse osmosis membranes. The membranes revealed a 
high water flux of 26.1 L/m2h and salt rejection properties. The nanocomposite 
membranes were effectively used to separate the lithium ions from seawater [63]. 

Polyamide is a commodity thermoplastic polymer with amide bonds in the main 
chain [64,65]. Polyamide has been effectively adopted for membrane application 
[66,67]. Plisko and co-researchers [68] designed the polyamide and hydroxy 
functional fullerene-derived nanocomposite membranes for water remediation. 
Adding 5 wt.% nanofiller aided the antifouling properties. In addition, the removal of 
organic matter has been observed for the nanocomposite membranes. Dmitrenko et al. 
[69] used polyamide polyphenylene isophthalamide and filled it with fullerene 
nanoparticles along with other carbon fillers. The mixed matrix pervaporation 
membranes have been fabricated through the solid-phase synthesis method. Figure 2 
displays a simple route for the formation of polyphenylene isophthalamide/C60 
pervaporation membranes. The inclusion of nanofiller increased the transport 
properties of the nanocomposite membranes. The membranes were tested for the 
transport properties of an azeotropic methanol-toluene mixture. Adding fullerene 
nanoparticles has considerably improved the permeation flux of the membranes [70]. 
Here, permeation flux was observed in the range of 0.084–0.214 kg/(m2h) with 5 wt.% 
fullerene contents. In addition, a selectivity of 96 wt.% was observed. The porosity, 
permeability, and selectivity of the pervaporation membranes were dependent on the 
fullerene contents and interactions with the polymers [71,72]. 
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Figure 2. Graphical representation of development of novel polyphenylene 
isophthalamide pervaporation (PV) membranes modified with various types of C60 
derivatives [72]. Reproduced with permission from MDPI. 

Liu et al. [73] reported on epoxy-derived nanocomposite membranes filled with 
fullerene C60 and graphene oxide. The resulting membranes have been studied for their 
ion permeation and desalination properties. Figure 3 shows a transmission electron 
microscopy micrograph of fullerene and graphene oxide-based nanomaterials. The 
interlayer spacing between the fullerene-grafted graphene nanosheets was found to be 
around 100 nm due to the insertion of 0.7–1 nm fullerene nanoparticles. Due to 
interlayer spacing, a low permeation rate was observed. Figure 4 expresses the 
fabrication and water desalination setup for the formation of water permeation 
membranes of epoxy and fullerene-grafted graphene nanoparticles. Including 
fullerene molecules led to a high water flux of up to 10.85 L/m2hbar. Better 
desalination and water permeation have been observed. Figure 5 displays the 
variations in ion concentrations on permeation vs. time for the fullerene-based 
membranes. The stability features of the nanocomposite membranes were found to 
affect the desalination performance [74]. Table 1 exhibits examples of some fullerene-
filled nanocomposites-based filtration membranes. 

Table 1. Specifications of few polymeric membranes with fullerene nanofiller for water purification. 

Nanoparticles Fullerene nanoparticle size (nm) Membrane pore size Filtration (L/m2h.bar)/LMH.bar Ref 

C60 14–59 34 to 55 nm - [68] 

Functional C60 ~1 0.86 to 0.59 nm 26.1 LMH [62] 

Polyhydroxylated C60 - 0.64 nm 6.7 LMH.bar [63] 

C60 0.14 - - [75] 

C60 - Large pore size - [76] 

C60 - 17 nm - [77] 

C60 9–15 
5 wt.% nanoparticles 
small pores 

0.084–0.214 kg/(m2h) [69] 

C60 0.375 - - [78] 
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Figure 3. (a) Transmission electron microscopy (TEM) image of pure GO layer 
(very thin layer with a little folding edge represents GO layer, at scale bar of 100 nm); 
(b) Schematic illustration of grafting C60 on GO layer through lithiation reaction; and 
(c) TEM image of C60 grafted GO layer (smooth layer with irregular shape represents 
GO layer and dark dots represent C60 nanoparticles, at scale bar 20 nm). The GO 
layer is around 150 nm, whereas the C60 nanoparticles are 1–2 nm) [73]. GO = 
graphene oxide; C60 = fullerene. Reproduced with permission from ACS. 

 
Figure 4. Fabrication process and water desalination setup using C60 grafted graphene 
oxide membranes. The photograph shows: (a) graphene oxide membrane without C60; 

(b) C60 grafted graphene oxide membrane; (c) optical micrograph of cross-sectional 

area with scale bar 100 µm. The micrograph shows 148 µm thick graphene oxide 
laminates embedded in 81 µm thick epoxy; (d) graphene oxide-C60 membrane 
encapsulated with epoxy in plastic disk of 47 mm; (e) graphene oxide-C60 membrane 
inside water desalination setup; (f) and (g) are schematic setup of flat membrane 
made of graphene oxide and C60 hybrid for water desalination [73]. GO = graphene 
oxide; C60 = fullerene; Reproduced with permission from ACS. 
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Figure 5. Ion concentration on the permeation side through GO/C60 membrane over 
time period (the red, blue, and green lines indicate the feed ratios of GO:C60 = 1:2, 
1:1, and 2:1, respectively) [73]. GO = graphene oxide; C60 = fullerene. Reproduced 
with permission from ACS. 

Polysulfone is a marketable thermoplastic polymer commonly used [79]. 
Polysulfone has several advantageous features, like chemical, mechanical, and thermal 
robustness. Polysulfone has been used to form membranes, coatings, and other 
practical nanostructures for methodological fields [80]. Penkova and colleagues [81] 
reported on polysulfone and fullerene-derived mixed-matrix membranes. Adding 5 
wt.% fullerene C60 enhanced the membrane transport features, especially 
pervaporation of the ethyl acetate-water mixture [82]. Including fullerene nanofiller 
also elevated the membrane surface area and hydrophilicity. The solution-diffusion 
processes were used to promote pervaporation through the membrane [83]. 
Consequently, mass transfer and permeability were found to increase through the 
membranes. 

Nafion is another important matrix for membrane formation [84,85]. Nafion-
based commercial membranes have been widely adopted for environmental, energy, 
and energy/electronics applications [86,87]. Here, fullerene-filled nafion membranes 
have been produced [88]. The antimicrobial properties of the nanocomposite 
membranes were considered. Tasaki and colleagues [89] formed the nafion/fullerene 
nanocomposite membrane using the solution casting method. The solvent technique 
was efficient in forming compatible fullerene-filled membranes [15]. The membranes 
were studied using molecular dynamic simulations, and fine fullerene nanoparticle 
dispersion was deliberated. Layon et. al. [90] developed fullerene nanocomposites 
using poly(vinyl pyrrolidone) as well as different solvent media. The resulting 
membranes were used for wastewater remediation. Figure 6 shows that the sonication 
technique better dispersed the fullerene nanoparticles in the medium relative to 
aqueous dispersion and in tetrahydrofuran. Fullerene nanoparticles had a size of 30–
100 nm. In poly(vinyl pyrrolidone), aggregated fullerene nanoparticles have been 
observed [91]. The effects of minimal inhibitory concentrations on aggregate surface 
area can be seen in Figure 7. There was no linear relationship between the minimal 
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inhibitory concentrations and aggregate surface area. However, enhanced surface area 
increased membrane performance due to better interactions. 

 
Figure 6. Transmission electron microscopy micrographs of (A) aq/nC60; (B) 
son/nC60; (C) THF/nC60; and (D) PVP/nC60 [90]. Reproduced with permission from 
ACS. 

 
Figure 7. Relationship between Minimal inhibitory concentrations (MIC) and 
aggregate surface area. There is no linear relationship between the mean MIC and 
the surface area to volume ratio calculated, indicating that the difference in surface 
area alone does not account for the difference in MIC between the small and large 
aggregates [90]. Reproduced with permission from ACS. 

5. Prospects and conclusions 

Fullerene nanostructures have brought about revolutions in a range of 
methodological industries, including organic photovoltaics, energy, biomedical 
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purposes, biopharmaceuticals, etc. [92–94]. Fullerene nanocomposite membranes 
have been widely used in filtration systems. Other water decontamination strategies 
have also been considered, such as sedimentation, distillation, biological processes, 
flocculation, chlorination, ultraviolet light, etc. [95]. Various combinations and types 
of polymer/fullerene membranes have been developed (Figure 8). In fullerene-based 
membranes, remarkable morphology, mechanical, and barrier features have 
significantly contributed towards water remediation [96]. Fullerene molecules have 
contributed to the matrix-nanofiller interactions, enhancing the compatibility of these 
nanostructures. The main challenging aspect has been recognized as nanoparticle 
dispersion in polymeric membranes [97]. 

 
Figure 8. Design of fullerene-based membranes. 

Better fullerene dispersion throughout the membrane ultimately defines the 
controlled pore size or structure, morphology, surface roughness, and wettability of 
efficient membranes. In this regard, separation mechanisms need to be explored to 
further improve the fullerene membrane-based filtration processes. Theoretical studies 
on fullerene nanocomposite membranes may also help to resolve the performance 
challenges. In the future, variations in membrane designs may also bring about 
revolutions in this field. 

This cutting-edge review presents an analysis of applying fullerene 
nanocomposite membranes for water purification purposes. Polymer-based 
nanocomposite membranes with fullerene nanoparticles have been found to transform 
waste water remediation. Efforts on fullerene nanocomposite membranes have led to 
improved surface properties, permeability, selectivity, separation, antifouling, and 
other features. These membranes have a low price and lasting stability for large-scale 
filtration. Further research may lead to a number of enhanced membrane parameters 
to overcome these drawbacks. 

Conflict of interest: The author declares no conflict of interest. 
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