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Abstract: Water splitting, the process of converting water into hydrogen and oxygen gases, 

has garnered significant attention as a promising avenue for sustainable energy production. 

One area of focus has been the development of efficient and cost-effective catalysts for water 

splitting. Researchers have explored catalysts based on abundant and inexpensive materials 

such as nickel, iron, and cobalt, which have demonstrated improved performance and stability. 

These catalysts show promise for large-scale implementation and offer potential for reducing 

the reliance on expensive and scarce materials. Another avenue of research involves 

photoelectrochemical (PEC) cells, which utilize solar energy to drive the water-splitting 

reaction. Scientists have been working on designing novel materials, including metal oxides 

and semiconductors, to enhance light absorption and charge separation properties. These 

advancements in PEC technology aim to maximize the conversion of sunlight into chemical 

energy. Inspired by natural photosynthesis, artificial photosynthesis approaches have also 

gained traction. By integrating light-absorbing materials, catalysts, and membranes, these 

systems aim to mimic the complex processes of natural photosynthesis and produce hydrogen 

fuel from water. The development of efficient and stable artificial photosynthesis systems holds 

promise for sustainable and clean energy production. Tandem cells, which combine multiple 

light-absorbing materials with different bandgaps, have emerged as a strategy to enhance the 

efficiency of water-splitting systems. By capturing a broader range of the solar spectrum, 

tandem cells optimize light absorption and improve overall system performance. Lastly, 

advancements in electrocatalysis have played a critical role in water splitting. Researchers have 

focused on developing advanced electrocatalysts with high activity, selectivity, and stability 
for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). These 

electrocatalysts contribute to overall water-splitting efficiency and pave the way for practical 

implementation. 

Keywords: water splitting; oxygen evolution reaction (OER); hydrogen evolution reaction 

(HER); photoelectrochemical (PEC) cells; scarce materials; catalyst 

1. Introduction 

In the quest for sustainable energy generation, the development of efficient and 
clean technologies is of paramount importance. Among the various renewable energy 
sources, hydrogen has emerged as a promising candidate due to its high energy content 
and versatility. Water splitting, a process that involves separating water into its 
constituent elements, hydrogen and oxygen, offers a viable pathway for the production 

CITATION 

Shahazi R, Saddam AI, Majumdar S, 
et al. Advancements in water splitting 
for sustainable energy generation: A 
review. Characterization and 
Application of Nanomaterials. 2024; 
7(1): 5834. 
https://doi.org/10.24294/can.v7i1.5834 

ARTICLE INFO 

Received: 16 April 2024 
Accepted: 6 May 2024 
Available online: 31 May 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 
Characterization and Application of 
Nanomaterials is published by 
EnPress Publisher, LLC. This work is 
licensed under the Creative 
Commons Attribution (CC BY) 
license. 
https://creativecommons.org/licenses/
by/4.0/ 



Characterization and Application of Nanomaterials 2024, 7(1), 5834.  

2 

of hydrogen as a clean fuel [1,2]. Traditionally, water splitting has relied on 
electrolysis, a process that utilizes electricity to drive the reaction. However, 
electrolysis methods have faced challenges in terms of energy efficiency and cost-
effectiveness, limiting their large-scale implementation [3,4]. To overcome these 
barriers, researchers and scientists around the world have been working diligently to 
break new ground in water splitting technology. In recent years, significant 
advancements have been made in the field of water splitting, leading to the 
development of novel and efficient approaches. These breakthroughs have the 
potential to revolutionize the renewable energy landscape and pave the way for a 
sustainable future [5,6]. 

One of the key areas of focus in water splitting research has been the development 
of catalysts. Catalysts play a crucial role in facilitating the water splitting reaction by 
reducing the energy requirements and increasing the reaction rates. Traditional 
catalysts, such as platinum, are effective but expensive, hindering their widespread 
adoption. However, researchers have made remarkable progress in developing low-
cost and earth-abundant catalysts, such as transition metal oxides and molecular 
catalysts, which exhibit excellent catalytic activity and stability [7–9]. Another 
significant advancement in water splitting technology is the exploration of 
photoelectrochemical (PEC) cells. PEC cells utilize semiconductor materials to 
harness solar energy and drive the water splitting reaction. By combining light 
absorption and catalytic activity in a single device, PEC cells offer a promising 
approach to achieve solar-driven water splitting. Researchers have been actively 
investigating various semiconductor materials, such as metal oxides and perovskites, 
to enhance the efficiency and stability of PEC cells [10–12]. 

Furthermore, advancements in nanotechnology have opened up new avenues for 
improving water splitting efficiency. Nanostructured materials provide a high surface 
area, improved charge transport, and enhanced light absorption, making them ideal 
candidates for water splitting applications. Nanoparticles, nanowires, and nanotubes 
have demonstrated remarkable performance in catalyzing the water splitting reaction, 
offering unparalleled opportunities for efficient and cost-effective hydrogen 
production [13–15]. Moreover, the integration of water splitting technologies with 
renewable energy sources, such as wind and solar, holds tremendous potential for 
sustainable energy generation. By utilizing excess electricity generated from 
renewable sources during off-peak hours, water splitting can store the energy in the 
form of hydrogen, which can be used later for power generation or as a clean fuel for 
transportation [16–18]. 

Countries such as Japan, the United States, Germany, China, and South Korea 
have been actively researching and developing water splitting technologies [19]. They 
have made notable advancements in terms of increasing efficiency, reducing costs, 
and developing new materials for electrocatalysts [20]. Japan has a strong research 
community and has been actively collaborating with universities, research institutes, 
and industries to advance sunlight-driven water splitting technology [21]. Institutions 
such as the University of Tokyo, Kyoto University, and the National Institute of 
Advanced Industrial Science and Technology (AIST) have been at the forefront of this 
research. Japanese researchers have been working on the development of efficient and 
stable photoelectrochemical (PEC) cells and photoelectrodes for water splitting. The 
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United States has a vibrant research community dedicated to advancing water splitting 
technology. Many universities, national labs, and private research institutions have 
been conducting research to improve the efficiency, durability, and cost-effectiveness 
of water splitting systems [22]. Electrolysis, particularly proton exchange membrane 
(PEM) electrolysis and solid oxide electrolysis cells (SOEC), has been an area of focus 
in the USA. Besides this, researchers have been working on developing efficient and 
stable photoelectrodes, exploring new materials, and improving light absorption and 
charge separation processes. In addition, Germany, China, and South Korea have been 
actively researching and developing water splitting technologies [23,24]. 

In a short, advancements in water splitting technology are breaking the barriers 
that have hindered its widespread implementation for sustainable energy generation. 
The development of efficient catalysts, exploration of photoelectrochemical cells, 
utilization of nanostructured materials, and integration with renewable energy sources 
are propelling the field forward. These advancements offer a promising pathway 
towards a clean and sustainable future, where hydrogen can play a vital role in meeting 
our energy needs while minimizing environmental impact. 

2. Development of efficient and cost-effective catalysts for water 

splitting 

Water splitting is a promising technology for producing clean and renewable 
hydrogen fuel. It involves the separation of water into hydrogen and oxygen gases 
through electrochemical reactions. The process typically requires the use of catalysts 
to enhance the reaction rates and efficiency. Over the years, researchers have been 
working on developing efficient and cost-effective catalysts for water splitting. 

2.1. Platinum group metals (PGMs) 

PGMs, particularly platinum and iridium, have traditionally been used as 
catalysts for water splitting. However, their high cost and limited availability hinder 
large-scale applications. Researchers are exploring ways to reduce or replace the use 
of PGMs with more abundant and cost-effective materials [25–27]. 

2.2. Earth-abundant catalysts 

Efforts have been focused on developing catalysts based on earth-abundant 
elements, such as transition metal oxides, sulfides, phosphides, and nitrides. These 
materials offer the advantages of low cost and scalability. For example, metal oxides 
like iron oxide (Fe2O3) and cobalt oxide (Co3O4) have shown promising catalytic 
activity [28–30]. An illustration of catalysis by earth-abundant materials is shown in 
Figure 1. 

 
Figure 1. Water splitting with earth-abundant elements. 
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2.3. Bimetallic and alloy catalysts 

Combining different metals into bimetallic or alloy catalysts can enhance their 
catalytic properties. For instance, combining nickel (Ni) with iron (Fe) or cobalt (Co) 
has shown improved activity for water splitting. These catalysts can be synthesized 
using various methods, including electrochemical deposition, sol-gel techniques, and 
physical mixing [31–33]. 

2.4. Molecular catalysts 

Researchers are also exploring molecular catalysts, especially based on abundant 
and inexpensive organic compounds. These catalysts typically contain metal 
complexes with ligands that facilitate the water splitting reactions. A molecular 
catalytic reaction is demonstrated in Figure 2. Molecular catalysts offer precise 
control over the catalytic properties and can be designed to optimize efficiency [34–
36]. 

 
Figure 2. Schematic diagram of homogeneous catalysis with soluble molecular 
catalyst. 

2.5. Nanostructured catalysts 

Nanostructured catalysts, such as nanoparticles, nanowires, and nanotubes, have 
attracted attention due to their high surface area and unique electronic properties. 
These structures can enhance catalytic activity by providing more active sites and 
improving charge transport. Examples include metal nanoparticles supported on 
conductive substrates or semiconductor nanomaterials [37–40]. Several nanoparticles 
and nanowires are shown in Figure 3. 

 
Figure 3. An illustration of nanoparticles and nanowire. 
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2.6. Computational design 

Advances in computational modeling and machine learning have enabled the 
rational design of catalysts with enhanced activity. By simulating the electronic 
structure and reaction kinetics, researchers can identify promising catalyst candidates 
for experimental validation, accelerating the discovery process [41–43]. 

3. Solar energy to drive the water-splitting reaction 

Utilizing solar energy to drive the water-splitting reaction is a promising 
approach for sustainable hydrogen production. It involves harnessing the energy from 
sunlight and converting it into chemical energy stored in the form of hydrogen gas. 
There are two common methods for using solar energy in water splitting: 

3.1. Photovoltaic (PV) electrolysis 

This method involves using photovoltaic cells, commonly known as solar cells, 
to directly convert solar energy into electricity. The generated electricity is then used 
to power an electrolyzer, which splits water into hydrogen and oxygen gases. The 
electrolyzer consists of two electrodes (cathode and anode) immersed in an electrolyte 
solution. When an electric current is applied, water molecules at the cathode are 
reduced to produce hydrogen gas (H2), while water molecules at the anode are oxidized 
to produce oxygen gas (O2). Catalysts are employed at the electrodes to enhance the 
reaction rates and improve overall efficiency [44–46]. 

3.2. Photoelectrochemical (PEC) water splitting 

PEC water splitting combines the principles of solar cells and electrolysis into a 
single device. A photoelectrochemical cell is used, which typically consists of a 
semiconductor electrode immersed in an electrolyte solution [47]. A schematic 
diagram of photoelectrochemical water splitting is depicted in Figure 4. The 
semiconductor electrode absorbs photons from sunlight, generating electron-hole pairs. 
The excited electrons participate in the reduction reaction (hydrogen evolution), while 
the holes contribute to the oxidation reaction (oxygen evolution) [48–51]. Catalysts 
are essential in PEC cells to facilitate the reaction kinetics and improve efficiency. 
Both PV electrolysis and PEC water splitting have their advantages and challenges: 

 
Figure 4. Schematic diagram of photoelectrochemical water splitting. 
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3.2.1. Advantages 

• Utilization of abundant and renewable solar energy. 
• Production of clean and sustainable hydrogen fuel. 
• Compatibility with existing infrastructure for hydrogen storage and utilization. 
• Potential for decentralized hydrogen production. 

3.2.2. Challenges 

• Efficiency: Maximizing the efficiency of solar energy conversion and the water-
splitting reaction to maximize hydrogen production. 

• Catalysts: Developing efficient and stable catalysts that can enhance the reaction 
rates and reduce energy losses. 

• Materials: Exploring and optimizing semiconductor materials with desirable 
properties for efficient solar energy absorption and charge separation. 

• Durability: Ensuring the long-term stability and durability of the materials and 
catalysts under harsh operating conditions. 

• Cost: Reducing the cost of materials, catalysts, and system components to enable 
widespread adoption. 
Ongoing research and development efforts are focused on improving the 

efficiency, stability, and cost-effectiveness of solar-driven water-splitting 
technologies. By addressing these challenges, solar energy can be harnessed to drive 
the water-splitting reaction, enabling the production of clean and sustainable hydrogen 
fuel. 

4. Natural photosynthesis to hydrogen fuel 

By integrating light-absorbing materials, catalysts, and membranes, artificial 
photosynthetic systems aim to mimic the complex processes of natural photosynthesis 
and produce hydrogen fuel from water. These systems, often referred to as artificial 
photosynthesis or artificial leaf systems, seek to harness solar energy and use it to drive 
the water-splitting reaction, generating hydrogen gas (H2) as a clean and renewable 
fuel. Here’s a breakdown of the key components: 

4.1. Light-absorbing materials 

Light-absorbing materials, such as semiconductors or molecular dyes, capture 
sunlight and convert it into usable energy. These materials should have a broad 
absorption spectrum, efficient light harvesting, and good charge separation properties 
to generate the necessary energetic electrons [52–54]. 

4.2. Catalysts 

Catalysts facilitate the water-splitting reaction by reducing the energy barriers 
and increasing the reaction rates. They are typically used at the cathode (hydrogen-
evolving reaction, HER) and anode (oxygen-evolving reaction, OER) to promote the 
respective electrochemical reactions. Catalysts can be based on various materials, 
including earth-abundant metals, metal oxides, molecular complexes, or even 
biological enzymes [55–57]. 
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4.3. Membranes 

Membranes are employed to separate the HER and OER compartments, 
preventing the mixing of hydrogen and oxygen gases and enhancing the overall system 
efficiency. Proton-exchange membranes (PEMs) or other selective ion-conductive 
membranes are used to enable the transport of protons while blocking the crossover of 
gases [58–60]. 

4.4. Electron transfer pathways 

Efficient pathways for electron transfer are essential to transport the generated 
electrons from the light-absorbing materials to the catalytic sites. Electron-conductive 
materials or structures, such as conductive electrodes or nanowires, are used to 
facilitate the movement of electrons to the respective electrodes [61–63]. 

By integrating these components, artificial photosynthetic systems emulate the 
fundamental processes of natural photosynthesis, where plants and algae convert 
sunlight, water, and carbon dioxide into chemical energy in the form of carbohydrates. 
In the case of artificial photosynthesis for hydrogen production, the focus is on 
generating hydrogen fuel from water using sunlight as the primary energy source. 
These systems hold promise for sustainable and carbon-neutral energy production, but 
there are still challenges to overcome, such as improving the efficiency, stability, and 
scalability of the components, as well as reducing costs. Extensive research and 
development efforts are ongoing to advance the field of artificial photosynthesis and 
enable its practical implementation as a viable technology for hydrogen production 
and energy storage. 

5. Tandem cells to enhance the efficiency of water-splitting systems 

Tandem cells have emerged as a strategy to enhance the efficiency of water-
splitting systems in artificial photosynthesis. Tandem cells are multi-junction devices 
that combine multiple light-absorbing materials with different bandgaps in a stacked 
configuration [64–66]. This configuration allows for the efficient capture of a broader 
range of the solar spectrum, thereby increasing the overall energy conversion 
efficiency. Here’s a closer look at how tandem cells work: 

5.1. Bandgap combinations 

Different semiconductor materials have different bandgaps, which determine the 
range of light wavelengths they can efficiently absorb. In tandem cells, materials with 
varying bandgaps are carefully selected and arranged in a series to create a cascade of 
absorption layers. The bandgap of each layer is tailored to match the energy level of a 
specific portion of the solar spectrum, enabling efficient utilization of a wider range 
of photons [67,68]. 

5.2. Efficient light harvesting 

As sunlight passes through the tandem cell, each layer absorbs a specific portion 
of the solar spectrum. The absorbed photons generate electron-hole pairs (excitons) in 
the respective layers, leading to the production of electrical current [69,70]. The light 
harvesting technique is demonstrated in Figure 5. 
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Figure 5. Light harvesting technique. 

5.3. Charge separation and collection 

The excited electrons and holes generated in each layer are rapidly separated due 
to the different bandgaps and internal electric fields. Efficient charge collection 
mechanisms are employed to extract the electrons and holes from each layer and direct 
them to their respective contacts or electrodes. 

5.4. Water-splitting reactions 

The separated electrons and holes can be utilized for the water-splitting reaction. 
The excited electrons are directed to the cathode, where they participate in the 
reduction reaction (hydrogen evolution) by converting protons (H+) from water into 
hydrogen gas (H2). The holes are directed to the anode, where they participate in the 
oxidation reaction (oxygen evolution) by oxidizing water molecules (H2O) to produce 
oxygen gas (O2). 

By combining materials with different bandgaps in tandem cells, a larger portion 
of the solar spectrum can be effectively harvested, leading to improved light-to-
hydrogen conversion efficiency. This approach allows for better utilization of solar 
energy and has the potential to achieve higher efficiencies compared to single-junction 
devices. Tandem cells are an active area of research, and scientists are exploring 
various material combinations, device architectures, and fabrication techniques to 
optimize their performance. The development of efficient and stable tandem cells is 
crucial for advancing the field of artificial photosynthesis and enabling more efficient 
solar-driven water-splitting systems for sustainable hydrogen production. 

6. Development and optimization of OER and HER 

The development and optimization of the oxygen evolution reaction (OER) and 
hydrogen evolution reaction (HER) electrocatalysts are crucial for advancing various 
energy conversion and storage technologies. Here are some key aspects involved in 
the development and optimization of OER and HER processes: 

6.1. Catalyst screening and design 

Initial stages involve screening and evaluation of various catalyst materials to 
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identify candidates with high activity for OER and HER. The catalyst design considers 
factors such as electronic structure, surface area, crystal structure, and surface 
chemistry to enhance catalytic activity and stability. Computational modeling and 
high-throughput screening techniques are often employed to accelerate catalyst 
discovery [71,72]. 

6.2. Nano-structuring and surface modifications 

Nano-structuring techniques, such as nanoparticle synthesis, thin-film deposition, 
or nanowire fabrication, are employed to increase the surface area and expose more 
active sites. Surface modifications, such as doping, alloying, or surface 
functionalization, can tailor the catalyst’s electronic properties and surface reactivity, 
leading to improved performance [73–75]. Surface functionalization of catalysts is 
illustrated in Figure 6. 

 
Figure 6. Surface functionalization of catalyst. 

6.3. Interface engineering 

The catalyst-support interface plays a crucial role in the overall catalytic activity 
and stability. Interface engineering techniques, such as optimizing the catalyst-support 
interaction, introducing interlayers, or using conductive substrates, can enhance 
electron transfer kinetics and catalytic performance [76–78]. 

6.4. Co-catalysts and synergy effects 

Co-catalysts, such as metal nanoparticles, metal oxides, or molecular complexes, 
can be combined with the primary catalyst to enhance catalytic performance. 
Synergistic effects between different catalyst components can promote electron 
transfer, modify reaction kinetics, and improve overall efficiency [79,80]. 

6.5. Ion and mass transport 

Efficient ion and mass transport within the electrochemical system is crucial for 
optimizing OER and HER. Strategies to enhance mass transport include designing 
porous electrode structures, optimizing electrolyte composition, and improving gas 
diffusion pathways [81,82]. 

6.6. Stability and durability 

Long-term stability and durability of OER and HER catalysts are essential for 
practical applications. Researchers focus on understanding degradation mechanisms, 
developing strategies to mitigate catalyst degradation (e.g., corrosion resistance), and 
exploring protective coatings or encapsulation techniques [83,84]. 
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6.7. Advanced characterization techniques 

Advanced characterization techniques, such as scanning electron microscopy 
(SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy 
(XPS), and in-situ spectroscopy, provide insights into catalyst structures, active sites, 
and reaction mechanisms. These techniques help in understanding the structure-
activity relationships and guide catalyst optimization efforts. 

The development and optimization of OER and HER catalysts involve a 
multidisciplinary approach, combining materials science, surface chemistry, 
electrochemistry, and computational modeling. Continued research efforts aim to 
enhance catalytic activity, selectivity, stability, and cost-effectiveness to enable 
efficient and sustainable energy conversion and storage systems. 

7. Catalyst for OER and HER 

Researchers have indeed focused on developing advanced electrocatalysts with 
high activity, selectivity, and stability for the oxygen evolution reaction (OER) and 
hydrogen evolution reaction (HER). These electrocatalysts play a critical role in 
facilitating efficient and sustainable water splitting, which is essential for various 
applications, including artificial photosynthesis and renewable energy storage. Here’s 
an overview of the advancements in electrocatalyst development for the OER and 
HER: 

7.1. Oxygen evolution reaction (OER) 

7.1.1. Metal oxides and mixed metal oxides 

Metal oxides, such as ruthenium oxide (RuO2), iridium oxide (IrO2), and 
manganese oxide (MnOx), have shown excellent catalytic activity for the OER. 
Researchers have been exploring the synthesis of nanostructured and well-defined 
metal oxide catalysts to enhance their surface area and expose more active sites. Mixed 
metal oxides, combining different elements, can exhibit improved OER activity and 
stability compared to single-metal oxides [85–87] (Table 1). 

Table 1. Comparison of oxygen evolution reaction (OER) performance with various 
transition metal oxide and hydroxide [88]. 

Materials pH Overpotential for 10 mA cm−2/V Tafel Slope/mV decade−1 

MnCo-G 14 0.33 48 

RuO2 14 0.3 42 

Ni5Mn-LDH-MWCNT 14 0.35 (iR-corrected) 83 

Co5Mn-LDH-MWCNT 14 0.3 (iR-corrected) 74 

CoNi-LDH/Fe-PP-M 14 0.32 53 

CuCo2O4/N-rGO 14 0.36 64 

Co3S4@MoS2 14 0.33 59 

CoMoO4 14 0.31 56 

CoP 14 0.36 66 

CoFe LDH 13 0.36 49 

NiFe LDH 14 0.33 41 
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7.1.2. Perovskite oxides 

Perovskite oxides, with a general formula of ABO3, have garnered significant 
attention for OER electrocatalysis. Materials such as strontium titanate (SrTiO3), 
strontium iridate (SrIrO3), and barium strontium cobalt iron oxide (BSCF) have 
demonstrated promising OER activity. Doping, surface modification, and nano 
structuring techniques are employed to optimize the performance of perovskite oxides 
[89–92]. 

7.1.3. Earth-Abundant talysts 

To overcome the cost and scarcity associated with noble metals, researchers are 
actively exploring earth-abundant catalysts for the OER. Materials like cobalt-based 
compounds (e.g., Co3O4), nickel-iron-based compounds (e.g., NiFe layered double 
hydroxides), and metal phosphides (e.g., nickel phosphide, cobalt phosphide) have 
shown promising OER activity [93,94]. 

7.2. Hydrogen evolution reaction (HER) 

7.2.1. Platinum group metals (PGMs) 

PGMs, particularly platinum (Pt) and palladium (Pd), are highly efficient HER 
catalysts due to their excellent activity and stability. Researchers are working on 
developing advanced Pt- and Pd-based catalysts with enhanced activity through 
alloying, nano structuring, and developing hybrid materials. 

7.2.2. Earth-abundant catalysts 

To address the cost and sustainability issues associated with PGMs, researchers 
are actively exploring earth-abundant alternatives for HER. Materials such as 
transition metal sulfides (e.g., molybdenum sulfide, nickel-molybdenum sulfide) and 
metal phosphides (e.g., nickel phosphide, cobalt phosphide) have shown promising 
HER activity [93,94]. Several earth-abundant catalysts and their properties are shown 
in Table 2. 

Table 2. Examples of earth-abundant HER electrocatalysts. 

Catalyst material η at −10mAcm−2 (mV) Tafel slope (mV per decade) pH Faradaic yield 

NiMo 200 (100 mAcm−2) 122 14.8 NA 

CoMo 170 (100 mAcm−2) 92 14.8 NA 

NiMo 185 (100 mAcm−2) 112 14.8 NA 

NiMo 70 (20 mAcm−2) NA 14.3 NA 

NiMo 34 (20 mAcm−2) NA 14 NA 

MoS2 260 50 0 NA 

Pt 50 140–150 13 NA 

Ni 58 81.6 14 NA 

Mo 65 76 14 NA 

MoS2 200 (15 mAcm−2) 40 −0.3 100%* 

MoS2 ~150 41 0 NA 

MoS2 170 60 0.2 NA 

CoS2 145 51 0 NA 
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Table 2. (Continued). 

Catalyst material η at −10 mAcm−2(mV) Tafel slope (mV per decade) pH Faradaic yield 

CoS2 ~175 93 7 100% 

CoMoSx 250 85 7 −100% 

WS2 ~250 60 0 NA 

CoSe2 90 39 0 NA 

MoS1.0Sel.0 ~200 56 0 100%* 

NiSe2 ~140 49 0 NA 

Ni2P 130 (20 mAcm−2) 46 0 100%* 

CoP 85 (20 mAcm−2) 50 0 100%* 

FeP 55 38 0 100% 

MoP 64 NA 0 100% 

CoNx 170 75 14 NA 

CoNx 140 30 0 NA 

NiMoNx 225 (5 mAcm−2) 35.9 1 NA 

α-MoB ~225(20 mAcm−2) 55 −0.3 100% 

Mo2C 130 53 0 NA 

MoC 124 43 0 NA 

MoC 77 50 14 NA 

Ni/C 34 41 0 100%* 

Cu95Ti5 60 110 13 NA 

7.2.3. Molecular catalysts 

Molecular catalysts, typically based on metal complexes or metalloporphyrins, 
offer precise control over the active sites and electronic properties. Researchers are 
designing and synthesizing molecular catalysts with tailored structures to optimize 
HER activity, selectivity, and stability. 

The development of advanced electrocatalysts with high activity, selectivity, and 
stability is crucial for improving the overall efficiency and commercial viability of 
water-splitting technologies. Researchers continue to explore new materials, catalyst 
designs, and strategies to enhance the performance of electrocatalysts for the OER and 
HER, aiming to enable efficient and sustainable hydrogen production. 

8. Conclusion 

In conclusion, significant progress has been made in the development and 
optimization of catalysts and technologies for water splitting, which has advanced the 
production of sustainable energy. Catalysts based on abundant and inexpensive 
materials, such as nickel, iron, and cobalt, have shown improved performance and 
stability, reducing the need for costly materials. Photoelectrochemical (PEC) cells, 
which utilize novel materials like metal oxides and semiconductors, aim to maximize 
the conversion of solar energy into chemical energy for water splitting. Artificial 
photosynthesis approaches, inspired by natural photosynthesis, integrate light-
absorbing materials, catalysts, and membranes to produce hydrogen fuel from water, 
offering a potential solution for clean energy production. Tandem cells, which 



Characterization and Application of Nanomaterials 2024, 7(1), 5834.  

13 

combine multiple light-absorbing materials, optimize light absorption and enhance 
system efficiency. Furthermore, advancements in electrocatalysis have led to the 
development of advanced electrocatalysts with high activity, selectivity, and stability 
for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). 
These advancements collectively pave the way for the practical implementation of 
water splitting in various energy conversion and storage systems, bringing us closer to 
a sustainable and clean energy future. 

Conflict of interest: The authors declare no conflict of interest. 
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