Effects of Different Preparing Conditions and Annealing on the Photocatalytic Activity of Hydrothermal Grown BiVO₄

Yuxiang Wen, Wei Ji, Jiang Yu, Qichang An, Tianfen Qin, Jiachi Zhang, Zhiya Zhang*, Shanglong Peng*

*Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.
*Corresponding authors: E-mail address: pengshl@lzu.edu.cn (S. Peng). E-mail address: zhangjch@lzu.edu.cn (J. Zhang)

ABSTRACT

BiVO₄ was hydrothermally synthesized under different preparing conditions and characterized by XRD, SEM, Raman spectrum and BET specific surface area. The influence of different PH value and annealing temperature and hydrothermal time on the morphologies and structures of the BiVO₄ samples was investigated systematically. It can be found that annealing would eliminate the effects caused by the pH of precursor, heating temperature and heating time, but preparing conditions still influenced the size and specific surface area of samples. Furthermore, the photocatalytic activities of the fabricated BiVO₄ was also evaluated by the degradation of methyl blue in aqueous solution under UV and visible light irradiation.

Keywords: Bismuth Vanadate; Photocatalytic Activity; Morphology; Hydrothermal; Preparing Conditions

1. Introduction

With the huge consumption of traditional fossil fuels in the past several centuries, such as coal, crude oil and natural gas, human beings are now confronting a great energy crisis and environmental pollution issues. Accordingly, the development of semiconductor photocatalysts for organic pollutant degradation and water splitting has been regarded as an efficient, green and promising solution to energy replacement and environmental decontamination.[1-5] Among various semiconductor materials, TiO₂ has been regarded as one of the most promising photocatalysts owing to its large exciton binding energy, high chemical stability, non-toxicity and abundant availability.[6,7] However, its large band gap (~3.0 eV for rutile and 3.2 eV for anatase) means that TiO₂ is only active in the ultraviolet (UV) region, which accounts for less than 5% of the total energy of the solar spectrum.[8,9] In the past few decades, many researchers have focused their efforts on redeveloping visible-light-driven TiO₂-based photocatalysts with high efficiency.[10,11] For example, Asahi et al.[12] and Khan et al.[13] reported that doping TiO₂ with nitrogen or carbon can narrow its band gap, and Putnam et al.[14] and Brezova et al.[15] reported that doping TiO₂ with metal ions extends light absorption into visible region. Nevertheless, as for the doped TiO₂ photocatalysts, the dopants may likely act as recombination centers for the photogenerated electrons and holes, resulting in lower quantum efficiency compared to undoped semiconductor photocatalysts.[16,17]

Bismuth vanadate (BiVO₄) has long been recognized as an important semiconductor photocatalyst, owning excellent photocatalytic performance under visible light illumination due to its narrow band gap (2.4 eV).[18-22] There are three reported crystalline phases for synthetic BiVO₄, zircon structure with tetragonal system (z-t) and scheelite structure with monoclinic (m-s) and tetragonal (s-t) systems.[23] Therefore, many researchers focus their efforts on the photophysical and photocatalytic properties of BiVO₄ strongly influenced by its crystal form and preparation methods such as solid-state reaction[24,25], aqueous process[12,26-28], hydrothermal approach[29-32], chemical bath
deposition[33,34], metalorganic decomposition[35], and sonochemical method[35]. The architectural control of nano- and micro-crystals is an attractive and challenging goal of modern materials chemistry[36]. To this end, several exceptional structures, such as 1D BiVO₄ nanofibers, rod-like BiVO₄ and 2D BiVO₄ nanosheets, have been successfully fabricated by hydrothermal methods.[37-39] With these advanced processes, different surfactants or additives and complex treatments were necessary in order to obtain the desired morphologies and crystal structures[4,23,40,41]. Considering the properties and applications are closely related to the microstructure and corresponding synthetic techniques and processes, it is of great importance to study the controllable synthesis of BiVO₄ with the desired crystalline phase and morphology.

In this work, BiVO₄ has been synthesized by a hydrothermal approach. The photocatalytic activities of BiVO₄ prepared via different conditions were compared via the decomposition of methylene blue (MB) under UV and visible light irradiation. Also, the relationship between photocatalytic performance and fabrication parameters of BiVO₄ has been systematically investigated. ……

2. Experimental procedure

All the reagents used in the experiment are analytical grade without further purification.

2.1 Fabrication of BiVO₄

In a typical synthesis, 5.0 mmol Ammonium metavanadate (NH₄VO₃) and 5.0 mmol Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) were dissolved in 60.0 ml 1.0 M HNO₃ solution, stirring to obtain orange precipitate. The diluted ammonia water was then added for adjusting the pH value to 6. After stirring for 0.5 h, the solution was moved to 100 ml of Teflon-lined stainless steel autoclave and heated to 80 °C, 100 °C, 120 °C, 140 °C, 160 °C, 180 °C, 200 °C for 8 h under autogenous pressure, respectively. When cooled down to room temperature naturally, the yellow precipitate was obtained by centrifugation, washed with distilled water and absolute alcohol, and dried at 80 °C in an electric oven for 8 h. The dried samples were heated from room temperature to 600 °C at a constant rate within 2 h in the sintering furnace and annealed at 600 °C for 2 h. After the temperature dropped to 300 °C within 1 h, the samples were cooled down to room temperature naturally.

The optimal preparation conditions were investigated by the influence of adjusting the hydrothermal temperature, the pH value of precursor (2, 4, 6, 8, 10, 12) and the hydrothermal time (4 h, 6 h, 8 h, 12 h) on the photocatalytic activities.

2.2 Measurement of photocatalytic activities

Photocatalytic activities of the BiVO₄ powders were evaluated by the degradation of methyl blue (MB) under visible light irradiation (λ > 420 nm) using a 500 W Xe lamp with a 420 nm cut-off filter. In a typical run, 50 mg of samples was added to 50 ml of MB solution (1×10⁻⁵ mol/L). Prior to irradiation, the suspensions were stirred in the dark for 1 h to reach an adsorption/desorption equilibrium between the MB and photocatalyst. Under irradiation, the suspensions were stirred continually and open to air. At regular intervals, 4 ml of the suspensions were collected, and then centrifuged to remove the photocatalyst particles. These solutions were used to evaluate photocatalytic activities of the BiVO₄ powders by monitoring the absorbance at 554 nm with a UV-vis spectrophotometer (Shimadzu UV-3600).

2.3 Material characterization

The microstructure and morphology of the BiVO₄ were investigated by field emission scanning electron microscope (FE-SEM, Hitachi S-4800) and transmission electron microscopy (TEM, FEI Tecnai G2 F30 microscope operated at 300 KV). XRD measurements were performed on a Rigaku D/MAX-2400 X-ray diffractometer using Cu Kα radiation (λ=0.154056 nm). The chemical component was analyzed on a micro-Raman spectrooscope (JY-HR800, 532-nm wavelength YAG laser).

3. Results and discussion

3.1 Powders formation

The BiVO₄ samples were produced by the hydrothermal method and followed by annealing at 600 °C. Figure 1 shows the XRD patterns of BiVO₄ powders synthesized under different conditions. The difference in the XRD patterns between tetragonal and monoclinic BiVO₄ can be mainly judged by the existence of peaks (200) and (121) and the existence of a peak at 15° and the split of peaks at 18.5° and 35°. The percentage of monoclinic phase can be given by the following equation:
\[\eta_{\text{mono}} = \frac{I_{\text{mono}(121)}}{I_{\text{mono}(121)} + I_{\text{tetra}(200)}} \]

where \(\eta_{\text{mono}} \) denotes the percentage of the monoclinic phase, \(I_{\text{mono}(121)} \) is the relative intensity of the (121) peak, \(I_{\text{tetra}(200)} \) is the relative intensity of the (200) peak.

As shown in Figure 1(a), BiVO₄ is monoclinic (PDF 75-1866) for the samples (c, d and e)². As the pH decreases to 6 and 4, the tetragonal BiVO₄ appears (PDF 14-0133)³. These results indicate that the dissolution and the recrystallization happening in the low pH solution contribute to the phase transformation of the monoclinic type into the tetragonal type. The monoclinic BiVO₄ is thermodynamically more stable than that of tetragonal BiVO₄ at room temperature, a sudden decrease in pH can affect the structure and morphology of powders resulting the formation of the tetragonal BiVO₄⁴. Similarly, as shown in Figure 1(b), the samples (g and b) synthesized at 200 and 180 °C are monoclinic BiVO₄. As the temperature decrease to 160 °C, the tetragonal BiVO₄ appears. Therefore, the BiVO₄ phase transition can be changed from monoclinic to tetragonal by adjusting preparation conditions. And the stable BiVO₄ is mainly related to the following chemical reactions³:

\[\text{Bi(NO}_3\text{)}_3 + \text{H}_2\text{O} \Leftrightarrow 2\text{HNO}_3 + \text{BiONO}_3 \]

\[\text{BiONO}_3 + \text{VO}^3_2 \Leftrightarrow \text{BiVO}_4 + \text{NO}_3^- \]

At the beginning, the reactants are soluble in concentrated nitric acid without precipitate. Bi(NO₃)₃ reacted gradually with water to form slightly soluble BiONO₃. And then, the newly formed BiONO₃ reacted with VO₃⁻, forming yellow BiVO₄ powders. Furthermore, the samples without the high temperature annealing are a mixture of tetragonal and monoclinic BiVO₄. In Figure 1(c), the samples (b, h and i) with different structure transit into monoclinic structure after high temperature annealing, indicating that BiVO₄ change from the tetragonal phase to the monoclinic phase by using high temperature annealing. Table 1 shows the preparation conditions and percentage of monoclinic BiVO₄ powders (\(\eta_{\text{mono}} \)) of different samples.

3.2 Morphologies of the BiVO₄ samples

The chemical composition and molecular structure of the BiVO₄ samples were analyzed by Raman spectra as shown in Figure 2 and Table 2. An intense peak near 828 cm⁻¹ is assigned to the symmetric V-O stretching mode, and a weak shoulder near 707 cm⁻¹ is assigned to the anti-symmetric V-O stretching mode. The short peaks located at 367 cm⁻¹ and 324 cm⁻¹ are assigned to the symmetric and the anti-symmetric banding modes of vanadate anion, respectively. The peaks near 210 cm⁻¹ are assigned to the external modes (rotation/translation).
With the increase of the precursor pH, these Raman peaks shift towards the lower wavenumber, which reveals that the short-range symmetry of the tetrahedral VO$_4$ becomes more regular\(^\text{17}\). Raman spectra is sensitive to the short-range order, the degree of crystallinity and so on. Therefore, Raman spectra embody the variation of preparation conditions. However, the Raman spectra of BiVO$_4$ samples prepared under different pH values change a little (Figure 2), which indicates the effects on the morphologies and structures of the samples can be eliminated by annealing at high temperature. These results are in accordance with the conclusion as shown in the XRD patterns. The strongest peak is located at the larger wavenumber and the value of the full width at half maximum is lower, indicating that the symmetry of tetrahedral VO$_4$ and the degree of crystallinity would be better after annealing treatment.

![Raman spectra of BiVO$_4$ samples](image)

Figure 2: Raman spectra of the BiVO$_4$ samples prepared under different conditions.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Sample a</th>
<th>Sample b</th>
<th>Sample c</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_a (V$-$O)</td>
<td>829 (36)</td>
<td>827 (35)</td>
<td>829 (38)</td>
</tr>
<tr>
<td>v_{as} (V$-$O)</td>
<td>711</td>
<td>709</td>
<td>712</td>
</tr>
<tr>
<td>δ_s (VO$_4^3-$)</td>
<td>369</td>
<td>367</td>
<td>366</td>
</tr>
<tr>
<td>δ_{as} (VO$_4^3-$)</td>
<td>326</td>
<td>324</td>
<td>322</td>
</tr>
<tr>
<td>External mode</td>
<td>212</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>A_{BET} (m2 g$^{-1}$)</td>
<td>2.57</td>
<td>2.65</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Table 2: Assignment of Raman wavenumbers and specific surface areas observed from the samples obtained by hydrothermal method

Figure 3 shows the micrographs of the BiVO$_4$ samples prepared under different conditions. The samples present the similar morphologies of the peanuts-like particles after high temperature annealing corresponding to the analysis above. Nevertheless, it can be observed the difference between particles size and intensive degree. The results indicate the effects of reaction conditions on the structure and morphologies of the BiVO$_4$ samples can be eliminated by annealing, but these conditions still influence the particles size. The different specific surface areas of the different samples are summarized in Table 2. The result also can reflect in SEM micrographs.

![SEM images of BiVO$_4$ samples](image)

Figure 3: SEM images of the BiVO$_4$ samples prepared under different conditions, (a)-(i) corresponds to samples a-i in Table 1, respectively. The scale bar is the same for all 2 μm.

3.3 Photocatalytic activities

The photocatalytic activities of BiVO$_4$ samples were measured by the degradation of MB with a major absorption band at about 664 nm in a liquid medium under light irradiation. The temporal evolution of the spectral changes of MB mediated by the sample b, as shown in Figure 4(a), exhibits that the absorption peak at 664 nm decreases gradually with irradiation time. Also the absorbance values of MB in the whole spectrum range from 400 to 800 nm are gradually reduced with increasing irradiation time, revealing the effectiveness and completeness of the photodegradation of pollutants.

Figure 4(b) presents the effect of degradation curve for the sample b under visible light irradiation ($\lambda>$420 nm) using a 500 W Xe lamp with a 420 nm cut-off filter. It can be observed that the monoclinic BiVO$_4$ has the ability of direct photolysis of MB as the increase of irradiation time.
Figure 4: (a) UV-vis absorption spectrum of a stirred MB aqueous solution with the addition of sample b. (b) The photocatalytic degradation of MB in the presence of sample b with only visible light irradiation.

Figure 5 shows the photocatalytic activities of different samples fabricated under different conditions. These curves reveal that the concentration of MB is a function of the irradiation time for different samples. Where \(\rho_0 \) is the initial concentration of MB solution, \(\rho \) is the concentration of MB solution under light irradiation with \(t \) min. After light irradiation with 180 min, the concentration retention of MB degraded by different samples (a, b, c, e, f, g, h and i) are 29%, 14%, 39%, 31%, 28%, 25%, 23% and 22%, respectively. Obviously, the sample b (pH=6, heating temperature is 180 °C for 8 h) is with the best photocatalytic activity, which is attributed to its wider bandgap. In the heterogeneous catalytic reaction with plenty reactant, if the density of activity center on the catalyst surface is constant, the catalyst with the bigger specific surface have the greater activities. The specific surface area of photocatalyst is an important factor to decide photocatalytic reaction caused via photoinduced electron-hole pairs on the surface of photocatalyst. Therefore, the peanuts-like BiVO\(_4\) nanoparticles have better photocatalyst activities than ordinary particles due to obvious quantum size effect, large specific surface area and high diffusion rate of photo-generated carriers. Moreover, the wider photoabsorption range and better crystallinity caused by calcination effect are also favorable for its enhanced photocatalytic activity, resulting in the excellent photocatalytic performance of BiVO\(_4\).

Figure 5; The photocatalytic degradation of MB with only visible light irradiation in the presence of different samples prepared under different conditions: (a) different pH values; (b) different heating temperature; (c) different heating time.

Based on the reactive species trapping experiment results, a proposed mechanism for MB photocatalytic degradation by BiVO\(_4\) photocatalysts is shown in Figure 6. The band gap of BiVO\(_4\) is 2.4 eV. Under visible light irradiation, the photo-generated electrons are occurred in the conduction band of the BiVO\(_4\), photoinduced holes (h\(^+\)) are generated by the photoinduced transfer of electrons (e\(^-\)) in the BiVO\(_4\), leading to an effective separation of the photo-generated electron-hole pairs. Along with the separated electrons and holes, the e\(^-\) are scavenged by oxygen to form •O\(_2^−\) radicals, which can degrade MB effectively. Meanwhile, most of the h\(^+\) can oxidize MB to its degradation products directly, and little further contact with H\(_2\)O to produce hydroxyl (•OH) radicals.

Figure 6; The schematic diagram of charge separation and photocatalytic process of the BiVO\(_4\) photocatalysts under visible light irradiation.

4. Conclusion

BiVO\(_4\) has been synthesized successfully under different reaction conditions. And the fabricated BiVO\(_4\) is the mixture of tetragonal and monoclinic BiVO\(_4\) with different mix proportion. By adjusting the preparation
conditions, the BiVO$_3$ phase changed from monoclinic phase to tetragonal phased. After high temperature annealing, the tetragonal phase all convert into the monoclinic phase. However, the different reaction conditions still effect the particles size and specific surface area of BiVO$_3$ samples. Moreover, it can found that the photocatalytic activities can be decided by the particles size and specific surface area of the samples.

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant No. 61376011), the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (Nos. 041105 and 041106), and the Fundamental Research Funds for the Central Universities (No. Izujbky-2017-k21).

References

42. N. Wetchakun, S. Caiwichiain, B. Inceesungvorn, K. Pingmuang, S. Phanchiphant, A. I. Minett and J. Chen, ACS Appl. Mater. Interfaces, 2012, 4,
3718-3723.