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ABSTRACT 
This review is merely designed to throw light on the cutting-edge conjugated nanocomposites based on conjugated 

or conducting polymers and appropriate nanofillers. An important aspect of the conjugated nanocomposites has been 
observed in the anticorrosion of metals or metallic substrates. Particularly, including carbon nanoparticles (fullerene, 
graphene, and carbon nanotube) and inorganic nano-additives to the conjugated matrices have enhanced the physical 
features (morphology, electrical conductivity, mechanical stability, adhesion, and barrier properties) as well as corrosion 
resistance. To access the anti-corrosion potential, the conjugated nanocomposites have been coated on metal substrates 
using facile techniques of solution, spraying, dipping, and others. Accordingly, competent anti-corrosion conjugated 
nanocomposites have found potential for energy or electronic devices, engineering structures, and so on. 
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1. Introduction 
Nanocarbon nanoparticles have been considered important fillers 

for nanocomposites and applied for technical applications[1,2]. Corrosion 
has been identified as a serious problem for metals employing 
industries[3]. To thwart corrosion related challenges, polymer based 
materials and nanomaterials have been focused in literature[4]. Here, 
conjugated or conductive materials have gained special emphasis to treat 
the corrosion issues of metals or other affected materials[5]. A basic 
problem has been documented as the interaction of corrosion causing 
species to metal surfaces causing harmful effects[6]. In this concern, the 
coating of conjugated materials on metal surfaces has been used to 
prevent corrosion[7]. Mechanism of corrosion prevention has also been 
examined[8]. Adding nanoparticles in conjugated nanocomposites has 
been found to further enhance the performance of these anti-corrosion 
coatings[9]. The conjugated nanocomposite coatings have been explored 
using numerous chemical, electrochemical, and physical practices[10,11]. 
According to the literature, the application of conjugated coatings on 
metal surfaces enhanced the adhesion strength and wear resistance, 
relative to neat steel metal[12]. Fine nanoparticle dispersion has been 
found to enhance the nanocomposite coating performance to prevent the 
corrosion issue.  
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This article basically offers a cutting-edge review of conjugated nanocomposite coatings for anti-
corrosion of metal surfaces. Fundamentals of corrosion, corrosion protection mechanisms, and coating 
processes have been stated. The importance of using nanocomposites and conjugated nanocomposites for 
corrosion protection utilizations has been analysed. Specifically, adding nanocarbon nanoparticles has been 
found to considerably enhance the anti-corrosion performance of these conjugated nanocomposite coatings. 
Morphology, physical features, and anti-corrosion performance of the conjugated nanocomposites have been 
deliberated. Resulting anti-corrosion coatings have been used in essential technical sectors. This is an all-
embracing, revolutionary, and up-to-date review of corrosion resistance of conjugated polymers and derived 
nanocomposites covering design, properties, and technological relevance. To the best of our knowledge, the 
anticorrosion potential of conjugated polymer/nanocarbon nanocomposites has not been reviewed 
comprehensively in the literature before. Consequently, this article is undoubtedly a radical contribution in the 
field of corrosion resistance conjugated nanocomposites. Future growths in the field of anticorrosion 
conjugated polymer/nanocarbon nanocomposites are not possible for the field scientists or researchers before 
getting prior compiled literature knowledge on these materials. 

2. Conjugated materials for corrosion protection 
Conjugated polymers or conducting polymers have been considered as important materials for corrosion 

protection of metals[13–15]. Conjugated polymers like polyaniline, polypyrrole, and others have been frequently 
applied in anti-corrosion coatings. Corrosion effects can be perceived in these coatings due to the surface 
cracking leading to the approach of corrosive species to metal surfaces. Polyaniline coatings have been 
deposited on the steel or iron surface to prevent corrosion effects[16]. A direct relation has been 
observed between the electrical conductivity and corrosion resistance of the materials. An increase in electrical 
conduction has improved the electrochemical and anti-corrosion performance of the conjugated polymers[17]. 
The corrosion process is usually prevented by increasing the electrical conductivity of the anticorrosion coating 
applied on the metal surface. Therefore, a direct relationship exists between the rise in electrical conductivity 
and improving corrosion resistance. Metal corrosion usually occurs when metal atoms interact with 
atmospheric molecules to form oxides, hydroxides, and other molecules to cut the electron flow of metal atom’s 
orbitals. In other words, when metal atoms are corroded, electrons cannot hop through the metal for electron 
conduction. Once the metal surface is corroded, electron flow pathways are restricted, so lowering the electrical 
conductivity. Conjugated polymers usually form a protection layer over the metal surface. Research revealed 
that the formation of a conductive polymer layer on the metal surface offers corrosion protection via the 
formation of passive oxide layer involving oxidation-reduction reactions and also the barrier effect. 
Consequently, the likelihood of the corrosion phenomenon is delayed. Nevertheless, complex corrosion 
protection mechanisms have been found to be involved in corrosion protection by conducting polymers. The 
mechanism of corrosion protection by conducting polymers is in turn affected by numerous parameters. The 
amount of coated material may also affect the corrosion rate. In addition, polypyrrole has been used to form 
anti-corrosion coatings on iron or aluminum metal surfaces[18,19]. The corrosion rate greatly relies on factors 
like amounts, surfactants, pH, and other ecological factors. For conjugated polymers, anti-corrosion 
performance has been found to be upsurged using nanofillers as well as inhibitors[20,21]. 

3. Nanocomposites of conjugated polymers for corrosion resistance 
Undoubtedly, conjugated polymers have been found functional for the anti-corrosion of metals[22]. 

Conjugated polymers have the efficiency to better interact with the metal surfaces to avert the harmful 
effects[23]. Metal surfaces commonly act as anodes and conjugated polymers perform as cathodes to encounter 
corrosion issues through electrochemical reactions[24]. Temporarily, anti-corrosion occurs due to metal-
conjugated polymer interface reactions[25]. Adding additives or nanoparticles has been preferred to supplement 
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the anti-corrosion performance by averting the corrosive media from the metal surfaces[26]. Consequently, 
conjugated nanocomposites have been designed to have superior anti-corrosion and scratch/wear resistance 
features, than pristine conjugated polymers[27]. High performance coatings of conjugated nanocomposites of 
polyaniline, polypyrrole, and others have been reported[28,29]. These nanocomposite coatings have been 
frequently deposited using the chemical or electrochemical approaches and electron conduction and charge 
transference effects have been examined.  

4. Conjugated nanocomposites with nanocarbon for anti-corrosion 
Conjugated nanocomposites have been designed using the conducting polymer matrix and carbon 

nanoparticle reinforcements[30–32]. Adding nanocarbons to conjugated nanocomposites has resulted in efficient 
coatings with facile synthesis, physical features, and technological uses. Among carbon nano-reinforcements, 
carbon nanotube has been adopted as a widely used and effective nanofiller to the conjugated polymers to 
augment the physical profile[33–35]. Deshpande et al.[36] specified nanocomposite coatings of polyaniline filled 
with multi-walled carbon nanotubes to protect carbon steel. Open circuit potential studies were used to assess 
the corrosion resistance performance. Anti-corrosion coatings of polypyrrole and carbon nanotube have 
also been developed[37]. Han et al.[38] formed high performance anti-corrosion polypyrrole/multi-walled carbon 
nanotube nanocomposite coatings. Richard Prabakar and Pyo[39] designed multi-walled carbon nanotube 
reinforced poly(3,4-ethylenedioxythiphene) nanocomposite coatings for corrosion prevention. The 
nanomaterial coatings had electrostatic repulsions to avert the corrosion causing anions from the metal surface. 
Mariano et. al.[40] reported on polyaniline and carbon nanotube based nanocomposites focusing on electron 
conduction and corrosion resistance profiles. Including 1 wt.% carbon nanotube revealed high electrical 
conductivity of 0.06 Scm–1, i.e., five orders higher than neat polyaniline (Figure 1). On the other hand, lower 
carbon nanotube loading of 0.25 wt.% exposed minor electrical conductivity of about ∼10−7 Scm–1. Figure 2 
presents a model for the conductive carbon nanotube filled polyaniline matrix. It was proposed that the carbon 
nanotube bundles were uniformly aligned in the matrix and separated by an insulating polyaniline layer. The 
aligned nanofillers developed conduction paths through the polymer for efficient electrical conductivity. It was 
suggested that the coupling may occur among adjacent carbon nanotube bundles for better passage of electrons, 
in the direction of applied electric field. The tunnelling effects between the carbon nanotube bundles may be 
hindered due to the polymer layer in between.  

In addition to carbon nanotubes, graphene and graphene oxide nanofillers have been used to improve the 
electron conductivity, barrier, mechanical, and thermal features of the conjugated polymers[41–43]. Owing to 
the large surface area and surface properties, graphene and related nanoparticles exposed fine barrier properties 
and anti-corrosion resistance[44]. Chang et al.[45] studied tortuous ways in polyaniline/graphene nanocomposite 
coatings, responsible for averting H2O and O2 molecules due to barrier effects, so producing anti-corrosion 
effects[46]. Lin et al.[47] fabricated epoxy nanocomposite coatings filled with polyaniline functional graphene 

 
Figure 1. Conductivity as a function of carbon nanotube wt.% at 1 V[40]. Reproduced with permission from ACS. 
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Figure 2. (a) Schematic of polyaniline/carbon nanotube nanocomposite; and (b) fibrillar conduction path through two carbon 
nanotube bundles separated by an insulating polyaniline layer. This junction is modelled by two domains (open and filled) with two 
conductivities in series[40]. Reproduced with permission from ACS. 

oxide. The coatings have been reported for fine barrier and anti-corrosion features due to mutual 
interactions between the polyaniline, graphene oxide, and epoxy[48]. Corrosion inhibition effects of graphene 
oxide have been explored in literature[49]. Ramezanzadeh et al.[50] designed polyaniline nanocomposite coatings 
filled with graphene oxide and cerium. The nanomaterial coatings were coated on the mild steel and corrosion 
effects were studied. Functionalization of graphene oxide with nanoparticles further boosted the anti-corrosion 
performance of these coatings by developing twisted diffusion paths throughout the nanocomposites. Sheng et 
al.[51] fabricated polyaniline nanocomposites filled with graphene oxide and p-phenylenediamine functional 
graphene oxide nanofillers. The nanomaterials were prepared using the in situ redox polymerization. This study 
explored the synergistic effects between matrix and nanofiller on the morphology and anti-corrosion 
characteristics of the nanocomposites. Scanning electron microscopy and transmission electron microscopy 
micrographs of graphene oxide and p-phenylenediamine functional graphene oxide are given in Figure 3. It 
can be observed that the p-phenylenediamine functional graphene oxide had a more wrinkled nanosheet 
nanostructure owing to interactions between the p-phenylenediamine and graphene oxide. Comparatively, 
pristine graphene oxide has a lesser crumpled and smooth nanosheet nanostructure. Owing to the well-
interacted phenylenediamine-graphene oxide nanostructure, the nanosheets avoid reaggregation tendency. 
Figure 4 depicts the Nyquist plots of polyaniline/phenylenediamine/graphene oxide nanocomposites with 
various nanofiller loading. Adding nano additives enhanced the semicircle diameters due to improvement in 
the charge transfer resistance or polarization of the nanomaterials. Consequently, the addition of nanofiller 
averted the diffusion of corrosive electrolyte molecules through the nanocomposite coating. According to 
equivalent circuit studies, electrolyte resistance, polarization resistance, and charge transfer resistance revealed 
corrosion resistance of the nanocomposite coatings. Figure 5 depicts the proposed model for the 
nanocomposites with corrosion diffusion pathways. Dispersion of functional nanofiller in polyaniline caused 
considerable hindrance to the penetrating corrosive molecules through nanocomposite coating towards metal. 
On the other hand, neat polymer coating had no resistance to the seeping corrosion species, so affecting the 
metal surface. Henceforth, these nanocomposite coatings had up to 99.9% anti-corrosion efficiency, as per 
potentiodynamic polarization results. 

Catt et. al.[52] filled graphene oxide in poly(3,4-ethylenedioxythiphene) matrix to develop the 
nanocomposite coatings using electro-polymerization. For anti-corrosion studies, the magnesium surface was 
focused. Figure 6 depicts the cracked surface of poly(3,4-ethylenedioxythiphene)/graphene oxide coating after 
corrosion. In corrosion current vs. voltage scans, lower or more positive corrosion current was experiential for 
coated sample, related to the non-coated surface. The result depicted higher anti-corrosion efficiency of the 
nanocomposite material.  
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Figure 3. High magnification scanning electron microscopy images of (a) graphene oxide and (b) p-phenylenediamine functional 
graphene oxide; and transmission electron microscopy images of (c) graphene oxide and (d) p-phenylenediamine functional graphene 
oxide[51]. Reproduced with permission from ACS. 

 
Figure 4. (a) Nyquist plots; and (b) equivalent circuit model of polyaniline/p-phenylenediamine functionalized graphene 3 wt.% 
(PPCc03), polyaniline/p-phenylenediamine functionalized graphene 5 wt.% (PPCc05), and polyaniline/p-phenylenediamine 
functionalized graphene 10 wt.% (PPCc10)[51]. Reproduced with permission from ACS. 

 
Figure 5. The model of corrosive diffusion pathways through the coatings[51]. PPC = polyaniline/p-phenylenediamine functionalized 
graphene; PSc = pristine polyaniline. Reproduced with permission from ACS. 

             
(a)                                     (b) 

Figure 6. (a) Scanning electron microscopy image of a crack in PEDOT/GO film after corrosion with cracked scale like morphology 
indicated by an arrow; and (b) corrosion current vs. voltage scans of coated and uncoated surface[52]. PEDOT/GO = poly(3,4-
ethylenedioxythiphene)/graphene oxide. Reproduced with permission from Elsevier.  

(a) (b) 
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The inclusion of graphene and derives in conjugated polymers has promoted electron conductivity. This 
rise in electrical conductivity can be attributed to the fine electron conduction of graphene having high 
symmetry. Graphene has advantage of developing widespread π electron delocalization[53]. The rise in electrical 
conduction of graphene coatings in turn supports oxidation-reduction reactions and barrier effects for corrosion 
resistance.  

Fullerene is a significant zero dimensional carbon nanofiller used in corrosion resisting polymeric 
nanocomposites[54–56]. Here, fullerene has capability to develop van der Waals or π-π interactions with the 
polymers[57]. The mutual interactions industrialised better diffusion trails for corrosion species and supported 
electron conduction through the coatings[58]. Consequently, the corrosion mechanism can be explained on 
the basis of matrix-nanofiller associations in charge of transporting conjugated polymer/fullerene systems[59]. 
Polyaniline and fullerene based nanomaterials have been designed[60–62]. Polyaniline has been reported to form 
a charge transfer complex with fullerene nanoparticles[63]. Cheng et al.[64] fabricated fullerene C60 filled 
polyaniline nanocomposites. The electrical conductivity was found to increase from 9 × 10–10 to 63.7 Sm–1, 
leading to efficient anti-corrosion performance. Gizdavic-Nikolaidis et al.[65] also prepared a nanocomposite 
coating of C60 nanoparticles reinforced polyaniline. Dispersion in the nanocomposite was premeditated using 
transmission electron microscopy. The nanoparticle sizes of 50–100 nm were observed in the matrix. Fine 
dispersion produced better electron transference routes to support charge transfer and anti-corrosion 
performance. Wang et al.[66] developed polyaniline and fullerene C60 nanowhisker derivative nanocomposites. 
Figure 7 illustrates the microstructure of polyaniline doped fullerene C60 nanowhiskers according to scanning 
electron microscopy. Adhesion of a thin polymer layer can be experiential on a fullerene nanorod surface due 
to the formation of a charge transfer complex. Such nanostructures have improved the electrical conductivity, 
leading to better corrosion confrontation[67]. Polypyrrole has also been filled with fullerene nanoparticles to 
form high-tech nanocomposites[68–70]. Wysocka-Zolopa et al.[71] reported on the polypyrrole and fullerene 
C60 based nanocomposites using chemical oxidative polymerization. Figure 8 depicts the in situ synthesis of 
polypyrrole and fullerene C60 resulting in nanocomposite. Here, the in situ route seemed effective in developing 
the well-interlinked polypyrrole-fullerene nanomaterial.  

Polythiophene is another conjugated matrix polymerized via electrochemical polymerization[72]. A doping 
process has been used to upsurge the electron conduction of polythiophene even higher than 100 Scm–1[73]. 
Polythiophene derived forms like poly(3-octylthiophene), poly(3-hexylthiophene), poly(3-octadecylthio-
phene), etc., have also been focused[74,75]. Zabihi et al.[76] developed fullerene C60 filled poly(3-hexylthiophene) 
nanocomposite coatings. The nanomaterial had superior charge transfer and anti-corrosion due to matrix- 

 
(a)                                             (b) 

Figure 7. Scanning electron microscopy images of (a) fullerene nanowhiskers; and (b) polyaniline doped nanowhiskers[66]. 
Reproduced from Hindawi (Published Open Access). 
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Figure 8. Development of polypyrrole and fullerene C60 derived nanocomposites[71]. Reproduced with permission from ACS. 

Table 1. Design, synthesis, and corrosion efficiency of conjugated polymer and nanocomposites. 
Material Synthesis Corrosion efficiency Ref 
Polyaniline In situ or electrochemical polymerization Icorr 0.112 µA cm–2; 

Ecorr –0.596 V 
3.5% NaCl; 8 h 

[77] 

Polyaniline  In situ polymerization ammonium persulfate; 
sulfuric acid 

∼ 0.06 Scm–1 [40] 

Polyaniline/carbon nanotube  In situ polymerization ammonium persulfate; 
sulfuric acid 

∼ 10−7 Scm–1; 
Tunneling 11-15 Å vs. carbon nanotube 
contents 

[40] 

Polyaniline  In situ chemical oxidative polymerization;  
ammonium persulfate 

5.30 × 10–3 Scm–1 [78] 

Polyaniline/carbon nanotube 20 
wt.% 

In situ chemical oxidative polymerization;  
ammonium persulfate 

2.72 × 10–1 Scm–1; 
Visibly decreased corrosion relative to 
pristine sample 

[78] 

Polyaniline  In situ chemical oxidative polymerization Icorr –610 µA cm–2; 
Ecorr 0.718 mV 

[79] 

Polyaniline/carbon nanotube 2 
wt.% 

In situ chemical oxidative polymerization;  
ammonium persulfate 

Icorr –467 µA cm–2; 
Ecorr 0.31 mV 

[79] 

Polypyrrole In situ polymerization Icorr –0.943 µA cm–2; 
Ecorr 17.5 mV 

[80] 

Polypyrrole/carbon nanotube 1 
wt.% 

In situ polymerization Icorr –0.294 µA cm–2; 
Ecorr 21.5 mV 

[80] 

Polythiophene In situ method Electrical conductivity  
σ 9.9 × 10–12 Scm–1 

[81] 

Polythiophene/carbon nanotube In situ method Electrical conductivity  
σ 1.2 × 10–10 Scm–1 

[81] 

Polyaniline Electrodeposition Icorr 2.46 × 10–8 A cm–2; 
Ecorr 0.086 V 

[82] 

Polyaniline/graphene oxide Electrodeposition Icorr 5.04 × 10–9 A cm–2; 
Ecorr 0.247 V 

[82] 

Polythiophene Solution method Icorr 3.47 × 10–5A cm–2; 
Ecorr –0.62 V 

[83] 

Polythiophene/graphene oxide Solution method Icorr 5.70 × 10–5A cm–2; 
Ecorr –0.578 V 

[83] 

Poly(3-hexyl-thiophene): 
phenyl-C61-butyric acid methyl 
ester 

Solution method Increase in corrosion efficiency to 100%;  
100 h 

[84] 

nanofiller associations. Table 1 demonstrates important literature examples on the design, synthesis, and 
corrosion efficiency of pristine conjugated polymers as well as nanocarbon nanocomposites for comparison. 
Including nanocarbons have found to enhance the electrical conductivity as well as anticorrosion potential of 
the nanocomposites. 
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5. Prospects and conclusions 
Conducting nanocomposite coatings has gained an immense stance in the methodological and engineering 

industries[85,86]. Conjugated polymers may have optimum electron conductivity, however, there is a lack of 
structural resilience, limiting major applications. In this context, nanoparticles have been filled in the 
conjugated polymers to improve the adhesion, durability, and wear properties, when applied on the metal 
surfaces[87]. Especially, carbonaceous nanoparticles have been used to improve the barrier effects and corrosion 
inhibition features of the conjugated polymers. The main factors contributing to the anti-corrosion performance 
include the matrix-nanofiller associations, interface formation, development of charge transportation paths, 
and formation of resistive paths for the seeping of corrosive species[88]. All these aspects can contribute to the 
prevention of corrosive species approaching the metal surface for corrosion purposes. Corrosion prevention 
mechanisms have been mostly investigated in terms of barrier effects as well as the electrochemical defense 
of metals against corroding species[89]. For anti-corrosion coating fabrication, mostly in situ polymerization, 
electro-polymerization, and solution practices have been applied. Recently, sophisticated techniques like spin 
coating, spray coating, and dipping routes have been considered for the formation of evenly layered 
nanocomposites on metal surfaces. 

The fate of conjugated nanocomposite coatings depends upon the design and fabrication of efficient 
innovative self healing materials[90]. Consequently, the self-healing phenomenon can better promote the 
corrosion resistance of the nanocomposite coatings[91]. In effect, the self healing coatings have the potential to 
release self healing particles to recuperate the corrosion damage in the materials[92]. In such coatings, self 
healing nanocapsules can be loaded which can act in specific corrosion conditions[93]. Future labors are 
demanded to generate the self healing coatings of the conducting polymers and conjugated nanocomposites 
having outstanding anti-corrosion efficiency[94]. In this way, self healing anticorrosion coatings need to be 
designed for future electronics, automobile, and engineering industries[95].  

This article is planned to schematically portray the impact of conjugated polymer and conjugated 
nanocomposites in the corrosion protection of metals. For the formation of conjugated nanocomposite coatings, 
conducting polymers like polyaniline, polypyrrole, polythiophene, and related derivatives have been used as 
matrices. These polymers were filled with nanocarbon nanofillers to enhance the anti-corrosion features. Facile 
routes have been adopted to fill the conjugated matrices with carbon nanoparticles. Subsequently, anti-
corrosion properties and involved mechanisms were examined. Carbon nanoparticles have resulted in 
improved anti-corrosion performance due to fine nano-additive dispersion, mutual interactions, and the 
formation of charge or electron diffusion pathways throughout the nanocomposite. All these synergistic effects 
led to a fine anti-corrosion performance. Hence, the conjugated nanocomposites have been efficiently used to 
protect the metals and metallic components from harmful corrosion effects. 
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