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ABSTRACT 

Water splitting has been one of the potential techniques as a clean and renewable energy resource for the fulfillment 

of world energy demands. One of the major aspects of this procedure is the exploitation of efficient and inexpensive 

electrocatalysts due to the fact that the water oxidation procedure is accompanied by a delayed reaction. In this research, 

ZnO-CoFe2O4 nanostructure was successfully synthesized via the green method and green resources from cardamom 

seeds and ginger peels for oxygen evolution reaction (OER). The modified Glassy carbon electrode (GCE) with ZnO-

CoFe2O4 is effective for the electrochemical water oxidation interaction since it has sufficient electrical strength and 

excellent catalytic performance. The creation of rice-like and small granular structures of ZnO-CoFe2O4 nano-catalysts 

was confirmed by characterization methods such as XRD, FESEM, EDS and MAP. According to the achieved results, in 

the electrolysis of water, with in-cell voltage of 1.40 V and 50 mA cm–2 for current density in a 0.1 M KOH electrolyte 

and OER only has 170 mV overpotentials. 
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1. Introduction
In today’s world fossil fuels are exploited as the primary resource

of energy to meet world demands which in turn has led to the energy 
crisis, great harm to the environment, global warming and other issues[1,2]. 
Thus, the development and application of an eco-friendly and renewable 
energy resource to decrease the usage of conventional fossil fuel is 
crucial for a sustainable economy and community[3]. In this regard,  
hydrogen (H2), as a suitable mass-energy density and non-carbonous 
emission source, exhibits an efficient capability for sustainable energy 
production which can be replaced with fossil fuel[4,5]. Electrochemical 
water splitting is an effective method to achieve hydrogen with high 
purity at the cathode and this electrochemical process includes two half 
reactions, known as an oxygen evolution reaction (OER) and a hydrogen 
evolution reaction (HER) at the anode at the cathode, respectively[6,7]. In 
real-world experiments, electrochemical reduction of water involves an 
excessive overpotential[8] which means, introducing sufficient modifiers 
to activate proton reduction by the lowest possible overvoltage for the 
HER reaction and enhance the kinetics of OER is an indispensable stage 
for the current demands[9,10]. The most efficient water splitting  
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performance to date has been developed by means of noble metal-based electrocatalysts, principally Pt-based 
and Ir/Ru-based electrocatalysts for HER and OER procedures, respectively[11,12]. Nonetheless, the precious 
metals’ expensiveness and their scarceness are major reasons for water splitting limitations on an industrial 
scale. Thus, the investigation of non-precious options with sufficient activity and stability is imperative[13–15]. 

Spinel ferrites-based compounds as cobalt ferrite nanostructures have various utilities in information 
storage and electronic devices[16,17], drug delivery[18], biological[19], and environmental[20] owing to the essential 
properties like inexpensiveness, mechanical hardness, excellent stability, acceptable curie temperature and 
high magnetic anisotropy. Moreover, cobalt ferrite has a small band gap, which results in an increment in 
decomposition performance[21,22]. Recently, ZnO semiconductors with exclusive properties like a 
nonpoisonous nature, band gap of roughly 3.3 eV, remarkable photosensitivity and thermal stabilities[23]. 
Photocatalytic activity results due to the movement of photogenerated holes and electrons to the surface which 
conduce pollutant degradation under UV and visible irradiations[24,25]. Surface modifying, doping and coupling 
with other compounds like semiconductors are instances of the approaches that are employed to improve the 
catalytic performance of ZnO[26–28]. Cerium oxide is an excellent example of this agenda that is utilized in 
diverse research like gas sensors, H2S removal, eco-friendly pigments, catalyst and etc.[29–33]. 

Several procedures have been established to produce ZnO-CoFe2O4, including, hydrolysis of chelated 
zinc diethylene glycol alkoxide complexes in alkaline diethylene glycol solution at high temperature[34] and 
hydrothermal method with carbon nanoparticles as the template[24], microwave combustion[35], co-
precipitation[36], sol-gel procedure accompanied by hydrothermal technique[37], and combustion process[38,39]. 
Nevertheless, the aforementioned techniques involve sophisticated processes, intricate equipment, consuming 
chemicals, and high energy consumption, thus contributing to undesirable impacts on the ecosystem. Biogenic 
resources are drawing growing attention because of their sustainability. Some biogenic ingredients are 
recyclable and have possibility to be achieved from waste compounds, which substantially decreases their 
production expenditure[40–43]. More significantly, biogenic resources have the possibility to be manipulated to 
include definite catalytic features, making them an effectual choice for selective procedures[44,45]. These 
resources not only provide eco-friendly substitutes to synthetic catalysts due to biodegradability and non-
toxicity, but also show enhanced stability and activity which make them adequate for various applications such 
as water splitting[46–48]. A promising approach for green synthesis is a hydrothermal method due to the fact that 
it employs water as a solvent and natural plants leaf extracts such as Solanum nigrum[49], Aloe vera[50] 
Azadirachta indica[51], and Camellia sinensis[52] as capping agents which monitor the nanoparticles of the 
chosen elements. One more example of a natural component been exploited for this agenda to produce NiO 
nanocrystals is rambutan (Nephelium lappaceum L.)  peel extract from Sapindaceae spices[53]. 

In this paper, ZnO-CoFe2O4 semiconductor magnetic nanoparticles were produced by consuming 
cardamom and ginger peel extract. The benefits of this procedure involve the use of inexpensive, harmless and 
environmentally friendly materials, and an uncomplicated and time-saving process. The main element in 
cardamom and ginger peel extract is phenolic combinations acting as a capping agent, stabilizer and even 
chelating agent in order to capture the metal ions and monitor the formation of nanostructures. The morphology 
and structure of the synthesized ZnO-CoFe2O4 were investigated with XRD, FESEM, EDS and MAP 
techniques. In addition, the electrochemical interactions ZnO-CoFe2O4 in the OER process were assessed by 
monitoring cyclic voltammetry (CV), linear sweep voltammograms (LSV) and chronoamperometry techniques 
for stability analysis and Tafel calculation in basic conditions. 

2. Experimental 

2.1. Reagents 

Zinc acetate dihydrate ([Zn(CH3CO2)2]·2H2O) and sodium hydroxide (NaOH) were bought commercially 
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from Sigma-Aldrich Chemicals. Compounds which are employed during this research were analytical grade 
and did not treat with any purification approaches also, deionized water was utilized in all experiments of this 
research. Fresh cardamom seeds and ginger peels were bought from a local health store. All glassware were 
completely cleaned before executing each test and protective procedures was taken to prevent any 
contamination. The Potassium hydroxide (KOH), Iron Nitrate (Fe(NO3)3·9H2O), Hydrogen chloride (HCl 37%) 
solution, Cobalt Nitrate (Co(NO3)2·6H2O), and Ethanol were provided from MERCK. 

2.2. Synthesizing and preparation methods  

2.2.1. Green synthesis of ZnO 

Fresh cardamoms were washed with distilled water to eliminate all contaminations, and then fully dried. 
The standard protocol accompanying little modification was employed to prepare the extract. First 5 g of 
cardamoms were boiled in 100 mL distilled water for 20 min at 80 °C, and the extract was obtained from filter 
paper at room temperature. The resulting filtered extract was utilized for further investigation. In order to 
prepare 0.2 M zinc acetate solution 2.2 g of powdered ([Zn(CH3CO2)2]·2H2O) was poured in 50 mL of distilled 
H2O and stirred on a magnetic stirrer until fully dissolution. Then, 50 mL of this extract was added gradually 
to 50 mL of [Zn(CH3CO2)2]·2H2O accompanying continuous solution stirring, which was followed by drop-by-
drop addition of 10 mL of 1 M NaOH solution. A yellowish-white sediment was attained instantly after pouring 
sodium hydroxide solution. In the next step, the precipitate was washed with ethanol three times and 
centrifugated at 5000 rpm for 10 min and the precipitate was separated and completely dried in a vacuum. 
Finally, ZnO-NPs green sedimentation was calcinated at 400 ℃ in a muffle furnace. 

2.2.2. CoFe2O4 green synthesis  

20 g of ginger root were sliced into 100 mL of deionized water and the admixture underwent a boiling 
process for 5 min, the color of the solution altered to yellow (pH ~ 6). Then temperature of this extract 
decreased at room temperature and filtered. Also, 10 g of cardamom seeds were ground and resulted in 
yellow-brown sediment was added and stirred in 100 mL of deionized water after 4 h of boiling, the precipitate 
was separated from the solution and the brown separated sediment was cooled at room temperature. In the next 
step, metal nitrates (2Fe3+:1Co2+) were added gradually within stirring conditions to the aqueous seeds extract, 
respectively. Then these combinations (pH ~ 2) were brought to a gel-like concentration with a thermal 
treatment process at 80 ℃ and these gels were heated at 250–300 ℃ which is accompanied by an initial gel 
melting process which is followed by a spontaneous self-ignition, leaving behind a magnetic foam (self-
combustion). During this exothermic procedure, the admixture of nitrates and plant extracts acts in the same 
way as common oxidants and fuels. The final step was the calcination of the magnetic foams at 800 ℃ for 1 h 
in order to enhance the crystallization degree. 

2.3. Characterization of catalysts and electrochemical performance 

The crystalline structure was investigated with the X-ray diffraction analysis with SIEMENS D500 and 
2θ spectra range from 10 to 80. In order to investigate the morphology of the synthesized nanostructure FESEM 
(model: TESCAN and MIRA3). Also, the chemical structure of the developed nanostructures was further 
investigated with an EDS attached to FESEM and FT-IR analysis was executed with Shimadzu 8400 (Japan).  

Electrochemical analyses were executed by mean of an EG&G Model 273 Potentiostat/Galvanostat 
instrument accompanied with GCE as a working electrode, an Ag/AgCl electrode as a reference electrode and 
a platinum as a counter electrode (there electrode system), all these electrodes were bought from Azar Electrode 
Co., Urmia, Iran. During the study, the standard reversible hydrogen electrode (RHE) was utilized to calculate 
the electrochemical potentials. The Nernst Equation (1):  

ERHE = EAg/AgCl + 0.059 pH (13) + E0
Ag/AgCl (1) 

which was employed to convert the obtained potential based on the Ag/AgCl to the RHE potential (Equation 
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2).  

EAg/AgCl = 0.198 V (at 25 Celsius degree temperature) (2) 

Also, the 0.1 M KOH is used as electrolyte. In order to accomplish OER analysis, linear sweep 
voltammetry (LSV) and CV assessment were performed at a scan rate of and potential limit of 0–1.6 V vs. 
Ag/AgCl. Furthermore, its stability in the basic solution was studied by the chronoamperometry technique. 
The Tafel slope is achieved from Equation (3): 

𝜂 = 𝑏 × 𝑙𝑜𝑔 ൬
𝑗

𝑗
൰ 

(3) 

(ŋ: overpotential, b: Tafel slope, 𝑗: current density, 𝑗: exchange current density[54,55]). 

3. Result and discussion 

3.1. Characterization 

3.1.1. X-ray diffraction investigation  

Synthesized ZnO-CoFe2O4 NPs exhibited sharp diffraction peaks which is a testimony to the decent 
crystallinity of this synthesis illustrated in Figure 1. Diverse peaks relating to the 2θ value were obtained in 
31.9, 34.5, 36.2, 40.6, 42.7 56.6, 62.9, 66.4, 68 and 69.36. Moreover, the characteristic peaks relating to (hkl) 
values of (111), (220), (311), (222), (400), (511), and (440). These values are in accordance with the hexagonal 
Wurtzite structure of ZnO based on the Joint Committee on Powder Diffraction Studies Standards. The X-ray 
diffraction results of the nanostructure attained from the self-combustion procedure utilizing the aqueous 
extract of ginger and cardamom accepted the correct synthesis of Zn-CoFe2O4 which is in good agreement 
previously reported research. The purity of produced nanoparticles was confirmed by the absence of any other 
peak[56,57]. 

 
Figure 1. XRD pattern of green synthesized ZnO-CoFe2O4. 

3.1.2. FESEM & EDX 

In order to investigate the green synthesized ZnO-CoFe2O4 NPs morphological characteristics field 
emission scanning electron microscopy (FESEM) was exploited. FESEM micrographs of the nanostructure in 
200 nm (Figure 2) demonstrated the synthesizing of very fine nanograined agglomerates with equiaxed 
nanocrystals. SEM analysis of the nanoparticles in 500 nm (Figure 3) confirms the existence of porous 
nanograined agglomerates structure with the mainstream remaining equiaxed and limited faceted crystals. 
Based on the micrograph image, a rod-shaped and identic ordination is observable which is in good accordance 
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with green approaches for producing ZnO-CoFe2O4 NPs. As its observable EDX spectroscopy results in the 
samples attained utilizing ginger and cardamom green extract, all the expected major elements including Co, 
O, Fe and Zn were detected. XRD and EDS graphs are an indication of successful synthesis for a three-
component nanostructure[58,59]. 

3.1.3. FTIR analysis  

In order to investigate the possible interaction between ZnO and CoFe2O4 and sustain the formation of 
ZnO-CoFe2O4 spinel structure, the FTIR spectra of ginger root and cardamom seeds aqueous extracts were 
accomplished from 400 to 4000 cm–1 and the obtained spectra exhibited major bands of phenolic hydroxyl 
group (-OH) representing hydrogen bonding in flavonoids (Figure 4). The interaction of ZnO and CoFe2O4 
causes an alteration in the Zn-O and Fe-O bond absorption area. Furthermore, emerging two 
significant bands between 400–800 cm–1 wavelength were assigned to the stretching vibration of the Fe-O bond 
and the stretching vibration of Zn-O and Co-O in the three composite structures[60]. The peaks at 556 and 454 
cm–1 are attributed to the stretching vibration of the Fe-O and Co-O bond. The peaks at around 546 cm–1 are 
attributed to the stretching vibration of the Fe-O bond and the peaks around 410–432 cm–1 to the stretching 
vibration of Zn-O and Co-O in the composite samples. 

  
Figure 2. SEM image of ZnO-CoFe2O4 nanostructure in (A) 500 nm and (B) 200 nm scales. 

 
Figure 3. (Continued). 

O 

Fe

Fe

Fe

Co

Co

Co

Zn

Zn

Zn

keV0

100

200

300

400

500

600

700

0 5 10

A B 

A Elements W% 

O 25.15 

Fe 28.10 

Co 14.25 

Zn 32.50 

 



 

6 

 

 

  

  

Figure 3. (A) EDS and mapping images of ZnO-CoFe2O4 nanostructures, (B)–(E) its elements mapping separately, (F) the elements 
mapping simultaneously and (G) mapping and SEM simultaneously. 
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Figure 4. FTIR spectra of ZnO-CoFe2O4 nanoparticles. 

3.1.4. UV–Vis spectroscopy analysis 

UV–Vis diffuse reflectance analysis was performed to explore the optical properties of the ZnO-CoFe2O4 
nanostructure. ZnO absorbs well in the UV region and it has little stimulation in the visible light wavelength, 
however, CoFe2O4 indicates appropriate absorption in the visible region. As it is observable from Figure 5, the 
characteristic peak of green ZnO-CoFe2O4 was detected around 350 nm which resulted due to a high value of 
excitation binding energy. This result is in a good agreement with previous research which approves the correct 
synthesizing of ZnO-CoFe2O4 NPs[61]. 

 
Figure 5. UV-Visible spectra ZnO-CoFe2O4 nanocomposite. 

3.2. Electrochemical measurements  

In this research, a conventional three electrode system within 1 M Potassium hydroxide and 0.6–2.5 V vs. 
HRE voltage range and a scan rate of 10 mV S–1 was employed. As is observable in Figure 6, the LSV plots 
of bare GCE and ZnO-CoFe2O4 modified GCE were studied in the aforementioned situation. Polarization plots 
evaluation demonstrates the minimum electrocatalytic activity of bare GCE, while ZnO-CoFe2O4/GCE shows 
satisfactory catalytic performance for OER with 170 mV for overpotential at 50 mA cm–2, diminishing 
overpotential defines enhancement in the kinetics of the OER process. What’s more, ZnO-CoFe2O4/GCE as 
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noble-metal-free electrocatalysts in basic situations is desperately active for OER, which can be assigned to 
the synergistic impact of the ZnO and the CoFe2O4 nanoparticles. In addition, the attendance of ZnO in the 
ZnO-CoFe2O4/GCE heterostructure improves the electrocatalyst electrical conductivity to increase the 
electrocatalytic performance. Moreover, ZnO and CoFe2O4 nanostructures create a 3D ZnO-CoFe2O4 
nanostructure with more existing active sites, providing more ways for the operative electrons transfer, and 
conductive GCE offers a platform for growing active materials, which helps electrical conductivity between 
the GCE and the developed electrocatalysts. According to obtained LSV plots, the oxygen evolution peak of 
ZnO-CoFe2O4/GCE is located at ~1.42 V vs. RHE. 

Tafel plot was utilized for the OER catalytic kinetics evaluation. As it is illustrated in Figure 7, the ZnO-
CoFe2O4/GCE has the lowest Tafel slope with 88.56 mV dec–1. Also, the ZnO and CoFe2o4 exhibit higher Tafel 
slop of 121.1 and 167.57, respectively, which means ZnO-CoFe2O4/GCE displays a faster kinetic and enhanced 
catalytic performance for OER.  

 
Figure 6. Linear sweep voltammograms of ZnO-CoFe2O4, CoFe2O4, ZnO and bare electrode. 

Considering the lower overpotential and Tafel slope, which can be a good proof for the respective activity 
of ZnO-CoFe2O4/GCE synthesized by adequate hydrothermal approach, ZnO-CoFe2O4/GCE was selected as 
an ideal electrocatalyst in this present investigation. Based on the lower Tafel slope value and overpotential of 
the ZnO-CoFe2O4/GCE catalyst is an illustration for faster performance and sufficient kinetics toward OER 
activity than other synthesized catalysts. 

 
Figure 7. Tafel plots of Zn-CoFe2O4, CoFe2O4 and ZnO nano catalysts. 
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One of the major criterions for every catalyst in electrochemistry is its electrochemical stability which 
can be analyzed with the chronoamperometry method. Undoubtedly, the current density and time (j-t) plot 
indicated the premiere electrochemical stability of ZnO-CoFe2O4/GCE for a 15 h electrolysis reaction under 
a basic situation (Figure 8). Instantaneously, the catalytic stability of ZnO-ZnFe2O4/GCE before and after 500 
cycles was examined by continuous sweeps and, the polarization plot of ZnO-CoFe2O4/GCE after 500 cycles 
exhibited insignificant variation from that initial condition.  

 
Figure 8. Chronoamperometry plots of ZnO-CoFe2O4 modified electrode with potential steps of (a) 0–1.2, (b) 0–1.1, (c) 0–0.10 and 
(d) 0–0.9 V in 0.1 M KOH solution. 

In order to compare the efficiency of the catalysis prepared by the green method with other catalysts that 
have been published for water oxidation in recent years, Table 1 has been prepared. As can be seen in this 
table, the Tafel slope and overpotential of this research are comparable to the results in the literature. 

Table 1. Comparison of the OER activities of some recently reported catalysts for water oxidation. 
Catalyst Tafel slope 

(mV dec−1) 
Solution Over potential 

(mV) 
Current 
density 

References 

Aloe-vera-mediated NiOx 95 NaOH 413 10 mA cm−2 [62] 
MoO4

2− intercalating α-Co(OH)2 nanosheet 57.78 1 M KOH  303 10 mA cm−2 [63] 
Ni–FeOOH/Ni(OH)2 16.8  1 M KOH  264 20 mA cm–2 [64] 
Pr3Ir1−xMoxO7 50.52ௗ 0.1ௗM HClO4 259 10ௗ mAௗcm−2 [65] 
Zn-doped RuO2 41.2 0.5ௗM H2SO4 173 10 mA cm–2 [66] 
Ni-Fe-Co film 34.7 1 M KOH 314 10 mA cm−2 [67] 
CoMn-LDH@CuO/Cu2O 89  1 M KOH 297 10 mA cm−2 [68] 
CaFe6Ge6/NF 43.35  1 M KOH 322 10 mA cm−2 [69] 
SF[Fe-Tol-Ni] 103  1 M KOH 480 1 mA cm−2 [70] 
Ni-FeOOH/NF 52  1 M KOH 277 100 mA cm−2 [71] 
Co3O4/Pr2O3 78  Alkaline 257 10 mA cm−2 [72] 
Co3O4@KNbO3 61  1 M KOH 330 10 mA·cm−2 [73] 
ZnO-CoFe2O4 88.56 0.1 M KOH 170 50 μA cm–2 This work 

4. Conclusion  
A green and facile procedure for synthesizing the innovative, effective and stable ZnO-CoFe2O4 

electrocatalyst as a modifier for GCE was introduced, which exhibits a noteworthy OER performance in 
alkaline circumstances. Additionally, ZnO-CoFe2O4/GCE has an acceptable specific surface area and porous 
structure and enhanced accessible active sites and the rate of electron transfer that provides the OER 
exceptional performance accompanying a low overpotential of 222 mV and a Tafel slope of 88.56 mV dec–1 
for OER. The kinetics of water oxidation were studied with the Tafel slope technique. Demanding a voltage of 
1.45 V at 5 mA cm–2 in a water oxidation procedure within three electrode system is a demonstration of 
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excellent electrochemical efficiency for the ZnO-CoFe2O4/GCE This work developed a mixed transition metal 
as an inexpensive electrocatalyst for stable and green OER analysis in basic situations, which has the capability 
to be employed in other applications like renewable energy storage and other energy conversion methods. This 
research also provides a novel strategy for accomplishing effective water oxidation with nanostructured 
transition metals. We assign this outstanding water oxidation activity to the excellent synergistic effects, in situ 
evolution on the stable conductive substrate and attendance of active OER compounds. 
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