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ABSTRACT 
A theory of many-body wave scattering is developed under the assumption a << d << λ, where a is the characteristic 

size of the small body, d is the distance between neighboring bodies and λ is the wave-length in the medium in which 
the bodies are embedded. The multiple scattering is essential under these assumptions. The author’s theory is used for 
creating materials with a desired refraction coefficient. This theory can be used in practice. A recipe for creating materials 
with a desired refraction coefficient is formulated. Materials with a desired radiation pattern, for example, wave-focusing 
materials, can be created.  
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1. Introduction 
The aim of this paper is to give an affirmative answer to the question 

in the title of this paper. This brings potentially many possibilities for 
progress in technology. 

There is a large literature on wave scattering by small bodies, start-
ing from Rayleigh’s work (1871)[1–3]. If the scatterer is small then the 
scattered field can be calculated analytically for bodies of arbitrary 
shapes, see reference [4]. 

The many-body wave scattering problem was discussed in the liter-
ature mostly numerically, if the number of scatterers was small, or under 
the assumption that the influence of the waves, scattered by other parti-
cles on a particular particle is negligible[5]. This corresponds to the case 
when the distance d between neighbouring particles is much larger than 
the wavelength λ, and the characteristic size a of a small body (particle) 
is much smaller than λ. Theoretically and practically the assumptions 

a << λ,  d >> λ, 
(1) 

are the simplest ones which allow one to neglect multiple scattering. By 
k = 2𝜋𝜋

𝜆𝜆
, the wave number is denoted. 

In the author’s theory, the basic assumptions are 
a << d << λ, 

(2) 
and the multiple scattering is of basic importance under these assump-
tions[4,6–35]. It is clear that assumption (2) can be practically realized. Its  
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importance comes from the fact that the author gave 

a rigorous asymptotically exact solution of the many-

body scattering problem under assumption (2) when 

a → 0. This solution can be well approximated nu-

merically by the particles of the size a > 30 nm. Prac-

tically the size of a can be found by comparison of 

the solution for some a and for 𝑎𝑎
2
. If these solutions 

are practically close, then one considers this a as suit-

able. The aim of this paper is to show that our theory 

can be used practically. 
In reference [36], for the first time the author’s 

theory was used for solving the scattering problem 
for 10 billion small particles. This problem was 
solved numerically and numerical results were pre-
sented. 

Let us formulate the wave scattering problems 
we deal with. Let D be a bounded domain in ℝ3 
with a sufficiently smooth boundary. The scattering 
problem consists of finding the solution to the prob-
lem: 

(∇2 + 𝑘𝑘2)𝑢𝑢 = 0 in G’ := ℝ3\𝐺𝐺, G := 𝑈𝑈𝑚𝑚=1
𝑀𝑀 𝐷𝐷𝑚𝑚,  

k = const > 0, 
(3) 

where Dm = B(xm, a) is an impedance ball, centered 
at xm and of small radius a, 

u = u0 + v, u0 = eikα·x, α ∈ S2, 
(4) 

S2 is the unit sphere in ℝ3, u0 is the incident field, v 
is the scattered field satisfying the radiation condi-
tion 

vr – ikv = o(1
𝑟𝑟
), r := |𝑥𝑥| → ∞, vr := 𝜕𝜕𝜕𝜕

∂r
, 

(5) 
and u satisfies the impedance boundary condition (bc) 
on the boundary of G: 

uN – ζmu = 0,  on Sm,  Imζm ≤ 0, 
(6) 

where ζm is a constant, N is the unit normal to S := 
𝑈𝑈𝑚𝑚=1
𝑀𝑀 𝑆𝑆𝑚𝑚, pointing out of G := 𝑈𝑈𝑚𝑚=1

𝑀𝑀 𝐷𝐷𝑚𝑚, and Sm is 
the surface of Dm = B(xm, a). 

By refraction coefficient n(x) the coefficient in 
the equation 
 

(∇2 + 𝑘𝑘2𝑛𝑛2(𝑥𝑥))𝑢𝑢 = (∇2 + 𝑘𝑘2 − 𝑞𝑞(𝑥𝑥))𝑢𝑢 = 0 
(7) 

is understood, where q(x) := k2(n2(x) – 1). 

Let g(x, y) = 𝑒𝑒𝑖𝑖𝑖𝑖|𝑥𝑥−𝑦𝑦|

4π|𝑥𝑥−𝑦𝑦|
. Then (∇2 + k2)g(x, y) = –

δ(x – y), where δ(x) is the delta function. 
Let us distribute small impedance particles Dm 

= B(xm, a) in D so that 
ℕ(∆) = aκ–2|∆|[1 + o(1)], a → 0, 

(8) 
where ∆ ⸦ D is an arbitrary connected open subset 
of D, |∆| is its volume, κ ∈ (0, 1) is a number the 
experimenter may choose arbitrarily and ℕ(∆) is the 
number of particles in ∆. Throughout this paper the 
important assumptions a << d << λ and (8) are 
satisfied. As a → 0, the number of small particles 
ℕ(∆) in (8) tends to infinity since κ – 2 < 0. 

We assume in this paper (for simplicity only) 
that the small particles are distributed in the domain 
D and the refraction coefficient in D equals to 1. In 
the monograph [31], it is assumed that D is filled 
with the material whose refraction coefficient n0(x) is 
known and we wanted to create in D the material 
with the desired refraction coefficient n(x). 

The boundary impedances ζm are chosen by the 
formula 

ζm = a–κh(xm), 
(9) 

where h(x) is a continuous function in D, Imh ≤ 0. 
It will be clear from Section 3 that the function 

h(x) can be determined by choosing a suitable bound-
ary impedance ζ(x). When a → 0, the ζm and h(xm) 
can be considered as continuous functions ζ(x) and 
h(x). 

2. Solution of many-body scattering 
problem 

We look for the solution of the form 

 

 
(10) 

where σm(s) are unknown, Qm := ∫ 𝜎𝜎𝑚𝑚(𝑠𝑠)𝑑𝑑𝑠𝑠𝑆𝑆𝑚𝑚 . One 
may think about σm as of charge densities on Sm and 
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of Qm as of total charge on the surface Sm. We prove 
that 

𝐽𝐽 ≔ � � [𝑔𝑔(𝑥𝑥, 𝑠𝑠) − 𝑔𝑔(𝑥𝑥, 𝑥𝑥𝑚𝑚)]𝜎𝜎𝑚𝑚(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑆𝑆𝑚𝑚

𝑀𝑀

𝑚𝑚=1

 

(11) 
is negligible compared to 

 
(12) 

so 
J << I as a → 0. 

(13) 
We prove that the field u satisfies the following inte-
gral equation as a → 0: 

u(x) = u0(x) – 4π∫ 𝑔𝑔(𝑥𝑥,𝑦𝑦)ℎ(𝑦𝑦)𝑢𝑢(𝑦𝑦)𝑑𝑑𝑦𝑦𝐷𝐷 , 
(14) 

where h(xm) = 𝜁𝜁𝑚𝑚
𝑎𝑎𝜅𝜅

, and, since there are sufficiently 
many points xm ∈ D, the function h(x) is uniquely de-
termined in D if the boundary impedances are known. 

Apply the operator to ∇2 + k2 to both sides of 
equation (14) and get 
�∇2 + 𝑘𝑘2 − 4𝜋𝜋ℎ(𝑥𝑥)�𝑢𝑢(𝑥𝑥) ∶= �∇2 + 𝑘𝑘2𝑛𝑛2(𝑥𝑥)�𝑢𝑢(𝑥𝑥)

= 0 
(15) 

Therefore, 
n2(x) = 1 – 4πk–2h(x). 

(16) 
We omit details since they can be found in the au-
thor’s publications listed in the References, in partic-
ular, in monograph [31]. 

If originally in D were material with the known 
refraction coefficient n0(x), then formula (16) were 
n2(x) = 𝑛𝑛02(𝑥𝑥)  – 4πh(x)N(x)k–2, where N(x) is the 
distribution density for the small particles, see refer-
ence [31]. In this paper, we assume (for simplicity 
only) that N(x) = 1, see formula (8). 

3. Recipe for creating materials 
with a desired refraction coefficient 

Let us formulate a recipe for creating materials 
with a desired refraction coefficient. Formula (16) 
shows that if h(x) is chosen properly, then any n(x) 
can be obtained in D. 

Recipe for creating materials with a desired re-
fraction coefficient: 

a) Calculate by formula (16) the function h(x); 
b) Distribute small impedance balls in the do-

main D by the distribution law (8). The boundary im-
pedances of these balls are defined by the function 
h(x). 

Theorem 1. The refraction coefficient of the re-
sulting medium tends to the desired coefficient n(x) 
as a → 0. 

Let us show that practically negative refraction 
coefficient n(x) can be obtained by the above recipe. 
Denote b := 4πk–2 > 0 and write equation (16) as 

n(x) = (1 – bh(x))1/2 = |1 − 𝑏𝑏ℎ(𝑥𝑥)|1/2𝑒𝑒𝜙𝜙/2, 
(17) 

where ϕ is the argument of 1 – bh(x). Since the oper-
ator in (14) is of Fredholm type, it remains Fredholm 
type under small perturbations. Therefore one can 
take h – i𝜖𝜖, where 𝜖𝜖 > 0 is sufficiently small, and 
equation (14) will still have a unique solution. 

By choosing h so that Re(1 – bh) > 0 and Im(1 
– bh) < 0 and small, one gets the argument ϕ = 2π – 
δ, where δ > 0 is arbitrarily small if 𝜖𝜖 is sufficiently 
small. Then n(x) will be nearly negative: its argument 
will be π – δ/2. 

4. Creating materials with a desired 
radiation pattern 

Let us define what we mean by the radiation 
pattern. Consider the scattering problem for the 
equation: 

∇2𝑢𝑢 + 𝑘𝑘2𝑢𝑢 − 𝑞𝑞(𝑥𝑥)𝑢𝑢 = 0, 𝑢𝑢 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎·𝑥𝑥 + 𝑣𝑣, 
(18) 

where v satisfies the radiation condition. Assume that 
k > 0 and α ∈ S2 are fixed. Then the scattering am-
plitude A(β, α, k) = A(β), where the dependence on k, 
α is dropped since k and α are fixed. The formula for 
the scattering amplitude is known, see, e.g., refer-
ence [35]: 

A(β): = Aq(β) = − 1
4𝜋𝜋 ∫ 𝑒𝑒

−𝑖𝑖𝑖𝑖𝑖𝑖·𝑦𝑦𝑞𝑞(𝑦𝑦)𝑢𝑢(𝑦𝑦)𝑑𝑑𝑦𝑦. 
(19) 

We call A(β) the radiation pattern. 
Consider an inverse problem (IP): 
Given an arbitrary f(β) ∈ L2(S2) and an arbi-

trary small 𝜖𝜖 > 0, can one find a q ∈ L2(D) such 
that 

�𝑓𝑓(𝛽𝛽) − 𝐴𝐴𝑞𝑞(𝛽𝛽)�
𝐿𝐿2(𝑆𝑆2)

 < 𝜖𝜖. 
(20) 
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This inverse problem was not formulated and 
was not studied in the works of other authors, to our 
knowledge. 

Our result is stated in Theorem 2. 
Theorem 2. For any f(β) ∈ L2(S2) and an ar-

bitrary small 𝜖𝜖 > 0 there is a q ∈ L2(D) such that 
(20) holds. 

Since small perturbations of q result in small 
perturbations of A(β), there are infinitely many po-
tentials q for which inequality (20) holds. 

The conclusion of Theorem 2 follows from lem-
mas 3 and 4. 

Lemma 3. The set  
�∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖·𝑥𝑥ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥𝐷𝐷 �

∀ℎ∈𝐿𝐿2(𝐷𝐷)
is dense in L2(S2). 

Corollary 1. Given f ∈ L2(S2) and 𝜖𝜖 > 0, one 
can find h ∈ L2(D) such that 

�𝑓𝑓(𝛽𝛽) + 1
4𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖·𝑥𝑥ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥𝐷𝐷 � < 𝜖𝜖. 

Lemma 4. The set {𝑞𝑞(𝑥𝑥)𝑢𝑢(𝑥𝑥,𝛼𝛼)}∀𝑞𝑞∈𝐿𝐿2(𝐷𝐷)  is 
dense in L2(D). 

Corollary 2. Given h ∈ L2(D) and 𝜖𝜖 > 0, one 
can find q ∈ L2(D) such that 

‖ℎ(𝑥𝑥) − 𝑞𝑞(𝑥𝑥)𝑢𝑢(𝑥𝑥,𝛼𝛼)‖𝐿𝐿2(𝐷𝐷) < 𝜖𝜖. 

Since the scattering amplitude 

A(β) = − 1
4𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖·𝑥𝑥ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥𝐷𝐷  

depends continuously on h, the inverse problem IP 
is solved by Lemmas 3 and 4. 

Proofs are omitted. They can be found in refer-
ence [31]. 

5. Discussion 
How is the theory, outlined in the previous sec-

tions, can be used practically?  
To create a material with a desired refraction 

coefficient, or a material with a refraction coefficient 
close to the desired, is practically very important. To 
my knowledge, there were no general methods for 
creating material with a desired refraction coefficient. 
To use the theory, outlined in this paper and in the 
monographs[31–33], one has to solve a technological 
problem: how to prepare a small particle, say, a ball 
of radius a, with the prescribed boundary impedance 
ζ. This problem should be solvable, see reference [33] 
for arguments supporting this conclusions. If this 
technological problem is solved, then the recipe 

outlined in this paper (and in the author’s mono-
graphs[31–33] can be immediately used in practice. 

The problem of creating materials with a de-
sired radiation pattern, the wave focusing materials, 
for example, was not investigated earlier. This prob-
lem is of great practical interest. The usual bodies 
scatter waves mostly backwards, somewhat sidewise 
and a little forwards. If one creates a body which 
scatters waves, for example, in a given solid angle, 
this would be of great practical interest. Such a body 
can be created as follows from the theory outlined in 
the previous Section. 

The author wrote this paper in an attempt to 
draw attention of the specialists in material sciences 
to the theory he has developed for creating materials 
with the desired refraction coefficient. 

The author is not aware of the experimental re-
sults based on his theory. Such results are very desir-
able. There are numerical results, based on his theory, 
see references [37] and [38]. 
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