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ABSTRACT 
The semiclassical boron–boron interatomic pair potential is constructed in an integral form allowing its converting 

into the analytical one. It is an ab initio B–B potential free of any semiempirical adjusting parameters, which would 
serve as an effective tool for the theoretical characterization of all-boron and boron-rich nanomaterials. 
Keywords: Interatomic Potential; Semiclassical Approach; Ground State Parameters; Nanomaterial; Boron 

1. Introduction 
Currently, the prospective wide technological applications of boro-

phenes and boron-rich nanomaterials in general are of special research 
interests due to their variable interatomic bonding mechanism and relat-
ed unique complex of physical and chemical properties (see some of re-
cent reviews[1–6]). Among them, the small all-boron clusters Bn (contain-
ing 푛 < 20 atoms) preferring (quasi) planar structures play an important 
role in characterization of borophenes and other 2D boron nanomaterials 
as can serve for their building blocks[7]. 

Boron nanoclusters’ ground state parameters—bond lengths, specif-
ic (per atom) binding energy, atomic vibration frequencies, etc.—can be 
estimated on the basis of interatomic B–B pair potentials depended on a 
few rigorously chosen semiempirical parameters—see the paper and also 
the review of Chkhartishvili[8,9] which summarize results of similar at-
tempts. Same approach has been found useful for the characterization of 
the relative stability of small (quasi) planar boron clusters, including the 
most abundant species B11, B12, and B13 in different charge states[10,11]. 

As is known, to study molecular properties quantitatively, e.g., de-
termining the spectroscopic data or performing the collision calculations, 
potential curves of diatomic molecules are useful in analytical form. An-
alytical pair interatomic potential curves are also needed to deduce the 
polyatomic molecular curves. In view of this, in the present work, we 
demonstrate how it is possible based on semiclassical approach to con-
struct the B–B interatomic pair potential in an integral form, which is 
reducible to the analytical one. Paper is organized as follows. After this 
introduction, there is given a short review on interatomic potentials in 
general. Then charge density and potential distributions in boron atom 
are described semiclassically. They are used to construct the B–B inter-
action potential energy curve in an integral form. And finally, based on 
discussion of obtained results some conclusions are drawn. 
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2. Interatomic potentials 

When developing the numerical physical 
model of a material, the ab initio approaches, such 
as the DFT (Density Functional Theory) or QC 
(Quantum Chemistry), providing the best accura-
cy on its electronic properties is limited to frag-
ments up to thousands of atoms. To larger systems, 
it should be employed the computations by classi-
cal MD (Molecular Dynamics), MC (Monte Carlo) 
or FE (Finite Element) methods, which are much 
faster but less accurate and assume that constitu-
ent atoms are solid spheres influenced by interac-
tions and in a good approximation follow the clas-
sical equations of motion. 

Then behavior of materials in the elastic, 
electric or magnetic force fields depends on type 
and energy of interatomic bonding and the general 
understanding of their properties can be based on 
interaction potentials between atoms or ions[12]. 
The (long-range) interatomic forces, i.e., gradients 
of interatomic potentials prescribed as functions 
of atomic coordinates, play key role in capillarity 
and wetting phenomena as well[13]. The choice of 
forms or these potentials depends on the particular 
problem features. Recent Special Issue of the 
journal Molecules: “Intermolecular forces: From 
atoms and molecules to nanostructures”[14] has 
been devoted the relationship between forces act-
ing between the atomic system particles and its 
properties across different scales: from molecules, 
simple aggregates or small clusters to nanostruc-
tures and other types of condensed matter at the 
mesoscale. The parameters of introduced types of 
interatomic potentials can be derived both from 
experiments or quantum mechanics. 

To understand molecules chemical properties 
and also for their force fields high-quality empiri-
cal parameterization, the obtaining of accurate 
conformational energetics is of significance. Mol-
ecule conformational energy includes strain ener-
gy coming from bond distortions, valence angles, 
torsion strains, etc., and enables to describe devia-
tions of actual molecular geometry from the ideal 
one. As for intermolecular forces, they control 
most of the properties of the materials, such as 

their existence in solid, liquid or gaseous states, 
relative stability and chemical reactivity. 

The ab initio potentials are found in DFT or 
electron gas approximations, in which various 
contributions in the multi-atomic system energy—
Coulomb, kinetic, exchange, correlation, etc.—are 
additively taken into account. In this case, in cal-
culating the interaction potentials for heteroatomic 
systems, it is more correct to use a separate com-
bination of these types of contributions. 

Recent alternative to both empirical and ab 
initio interatomic potentials are ML (Machine 
Learning) potentials. ML is becoming a method of 
choice for modeling complex chemical processes 
and materials providing a surrogate model trained 
on a reference dataset that can be used to establish 
a relationship between molecular structure and 
chemical properties. ML trained on quantum me-
chanical calculations is a powerful tool for model-
ing the PES (Potential Energy Surface). A critical 
factor for the automated discovery of robust inter-
atomic potentials by ML is the quality and diver-
sity of the training dataset. 

The course to atomistic simulations[15] pro-
vides classification of popular interatomic poten-
tials; their characterization in terms of accuracy, 
transferability and computational speed; potential 
cut-off procedures; short review of potentials used 
in MD and MC methods; derivation of the force 
from pair potential and force fields in materials; 
relationship between pair potential and elastic 
constants; limitations of pair potentials; and de-
scription of pair potentials versus many-atomic 
potentials. 

The NIST’s (National Institute of Standards 
and Technology) IPR (Interatomic Potentials Re-
pository)[16] serves for a source of interatomic po-
tentials and force fields, in which there are pre-
sented all the possible classes of potentials and 
materials (metals, semiconductors, oxides and 
carbon-containing systems). Interatomic and also 
fictional potentials are provided both for elemen-
tary and non-elementary (alloys and compounds) 
materials. It is specially noted that: (i) multi-
component potentials may not be applicable to the 
full composition range; (ii) coarse-grained poten-
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tials reduce the simulation complexity by repre-
senting molecular or alloy compositions with a 
single particle type; and (iii) fictional potentials 
purposefully fitted to target properties are not able 
to represent real materials accurately. 

2.1 Empirical potentials 
Interactions between atoms can be modeled 

using different two- or many-atomic potentials. 
The total interaction potential can be written as a 
series of terms depending on the position of one, 
two, three, … atoms at a definite moment of time: 
푈�����(푟⃗�, 푟⃗�, 푟⃗�, … ) = ∑ 푈�(푟⃗�)� + ∑ 푈�(푟⃗�, 푟⃗�)�� +
∑ 푈�(푟⃗�, 푟⃗�, 푟⃗�)��� + ⋯. Here 푟⃗�, 푟⃗�, 푟⃗�, … are the 
radius-vectors of atoms and 푈�, 푈�, 푈�, …—one-, 
two-, three-atomic, … potentials, respectively. 
The term 푈�  is an atom’s potential in self-
consistent or external force field. 

As for the term 푈� , in the simplest ionic 
bonding model, it is expressed by the potential 
energy of Coulomb or electrostatic interaction 
between a pair of oppositely charged ions: 
푈�(푟) = − 퐴 푟⁄ , where 퐴 > 0 is the constant de-
pendent on effective point charges of interacting 
atomic ions and 푟 = |푟⃗� − 푟⃗�| is the distance sepa-
rating them. The Madelung or electrostatic energy 
of an ionic crystal is the sum of potential energies 
of interaction between constituent ions. A nega-
tive overall energy implies attraction and then 
system’s stability. 

Electrostatic attraction between cations and 
anions increases as they approach each other, until 
at some distance their electron clouds begin to 
overlap leading to repulsion. These two forces of 
opposite signs are balanced at equilibrium separa-
tion. The repulsive energy typically is formulated 
as 푈�(푟) = 퐵 푟�⁄ , where 퐵 > 0 and 푛 > 0 are the 
empirical constants. Bond length and binding en-
ergy can be determined by minimizing the total 
potential energy: 푈(푟) = 푈�(푟) + 푈�(푟) =
퐵 푟�⁄ − 퐴 푟⁄ . Alternatively, the repulsion can be 
expressed by the Born–Mayer potential: 
푈���(푟) = 퐶 exp(− 푟 푎⁄ )  with 퐶 > 0  and 푎 > 0 
for constants. 

Usually, the interatomic potentials obtained 
empirically are approximated by model potentials 
without separation of terms with clear physical 

sense. These are Lennard–Jones 푈��(푟) =
퐵 푟��⁄ − 퐴 푟�⁄ , Morse 푈�(푟) = 퐷(exp(−2훼(푟 −
푎) − exp(−훼(푟 − 푎)) , Buckingham 푈�(푟) =
퐶 exp(− 푟 푎⁄ ) − 퐴 푟�⁄ , … potentials including 
two more positive parameters: 퐷 and 훼. 

Sometimes, the Lennard–Jones potential, 
which is frequently used for modeling rare gas 
crystals bounded by van der Waals forces, is pre-
sented as 푈��(푟) = 4퐷((푟� 푟⁄ )�� − (푟� 푟⁄ )�) , 
where 푟�, called as van der Waals diameter, is the 
value of 푟, when 푈��(푟) function is zero, and 퐷 is 
the potential well depth. The origin of such intera-
tomic interaction can be imagined as interplay 
between van der Waals attraction and Pauli repul-
sion related to zero point fluctuations of electrons 
leading to induced dipole forces and their short-
range interaction due to exclusion principle, re-
spectively. 

An important special form of 푈��(푟) is the 
Mie–Lennard–Jones potential: 푈����(푟) =
(퐷 (푏 − 푎)⁄ )�푎(푟��� 푟⁄ )� − 푏(푟��� 푟⁄ )�� , where 
퐷  and 푟���  denote depth and coordinate of the 
potential minimum, 푎  and 푏  are the numerical 
parameters, 1 < 푎 < 푏, characterizing long-range 
action and rigidity of the potential. 

To construct adequate theoretical model for a 
material, it is necessary to use the empirical po-
tentials that correctly take into account all the 
available types of interactions in a wide range of 
interatomic distances. In the simplest case, the 
pair interatomic potential can be chosen in the 
form of 푈(푟) = 퐷(푋(푟)� − 2푋(푟)), where 푋(푟) 
is some function of distance 푟 . The first term 
takes into account the repulsion, while the sec-
ond—the attraction of atoms. The expediency of 
choosing this approximation is due to following 
reasons. It, firstly, quite adequately describes the 
pair interaction energy dependence on the intera-
tomic distance and, secondly, allows one to obtain 
the widely used analytical formulas for interaction 
potential energies and forces between systems of 
atoms, in particular, above mentioned Lennard–
Jones and Morse potentials. The use of the Len-
nard–Jones potential leads to simple and easy-to-
calculate explicit relations that describe the physi-
cal properties, such as the potential energy of sol-
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id structure, liquid surface tension and solid sur-
face energies, and heat of sublimation. Its disad-
vantage is the power-law dependence of the repul-
sion energy, which gives too fast fall as the dis-
tance increases. Morse potential, which takes into 
account the repulsive forces “softness”, is de-
prived of this shortcoming and preferable to be 
used in modeling interactions in nanosystems, as 
well as quantum mechanical calculations since it 
allows one to obtain Schrodinger equation solu-
tions in an explicit form. In the vicinity of mini-
mum, any pair interaction potential is represented 
as a parabolic dependence 푈(푟) = −퐷 +
푘(푟 − 푟���)� 2⁄ , where 푘  is the bond stiffness 
factor. In various solid state physics applications, 
it turns out to be useful the Mie–Lennard–Jones 
potential, whose parameters for most of elements 
of the Periodic Table were estimated by Magome-
dov[17]. The potential well depth 퐷 and equilibri-
um distance 푟��� values were calculated from heat 
of sublimation and the lattice constant or molar 
volume. 

To estimate the pair interaction potential of 
different atoms, it can be used the Lorentz–
Berthelot empirical combination rules: 푈��� →
푈�� = �푈�푈�  and 푟��� → 푟�� = (푟� + 푟�) 2⁄ , 
where indices A and B denote the interacting at-
oms. 

Three-atomic term 푈�  frequently is ex-
pressed by the Tersoff potential: 

푈�(푟⃗�, 푟⃗�, 푟⃗�) = (1 2⁄ ) � 푓��푟���
���

�푎��푓��푟���

+ 푏��푓��푟���� 

where 푟�� = |푟⃗� − 푟⃗�|  is the distance separating 푖 
and 푗 atoms, 푓�(푟) = −훼 exp(−휆�푟) is the attrac-
tive three-atomic potential and 푓�(푟) =
휌 exp(−휆�푟)  is the repulsive two-atomic term 
(here parameters 훼, 휆� , 휌 and 휆�  are the positive 
constants), while 푓�(푟) is a smooth cutoff function. 
The three-atomic contributions arise due to the 
bond-order parameters 푎��  dependent on bonds 
length and angle between them. The parameters 
푏�� limiting the repulsive interactions range can be 
chosen as functions only of bonds length. 

The most recent comprehensive review of 
empirical interatomic potentials designed to re-

produce materials elastic properties, defect ener-
gies, bond formation and breaking, redox reac-
tions, etc., has been done in the study of Muser et 
al.[18]. There are described the most popular two-
atomic potentials such as: embedded-atom model 
potential for metals, bond-order potential for co-
valently bonded semiconductors, polarizable po-
tentials including ionic systems of atoms, and 
quantum-Drude oscillator model potential mim-
icking multi-atomic dispersion. Emphasis is laid 
on the constraints ensue from the functional form 
of a potential. The review highlights potentials 
with simple functional forms allowing the analyti-
cal treatment. Below, some of interesting exam-
ples of practical applications of the empirical po-
tentials are given. 

Periodic Table’s carbon subgroup ele-
ments—C, Si, Ge, Sn and Pb—are of interests 
because of occurring of the covalent-to-metallic 
bond-type transition. The available experimental 
data were used[19] to obtain the parameters of their 
pair interatomic potentials represented in the Mie–
Lennard–Jones form. All the different approaches 
suggested for the self-consistent determination 
have same disadvantage: it is unclear whether it is 
correct or not to use the parameters obtained for a 
free atoms pair for double covalent bond in a crys-
tal. To answer this question, it was investigated 
the evolution of the potential depth 퐷 value exper-
imentally determined from the crystal properties 
during the covalent-to-metallic bond-type transi-
tion and demonstrated that 퐷 of a covalent bond 
determined from the bulk modulus is approxi-
mately twice the value which follows from the 
crystal atomization energy. A conclusion was 
drawn about the covalent bonding nature: such 
bond between in a crystal is double and these two 
bonds differ in potential depth value. Each of the 
generalized valence electrons realizes strong and 
weak bonds with own and alien ions, respectively. 
A double covalent bond under elastic, i.e., re-
versible, deformation of the crystal is about twice 
stronger than in the case of its sublimation, i.e., its 
destruction, because two valence electrons cannot 
depart from each other without breaking the 
weaker one. Bonds of both types are active at 
elastic deformation, but only weak bonds break at 
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plastic one, i.e., irreversible deformation. This 
explains the covalent crystals high brittleness 
along with their high strength. Recently, based on 
paired covalent bond model, it has been deter-
mined[20] that the causes of both the appearance of 
surface cracks on a semiconductor crystal at tem-
perature 푇  below its brittle-to-plastic transition 
point 푇��� , 푇 < 푇��� , and such transition at 푇 >
푇���. At small deformations of a covalent crystal, 
it is energetically preferable to create a surface by 
irreversible rupture, than by reversible stretching. 
The brittle–plastic transition in elemental covalent 
crystals would accompanied by the surface cova-
lent bonds metallization. It is shown that the tran-
sition temperature under static loads has an upper 
limit: 푇��� 푇�⁄ < 0.45 , where 푇�  is the melting 
temperature. Thus, an analytical (i.e., without 
computer simulation) method was suggested for 
calculating the brittle–plastic transition tempera-
ture for elemental covalent crystals. 

To overcome some drawbacks of previous 
determinations of four parameters characterizing 
the Mie–Lennard–Jones potential as applied to 
crystals, a different parameterization method was 
introduced by Magomedov[21]. It is based on the 
best agreement of the crystal thermoelastic prop-
erties calculated values from experimental data 
such as: crystal sublimation energy at zero tem-
perature, thermal expansion coefficient and iso-
thermal elasticity modulus at room temperature, 
and pressure–volume dependence according to the 
equation of state’s room temperature isotherm 
curve. Method verification for iron Fe and gold 
Au showed good results, as well as its application 
for accurate calculation of some refractory metals 
(such as niobium Nb, tantalum Ta, molybdenum 
Mo and tungsten W) Debye temperature and sub-
limation and surface energies. Disordered Au–Fe 
substitution alloys were studied by Magomedov[22]. 
Namely, based on Mie–Lennard–Jones-type inter-
atomic potential parameters, Au and Fe fcc (face-
centered cubic) and bcc (body-centered cubic) 
structures were analytically determined, and the 
composition dependences of the Au–Fe alloys 
properties at the fcc–bcc structural phase transi-
tion were found. Then, the key parameters of acti-
vation processes were calculated[23] in various 

structures of iron. These are: Gibbs energy, en-
thalpy, entropy, and volume both for processes of 
formation of electrically neutral vacancies and 
self-diffusion of atoms. 

A beryllium–tungsten Be–W interatomic po-
tential was derived[24] using a formalism originat-
ed from the Pauling bond order concept. It found 
to be suitable for simulation of plasma–wall inter-
actions (Be surface with W atom and vice versa) 
taking place in fusion reactor. Obtained interac-
tion energies are qualitatively similar to that from 
ab initio, namely, DFT calculations showing that 
diffusion of Be into bulk W is not energetically 
favorable and the opposite is true for the reversed 
system. This Be–W potential can reasonably de-
scribe BexWy molecules with 푥, 푦 = 1, 2, 3, 4 and 
intermetallic phases Be2W and Be12W as well. 

A correlation between binding energy of an 
individual atom in metal lattice and its macro-
scopic parameters like Debye temperature, 
Young’s modulus and sound speed was consid-
ered in the study of Erokhin and Kalashnikov[25]. 
Based on the Lennard–Jones potential, the anhar-
monic zero-point oscillations of a crystal were 
analyzed[26] within the framework of the diatomic 
model. It is shown that their amplitude cannot 
exceed the limiting value which is a certain part of 
the equilibrium interatomic distance. The com-
pression of a crystal decreases the zero oscilla-
tions amplitude, while the tension increases it. It 
was found that crystal melting point depends on 
the de Boer parameter. The processes of melting 
and solidification of gold nanoclusters consisting 
of 43–1,055 atoms were studied[27] using the MC 
method and the Gupta multiatomic potential. It 
was shown that the temperature-dependences of 
the specific internal energy potential part and av-
erage first coordination number have pronounced 
hysteresis. 

The work previously carried out in the con-
text of quantitative crystal engineering involving 
the analysis of intermolecular interactions such as 
carbon (tetrel), pnicogen, chalcogen, and halogen 
bonding using experimental charge density meth-
odology has been reviewed by Thomas et al.[28]. 
The focus was to extract electron density distribu-
tion in the intermolecular space and to obtain 
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guidelines to evaluate the strength and directional-
ity of such interactions towards the design of mo-
lecular crystals with desired properties. In this 
formalism, the atomic electron density is divided 
into three terms: spherical core and spherical and 
asperical valence electron densities. It was 
demonstrated power and limits of X-ray diffrac-
tion experimental analysis using the CDMM 
(Charge Density Multipole Modeling) approach. 

Using the continuum approximation for in-
teracting atoms and the Mie–Grüneisen Theory, a 
simple equation of state for a monatomic crystal 
was constructed[29], which describes the phase 
diagram even in the vicinity of the critical point. 
The use of the Lennard–Jones formula for a pair 
potential made it possible to analytically find ex-
pressions for the critical volume, pressure, and 
temperature. 

Based on investigation[30] of interactions of a 
rigid sphere with another rigid sphere and half-
space using the Lennard–Jones potential, by their 
integrating over the surfaces and volumes, respec-
tively, the analytical forms of surface tractions 
and total force between two rigid spheres were 
obtained. First of them can be used for the de-
scription of adhesive contact between rigid and 
elastic bodies. The FVT (Free Volume Theory) 
extended to explicitly include the hard-sphere 
character of colloidal depletants into the free vol-
ume fraction expression was used[31] as a basis for 
comprehensive calculations performed to predict 
the phase behavior of large spherical colloids 
mixed with small spherical ones acting as de-
pletant. 

The parameters of the Mie–Lennard–Jones 
pair potential for nearest bond-forming fullerenes 
or interfullerene interaction in fcc-fullerites were 
determined[32] from the data on correlation re-
vealed between fullerene mass and corresponding 
fullerite properties. The experimentally observed 
fact that under the same conditions C70 fullerite is 
more stable than C60 was explained[33] by calcula-
tion equilibrium bond energy between C60–C60 
and C70–C70 fullerene pairs using the potential 
energy curve for interaction between two identical 
hollow spherical molecules, which is given with 

formula including the Lennard–Jones potential 
parameters. 

It has been emphasized[34] that pair-wise in-
teratomic potentials presentable in analytical form 
serve for powerful theoretical tools to model vari-
ous nanosystems: nanoparticles, nanotubes, full-
erenes, AFM (Atomic Force Microscope) probes, 
etc. In particular, using so-called equilibrium MD 
simulations the effect of electrostatic interactions 
influence on heat transfer mechanism and interfa-
cial properties was investigated[35] for the hexago-
nal boron nitride−water system Kapitza resistance 
in nanoscale planar (nanosheet) and cylindrical 
(nanotube) geometries. A water molecule was 
imaged by the simple point charge model due to 
its reliability, precision, and relatively low com-
putational cost. An optimized Tersoff potential 
was used to model the h-BN sheet–tube interac-
tions. And the pairwise interactions between at-
oms or ions were described by adding Coulomb 
and Lennard–Jones potentials. The optimum 
structure of some materials at the nanoscale, in-
cluding boron-based clusters, was modeled[36] by 
employing standard and ab initio MD simulations. 
The used instantaneous forces on atoms were cal-
culated from Lennard–Jones, van der Waals, Cou-
lomb, etc. potentials. 

2.2 Ab initio potentials 
The ZRPM (Zero-Range Potential Model) 

treats[37,38] the atomic and molecular potentials as 
short-range potential-wells with a shallow energy 
level near the continuum spectrum boundary. It is 
a schematic description of these potentials for 
cases (e.g., negative atomic ion), in which the in-
ternal structure details are not too significant. The 
basic idea of the approach is to replace the wave 
equation solution inside the well by a boundary 
condition at its center. The single potential well 
model useful for atoms can be directly generalized 
for the case of molecules, when there are several 
potential wells. 

Dolgonosov[39] has proposed an atomic elec-
tron gas model together with the generalized 
charges theory and the subsequent development of 
the interatomic interactions theory for the ab initio 
description of covalent bonding and van der 
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Waals forces, as well as complex molecules ad-
sorption on homogeneous surfaces. 

In the studies of Shukla and Eliasson[40–42], it 
was pointed out a short-range attractive force be-
tween two ions screened by degenerate electron 
gas in an unmagnetized plasma. At quantum scale, 
due to that force it can arise ordered ion structures 
such as ion clusters or Coulomb ion lattices, as 
well as the phase separations in dense quantum 
plasmas, e.g., from solid to liquid–vapor. Corre-
sponding electric potential is attributed to the 
quantum statistical pressure and the quantum 
Bohm potential, as well as the electron exchange 
and electron correlations due to electron-1/2 spin. 

Bonding in the excited alkali dimers involv-
ing resonant ionic, covalent and steric interactions 
was studied[43] by ab initio calculation for case of 
second, third, fourth and fifth 1Σu

+-states of lithi-
um diatomic molecule Li2. In particular, the corre-
sponding potential energy curves were obtained 
and applied for high resolution laser spectroscopy. 

Usually, conformational profiles are obtained 
with DFT methods, using of which is time-
consuming when the molecules are relatively 
large or there are many molecules of interest. 
Wang et al.[44] compared several possible alterna-
tives to this traditional approach, including a neu-
ral network potential. It was found that a sequen-
tial geometry optimization with the semiempirical 
method and single-point energy high-level DFT 
calculation can provide satisfactory conforma-
tional energy profiles hundreds of times faster. 

The concept of electronegativity 휒 reformu-
lated within DFT has acquired a central place in 
chemical reactivity due to its special relationship 
with the chemical potential 휇:휇 = −휒, and defini-
tion of so-called local electronegativity viewed as 
the functional variation of the system energy with 
respect to the electronic density in a given poten-
tial environment. On the one hand, the chemical 
hardness concept realization within the conceptual 
DFT is approached with perspective of electro-
negativity and hardness equalization of atoms in 
molecules. On the other hand, the maximum 
hardness principle presents a relation with the 
chemical stability of the hardness concept. In light 
of these concepts and inverse relation between 

hardness and polarizability, the minimum polar-
izability principle has been proposed by Kaya and 
Putz[45]. Additionally, this review includes appli-
cations of the chemical hardness concept. Eluci-
dating the quantum nature of the chemical bond is 
fundamental to establishing the directed chemical 
synthesis of new compounds with predefined 
properties and reactivity aiming at specific inter-
actions. The structures, intermolecular interac-
tions, and energy of some energetic materials 
crystal models were comparatively predicted 
based on MD quantum chemical simulations[46]. 
Detecting the intermolecular interactions would 
provide fundamental insights for the energetic 
materials crystal engineering. 

Electronic structure of charged defects in 
crystals often is calculated in the supercell models, 
which include the jellium counter charges to 
maintain system’s overall neutrality. However, the 
correction related to these artificially charges be-
comes paramount for low-dimensional crystals, 
where they may induce the spurious vacuum 
states. A corresponding self-consistent potential 
correction scheme was presented in the study of 
Silva et al.[47]. A problem of identification of pa-
rameters of the Mie–Lennard–Jones- and Morse-
type pairwise interatomic potentials from the in-
teraction between metal atom and graphene layer 
was considered by Rekhviashvili et al.[48] using 
the continuum approximation. The potential pa-
rameters were calculated by the DFT method from 
the equilibrium adsorption energy and distances in 
the adatom–graphene system. The advantage of 
this method is that the empirical combining rules 
are not used. The Mie–Lennard–Jones potential 
was found to be the most suitable for describing 
such interaction. The problem with the Morse po-
tential is that the exponential function cannot 
equally correctly describe the attractive and repul-
sive forces. 

2.3 Machine learning potentials 
In ML schemes, the potentials of interaction 

between constituent atoms 푖 and 푗 and crystal mo-
lar energy can be represented in forms of 
푈���푟��� = ∑ 퐴� 푟��

�⁄�  and 푢 = ∑ ∑ ∑ 퐴� 푟��
�⁄���� , 

respectively. Here 퐴� is the constant, summation 
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is done over unit cells number l = 0, 1, 2, … and 
index 푖 is assumed to refer to the atom in the cell 
with l = 0. In these lattice sums, the terms with 
indices k = 0, 1, 2 describe so-called long-range 
interactions, because corresponding volume inte-
grals over whole space diverge. One has to calcu-
late them only inside a finite sphere. The well-
known Ewald method developed for the Coulomb 
part, k = 1, can be generalized to terms with k = 0, 
1, 2, 3 as well. Below, a few recent examples of 
ML potentials development are given. 

A machine learning scheme[49] for an unbi-
ased and accurate representation of interatomic 
potentials is a combination of an artificial neural 
network and a simple approach for reconstruction 
of pair interatomic (e.g., Al–Al, He–He and Xe–
Xe) potentials in elementary crystals providing 
accuracy comparable with ab initio ones, but at a 
small computational cost. This method can be ap-
plied to structures of real systems of atoms by MD 
simulations. A highly automated approach to da-
taset construction and then building a potential for 
elementary aluminum, called as ANI-Al, was pre-
sented in the research of Smith et al.[50]. In this 
active scheme, the ML potential under develop-
ment is used to drive non-equilibrium MD simula-
tions with time-varying applied temperatures. 
Whenever a configuration is reached for which 
the ML uncertainty is large, new QC data is col-
lected. The ML model is periodically retrained on 
all the available QC data. The final ANI-Al poten-
tial makes accurate predictions of radial distribu-
tion function in melt, liquid-solid coexistence 
curve, and crystal properties such as defect ener-
gies and barriers. It was performed a 1.3 × 106 
atom shock simulation and shown that corre-
sponding force predictions agree well with DFT 
calculations. 

In the study of Mortazavi et al.[51], it was 
shown that ML interatomic potentials trained over 
short ab initio MD trajectories enable ab initio 
multiscale modeling, in which DFT is hierarchi-
cally bridged to efficiently simulate macroscopic 
structures. It was demonstrated that such approach 
can efficiently predict the lattice thermal conduc-
tivity of graphene and borophene pristine phases, 
as well as graphene–borophene interfaces. Thus, 

ML interatomic potentials enable ab initio mul-
tiscale modeling via hierarchical employment of 
DFT/MD/FE simulations for computational de-
sign of novel nanostructures. The structural prop-
erties of amorphous boron nitride a-BN doped 
with varying amount of carbon C were modeled[52] 
by generating versatile force fields using ab initio 
and designing realistic disordered BN:C ML sim-
ulations. 

The recent review[53] highlights develop-
ments in the use of ML to evaluate chemical 
properties such as partial atomic charges, dipole 
moments, spin and electron densities, and chemi-
cal bonding, as well as to obtain a reduced QC 
description. There is overviewed several neural 
network architectures, their predictive capabilities, 
generality and transferability, and illustrated their 
applicability to various chemical properties. It is 
emphasized that ML molecular representations 
resemble QC analogues demonstrating the ability 
of the models to capture the underlying physics. It 
is also discussed how ML models can describe 
non-local quantum effects. The observed trends 
demonstrate that this field is evolving towards 
physics-based models augmented by ML. 

3. Charge density and potential 
distributions in boron atom 

Atom is a bounded system of electrically in-
teracting electric charges—positive nucleus and 
negative electrons. So, to calculate potential ener-
gy of interaction between two atoms in fully theo-
retical manner, one needs their detailed electronic 
structure, including the explicit expressions for 
electric charge density and electric field potential 
distributions in interacting atoms. 

Recently, it has been demonstrated[54,55] that 
electronic structure of any bounded system of at-
oms—molecules, clusters or even condensed mat-
ter—with a good accuracy can be calculated with-
in the semiclassical approximation expressing 
electric SCF (Self Consistent Field) affecting 
atomic electrons by Coulomb-like (pseudo) poten-
tials. Based on electric charge density and electric 
field potential radial distributions in constituent 
atoms obtained in this way, one can construct 
semiclassical interatomic pair potentials needed 
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for calculating the important physical characteris-
tics of any bounded system of atoms. 

In such type semiclassical approximation, for 
ground-state electronic configuration 1s22s22p1, 
the radial wave functions 푅�(푞�(푟)) of five elec-
trons, 

k = 1, 2, 3, 4, 5 
(1) 

of an isolated electrically neutral boron B atom 
with nuclei centered at the origin, 푟⃗ = 0, are 

푅��푞�(푟)� = ��
푍�

푟�
�

�
2exp �−

푞�(푟)
2 � 

(2) 

푅��푞�(푟)� = ��
푍�

푟�
�

�
2 exp �−

푞�(푟)
2

� 

(3) 

푅��푞�(푟)� = ��
푍�

푟�
�

� 1
2√2

�2

− 푞�(푟)� exp �−
푞�(푟)

2
� 

(4) 

푅��푞�(푟)� = ��
푍�

푟�
�

� 1
2√2

�2

− 푞�(푟)� exp �−
푞�(푟)

2
� 

(5) 
and 

푅��푞�(푟)� = ��
푍�

푟�
�

� 1
2√6

푞�(푟) exp �−
푞�(푟)

2
� 

(6) 
Here the variables 

푞�(푟) =
2푍�

푛�

푟
푟�

 

(7) 
stand for radial wave functions’ arguments. The 
constant 

푟� =
ℏ�

푒�푚
≈ 0.53 Å 

(8) 
is the Bohr radius, 

푛� = 푛� = 1 
(9) 

 
푛� = 푛� = 2 

(10) 
and 

푛� = 2 
(11) 

are the electron orbitals’ principal quantum num-
bers, while the parameters 푍� equal to 

푍�� ≡ 푍� = 푍� ≈ 4.69 
(12) 

푍�� ≡ 푍� = 푍� ≈ 2.76 
(13) 

and 
푍� ≈ 1.48 

(14) 
respectively. These are the nucleus effective 
charge numbers, respectively, for 1s2, 2s2, and 2p1 
electrons bounded in boron atom. They could be 
considered for known numerical quantities. 

On the one hand, in the Coulomb-like intra-
atomic field the classical orbit radii 푟� of electrons 
or their characteristic displacements from the nu-
cleus could be found from the relations:  

푟�

푟�
=

푛�
�

푍�
 

(15) 
On the other hand, the nuclear charge radii of 

boron stable isotopes 10B and 11B with charge 
number of 푍 = 5 approximately equal to[56] 

푅� ≈ 2.4 × 10�� Å 
(16) 

푅�

푟�
≈ 2.2 × 10�� 

(17) 
and, consequently, in the boron atom the nucleus 
electric charge radius is negligible in comparison 
with electrons’ characteristic displacements from 
it:  

푅�

푟�
≪ 1 

(18) 
These relations meet a key assumption of the 

semiclassical method used that atomic nucleus 
could be considered as point electric charge. 

The squared semiclassical radial wave func-
tions, 

 

푅��
� (푟) ≡ 푅�

�(푟) = 푅�
�(푟) =

4푍��
�

푟�
� exp �−

2푍��푟
푟�

� 
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(19) 
푅��

� (푟) ≡ 푅�
�(푟) = 푅�

�(푟)

=
푍��

�

8푟�
� �2 −

푍��푟
푟�

�
�

exp �−
푍��푟

푟�
�

= �
푍��

�

2푟�
� −

푍��
� 푟

2푟�
�

+
푍��

� 푟�

8푟�
� � exp �−

푍��푟
푟�

� 

(20) 
and 

푅�
�(푟) =

푍�
�

24푟�
� �

푍�푟
푟�

�
�

exp �−
푍�푟
푟�

�

=
푍�

�푟�

24푟�
� exp �−

푍�푟
푟�

� 

(21) 
determine the semiclassical electrical charge den-
sity distribution in the isolated boron atom:  

휌�(푟⃗) = 5푒훿(푟⃗) −
푒

4휋
� 푅�

�(|푟⃗|)
���

���

= 푒 �5훿(푟⃗)

−
2푅��

� (푟) + 2푅��
� (푟) + 푅�

�(푟)
4휋 � 

(22) 
Here, the first term containing Dirac delta-

function 훿(푟⃗) stands for positive charge density of 
point-like nucleus with charge number of 푍 = 5 
and the second term is negative charge density of 
electron cloud. 

From the corresponding semiclassical elec-
trical charge density radial distribution. 

휌�(푟⃗) = 푒 �5훿(푟⃗) −
2푍��

�

휋푟�
� exp �−

2푍�푟
푟�

�

− �
푍��

�

4휋푟�
� −

푍��
� 푟

4휋푟�
�

+
푍��

� 푟�

16휋푟�
�� exp �−

푍��푟
푟�

�

−
푍�

�푟�

96휋푟�
� exp �−

푍�푟
푟�

�� 

(23) 
the Poisson’s equation determines that of the elec-
trical field potential, 

휑�(푟) = 푒 ��
2
푟

+
2푍��

푟�
� exp �−

2푍��푟
푟�

�

+ �
2
푟

+
3푍��

2푟�
+

푍��
� 푟

2푟�
�

+
푍��

� 푟�

4푟�
� � exp �−

푍��푟
푟�

�

+ �
1
푟

+
3푍�

4푟�
+

푍�
�푟

4푟�
�

+
푍�

�푟�

24푟�
�� exp �−

푍�푟
푟�

�� 

(24) 
in the boron atom centered at the origin: 푟⃗ = 0. 

4. Potential energy of B–B interac-
tion 

In general, an atom electrically interacting 
with another one affects its electric charge density 
and, consequently, electric field potential distribu-
tions. However, in the vicinity of interatomic 
chemical bond equilibrium length such redistribu-
tions are relatively small: both in finite and infi-
nite bounded systems of atoms electric charge 
density and electric field potential distributions 
can be approximated by the simple superposition 
of corresponding distributions in constituent at-
oms in their isolated states, when they are local-
ized in structure sites. 

Assuming electric charge density and related 
electric field potential redistributions in electrical-
ly interacting pair of boron atoms displaced at 
vector 푎⃗ (Figure 1) to be negligible, the semiclas-
sical potential energy of such interaction can be 
found as volume integral: 

푈���(푎) = � 푑�푟⃗ 휑�(푟)휌�(푟⃗ − 푎⃗) 

(25) 

 
Figure 1. To calculation of B–B pair potential. 
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The trivial integration over the polar angle 0 ≤ 휙 ≤ 2휋 yields the following result: 

푈���(푎) = 5푒� ��
2
푎

+
2푍��

푟�
� exp �−

2푍��푎
푟�

� + �
2
푎

+
3푍��

2푟�
+

푍��
� 푎

2푟�
� +

푍��
� 푎�

4푟�
� � exp �−

푍��푎
푟�

�

+ �
1
푎

+
3푍�

4푟�
+

푍�
�푎

4푟�
� +

푍�
�푎�

24푟�
�� exp �−

푍�푎
푟�

��

− 푒� � 푑푟 푟�
∞

�
��

2
푟

+
2푍��

푟�
� exp �−

2푍��푟
푟�

� + �
2
푟

+
3푍��

2푟�
+

푍��
� 푟

2푟�
� +

푍��
� 푟�

4푟�
� � exp �−

푍��푟
푟�

�

+ �
1
푟

+
3푍�

4푟�
+

푍�
�푟

4푟�
� +

푍�
�푟�

24푟�
�� exp �−

푍�푟
푟�

��

× � 푑휃 sin 휃 �
4푍��

�

푟�
� exp �−

2푍�√푟� − 2푎푟 cos 휃 + 푎�

푟�
�

�

�

+ �
푍��

�

2푟�
� −

푍��
� √푟� − 2푎푟 cos 휃 + 푎�

2푟�
�

+
푍��

� (푟� − 2푎푟 cos 휃 + 푎�)
8푟�

� � exp �−
푍��√푟� − 2푎푟 cos 휃 + 푎�

푟�
�

+
푍�

�(푟� − 2푎푟 cos 휃 + 푎�)
48푟�

� exp �−
푍�√푟� − 2푎푟 cos 휃 + 푎�

푟�
�� 

(26) 
As for integration over the azimuthal angle 0 ≤ 휃 ≤  휋 , it can be conducted via two successive trans-

formations into new integration variables 푥 and 푡: 
cos 휃 = 푥 

(27) 
and  

푟� − 2푎푟푥 + 푎� = 푡� 
(28) 

finally leading to the form 

푈���(푎) = 5푒� ��
2
푎

+
2푍��

푟�
� exp �−

2푍��푎
푟�

� + �
2
푎

+
3푍��

2푟�
+

푍��
� 푎

2푟�
� +

푍��
� 푎�

4푟�
� � exp �−

푍��푎
푟�

�

+ �
1
푎

+
3푍�

4푟�
+

푍�
�푎

4푟�
� +

푍�
�푎�

24푟�
�� exp �−

푍�푎
푟�

��

−
푒�

푟�푎
� 푑푟 푟

∞

�
��

2
푟

+
2푍��

푟�
� exp �−

2푍��푟
푟�

� + �
2
푟

+
3푍��

2푟�
+

푍��
� 푟

2푟�
� +

푍��
� 푟�

4푟�
� � exp �−

푍��푟
푟�

�

+ �
1
푟

+
3푍�

4푟�
+

푍�
�푟

4푟�
� +

푍�
�푟�

24푟�
�� exp �−

푍�푟
푟�

�� × �퐽��(푟) + 퐽��(푟) + 퐽�(푟)� 

(29) 
where 

퐽��(푟) =
4푍��

�

푟�
� � 푑푡 푡 exp �−

2푍��푡
푟�

�
���

|���|

= 푍�� ��1 +
2푍��|푟 − 푎|

푟�
� exp �−

2푍��|푟 − 푎|
푟�

� − �1 +
2푍��(푟 + 푎)

푟�
� exp �−

2푍��(푟 + 푎)
푟�

�� 

(30) 
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퐽��(푟) = � 푑푡 푡 �
푍��

�

2푟�
� −

푍��
� 푡

2푟�
� +

푍��
� 푡�

8푟�
� � exp �−

푍��푡
푟�

� =
���

|���|

=
푍��

4
��1 +

푍��|푟 − 푎|
푟�

−
푍��

� |푟 − 푎|�

2푟�
� +

푍��
� |푟 − 푎|�

2푟�
� � exp �−

푍��|푟 − 푎|
푟�

�

− �1 +
푍��(푟 + 푎)

푟�
−

푍��
� (푟 + 푎)�

2푟�
� +

푍��
� (푟 + 푎)�

2푟�
� � exp �−

푍��(푟 + 푎)
푟�

�� 

(31) 
and 

퐽�(푟) =
푍�

�푡�

48푟�
� � 푑푡 푡 exp �−

푍�푡
푟�

�
���

|���|

=
푍�

8
��1 +

푍�|푟 − 푎|
푟�

+
푍�

�|푟 − 푎|�

2푟�
� +

푍�
�|푟 − 푎|�

6푟�
� � exp �−

푍�|푟 − 푎|
푟�

�

− �1 +
푍�(푟 + 푎)

푟�
+

푍�
�(푟 + 푎)�

2푟�
� +

푍�
�(푟 + 푎)�

6푟�
� � exp �−

푍�(푟 + 푎)
푟�

�� 

(32) 
are the definite radial, 0 ≤ 푟 ≤ ∞, integrals. 

Thus, semiclassical approximation has al-
lowed us to express the boron–boron pair poten-
tial 

푈��� = 푈���(푎) 
(33) 

in dependence on interatomic distance 푎 by a ra-
dial integral. 

Schematic view of an interatomic pair poten-
tial 푈 as a function of the interatomic distance 푟 is 
shown in Figure 2. Here 푟� is the equilibrium in-
teratomic distance, i.e., bond length in corre-
sponding diatomic molecule, and 푈� is its binding 
energy (not corrected for relative atomic vibra-
tions zero-point energy). 

 
Figure 2. Schematic of interatomic pair potential. 

The integration over the radius is possible to 
conduct in elementary functions, although it will 
give the result in a cumbersome analytical form. 
Therefore, it seems that for the practical applica-
tions of the constructed B–B potential often it will 
be necessary to convert it in a numerical form. 

It is clear that the same goal can be achieved 
by the direct numerical integration. 

5. Discussion and conclusion 
Further work aims to convert the obtained in 

integral form semiclassical B–B potential function 
into analytical and/or numerical forms, which will 
allow to determine the B–B bond’s parameters 
such as bond length, dissociation energy, frequen-
cy of relative atomic vibrations, etc. They should 
be compared with currently available data given 
below. 

To the best our knowledge for the first time 
the fully theoretical pair potential energy curves 
for low-lying energy states of diboron molecule 
B2 were constructed[57] by so-called complete-
active-space SCF method at the multi-reference 
CI (Configuration Interaction) level of theory. The 
potential curves of ground and some of low-lying 
excited electronic states of B2 neutral molecule 
and B2

+ positive ion were also obtained[58] by us-
ing another CI approach. The B2

+ cation ground 
state showed a rather shallow potential curve with 
a bond length of 2.13 Å and vibration quantum of 
0.052 eV, when compared with B2 neutral ground 
state with that of 1.59 Å and 0.131 eV, respective-
ly. In result of bonding electron loss, the B2

+ mo-
lecular ion ground-state dissociation energy of 
1.94 eV was found to be significantly smaller than 
that of B2: 3.06 eV. Later, same authors by exten-
sive multi-reference CI calculations were con-
structed[59] B2 and B2

+ potential curves yielding 
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the following sets of parameters 1.59 Å, 2.75 eV, 
0.131 eV and 2.12 Å, 1.90 eV, 0.052 eV, respec-
tively. And according to the one more multi-
reference CI study[60], the ground-state curve pa-
rameters of B2 such as bond length, dissociation 
energy and two atoms relative vibration quantum 
are of 1.60–1.61 Å, 2.70–2.78 eV and 0.128–
0.129 eV, respectively. First principles quadratic 
CI method was used[61] to calculate the equilibri-
um potential energy curves of ground and low-
lying excited electronic states of B2 and B2

+. The 
corresponding analytical potentials were con-
structed by the fitting calculation results to the 
Murrell–Sorbie potential energy function. Curve 
parameters obtained for B2 and B2

+ were, respec-
tively, 1.62 Å, 3.14 eV, 0.125 eV and 2.18 Å, 1.69 
eV, 0.052 eV. 

A non-SCF DFT based construction of non-
orthogonal TB (Tight-Binding) matrix elements 
for B–B, N–N, B–N, B–H and N–H systems with-
in the framework of the LCAO (Linear Combina-
tion of Atomic Orbitals) formalism was present-
ed[62] using the LDA (Local Density Approxima-
tion). Despite the simplicity of the scheme con-
sidering only two-center Hamiltonian integrals 
and overlap matrix elements, the method has been 
proven to be sufficiently accurate and transferable 
to all scale B–B(N,H) structures from small clus-
ters and molecules to crystalline solids and solid 
surfaces. The calculation of forces from these TB 
potentials is straightforward and allows an appli-
cation of the method to MD simulations of struc-
ture formation in complex BNH systems. 

For the B2 molecule ground-state interatomic 
potential, the energy curve was also construct-
ed[63,64] within a quasi-classical approach. The ob-
tained in such way curve’s parameters are as fol-
lows: equilibrium bond length of 1.78 Å, dissocia-
tion energy of 2.80 eV, and vibration quantum of 
0.130 eV. 

Most of NIST’s IPR potentials are presented 
in efficient “universal” shifted Lennard–Jones 
model for all KIM API supported species devel-
oped by Elliott and Akerson in 2015[65]. Cohesive 
energy graphs generated for each elemental crys-
tals supported by the model show the cohesive 
energy versus volume-per-atom for four mono-

atomic cubic phases: sc (simple cubic), bcc, fcc, 
and diamond-like. The curve with the lowest min-
imum is the ground state of the crystal, if stable. 
Point is that the crystal structure is enforced in 
these calculations, so the phase may not be stable. 
In particular, cohesive energy graphs are available 
for elemental boron, i.e., B–B, and some boron-
containing systems: B–N, B–Hf, B–Zr and B–C–
N. The local nature of different types of boron–
boron bonds—B∙B, B–B, B=B and B≡B—from 
the topological analysis of ELF (Electron Locali-
zation Function) perspective was investigated[66] 
in number of boron-containing molecules. 

As for the experimental parameters of B–B 
pair interatomic potential curve, they are available 
in the reference book[67]: 1.59 Å, 3.09 eV, 0.130 
eV. Currently, for neutral diboron B2 molecule in 
ground state configuration (σ1s)2(σ*1s)2(σ2s)2 

(σ*2s)2(π2p)2 bond length and bond energy are 
estimated[68] as 0.159 nm and 3.00 eV, respective-
ly. 

In similar way, one can construct different 
semiclassical interatomic pair potentials to charac-
terize the nanomaterials containing not only boron, 
but some other chemical elements as well. For 
example, results obtained on the basis of semi-
classical boron–nitrogen, i.e., B–N, potential for 
pristine and doped hexagonal boron nitride h-BN 
nanotubes prospective for toxic gas sensors can be 
compared with DFT ones on their electrical sensi-
tivity toward ethyl benzene C8H10 and phosphine 
PH3 molecules[69,70]. 

In summary, introduced in this work semi-
classical boron–boron potential integral function 
allowing presentation both analytically or numeri-
cally will serve as a useful tool to characterize all-
boron and boron-rich nanomaterials atomic and 
electron structures fully theoretically and predict 
their main physical properties. 
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