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ABSTRACT 
Nanotechnology is a subject that studies, processes, and applies various functional materials, equipment, and sys-

tems, and controls substances on a nanoscale. Nanomedicine refers to its application in diagnosing, treating, preventing, 
and monitoring various diseases. Drugs administered through eye drops must travel a long distance to avoid various 
eye barriers reaching the posterior segment of the eye, to achieve the lowest drug level. This review focuses on nano-
technology-based eye disease treatment systems and highlights the obstacles affecting the drug management of eyes and 
nano-systems for the treatment of eye diseases. This paper summarizes the development prospect of nanotechnology 
and the challenges it faces in the treatment and diagnosis of ophthalmic diseases, to provide information and new ideas 
for the implementation of treatment and the development of a refractory eye disease management system. 
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1. Introduction 
The World Health Organization estimates that in 2018, about 

1.3 billion people suffered from some form of visual impairment, 
mainly due to uncorrected ametropia and cataracts. About 36 mil-
lion blind people are blind due to cataracts, trachoma, corneal scar, 
glaucoma, diabetic retinopathy, age-related macular degeneration, and 
congenital malformations. It is estimated that 80 percent of these cases 
could have been avoided. 

The eyes are divided into anterior and posterior segments. The an-
terior segment includes the cornea, conjunctiva, anterior chamber, iris, 
ciliary body, and lens. Eye drops are widely used in the treatment of 
anterior segment diseases because of their accessibility. However, due 
to the corneal barrier and the rapid filtration of tears, the bioavailability 
of topical eye drops is poor. The posterior segment is composed of the 
choroid, vitreous, and retina. Eye drops must go through a long distance 
and pass through several eye barriers to reach the posterior pole of the 
eye, which leads to low bioavailability when the drug reaches its action 
site[2]. 

Nanotechnology is a discipline that studies, designs, synthesizes, 
operates, and applies various functional materials, equipment, and sys-
tems, and controls substances at the nanoscale (1–100 nm). According 
to the National Nanotechnology Initiative, the essence of nanotechnol-
ogy is the ability to work atom by atom at the molecular level in order 
to create a huge structure and a new molecular organization. The aim is 
to develop these properties by controlling structures and devices at the 
atomic, molecular, and supramolecular levels, and to learn how to 
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manufacture and use these devices efficiently. It 
can be used to diagnose, treat, prevent and monitor 
various diseases. 

Nanotechnology is widely used in different 
fields. For example, in the field of molecular biolo-
gy, the biological detection method of DNA se-
quencing is developed through a nanopore se-
quencer[4,5]. In clinical pharmacology, it is used to 
prepare nano drugs[6]. Recently, the US Food and 
Drug Administration approved a number of nano 
drugs, including polymer nano-particles, poly-
mer-drug conjugates, and degradable polymer 
structures classified by material type. Their function 
is to promote the diffusion of drugs through ana-
tomical barriers, improve the bioavailability and 
half-life of drugs, and promote the controlled re-
lease mechanism. It is also used to optimize diag-
nostic imaging, using inorganic iron oxide nanopar-
ticles as a reagent[7] to enhance image contrast. 

The application of nanotechnology in the 
treatment of eye diseases has become the hope of 
millions of patients with vision diseases. 
Nano-carriers and nano suspensions react by re-
leasing drugs at specific sites, thereby reducing the 
drug dose and minimizing the risk of side effects. 
For example, brimonidine, cyclosporine, cortico-
steroids, intravitreal sustained-release implants, etc. 
In terms of diagnosis and follow-up, noninvasive 
intraocular pressure measurement for detecting high 
intraocular pressure and remote monitoring of 

nanodevices will contribute to the early diagnosis of 
progressive optic atrophy and clinical monitoring of 
patients with glaucomatous optic neuropathy[9,10]. 

In this review, we focus on the eye disease 
treatment system based on nanotechnology. Firstly, 
the anatomical structure of the eye and the obstacles 
to drug administration were briefly introduced. 
Subsequently, ophthalmic diseases and 
nano-systems for the treatment of these diseases are 
reviewed. Finally, the application prospects and 
challenges of nanotechnology in the treatment and 
diagnosis of ophthalmic diseases are summarized. 
This review will provide information and new ideas 
for the implementation of treatment and the devel-
opment of a common eye disease management sys-
tem. 

2. Ocular anatomy and ocular bar-
rier 

Figure 1 shows nanotechnology delivers oph-
thalmic drugs through the various ocular anatomical 
structures. Table 1 depicts different eye structures 
and possible therapeutic targets. Its thickness, func-
tion, physiology, and composition are emphatically 
introduced. These special functions can promote or 
prevent the effect of topical drugs. It also outlines 
possible action goals to understand the progress of 
nanotechnology in ophthalmology. 

Table 1. Different eye structures and possible therapeutic targets 

Obstacle 
Barrier 
thick-
ness 

Function Physiology Constitution Other compo-
nents 

Tear film 

3 μm 
thick, 3 
μl vol-
ume[11] 

Lubrication, debris 
removal, antibacterial 
protection, stem cell 
nutrition, and corneal 
transplantation 
maintenance; affect 
the refractive index of 
the visual system[12]. 

Dynamic functional units: three 
chambers (fornication, lacrimal 
meniscus, and anterior lacrimal 
membrane). Surfactant and stabil-
ity of tear film 

Lipid component, 
water component, and 
mucus component[12]. 

Immunoglobulin, 
lysozyme, lac-
toferrin, OC, and 
β[14]. 

Corneal 540–600 
μm 

A barrier against in-
fection and ocular 
mechanical injury. 
Two-thirds of the eye 
refraction (image 
perception)[15]. 

Corneal epithelium: 5–7 layers of 
non-stratified squamous epithe-
lium are connected by desmo-
somes and connected through gap 
junctions, allowing the diffusion 
of small molecules <1,000 Dalton. 
It is in direct contact with aqueous 
humor through the 
Na+-K+-ATPase pump[16] present 
in endothelial cells. 

Avascular lens. 
Viscoelastic structures 
are rich in glucosa-
mine and proteogly-
cans[17]. Sixth floor: 
Bowman, stroma, Dua 
layer, Descemet, en-
dothelial layer, corne-
al epithelium. 

Collagen 1, III, V 
and VIII. Proteo-
glycans (decorin, 
lumican, keratin, 
Mimecan, disac-
charide, and fi-
bromodulin) and 
glycopro-
teins[15,17]. 
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Table 1. (Continued) 

Obstacle 
Barrier 
thick-
ness 

Function Physiology Constitution Other compo-
nents 

Conjunc-
tival 

44.9 ± 
3.4 μm 

Through mucus, it 
helps to diffuse the 
tear film, maintain the 
stability of the tear 
film and prevent the 
adhesion between 
infection and mu-
cus[19]. Corneal epi-
thelial healing[20]. 

The outermost layer of the eyeball. 
Bulbar conjunctiva, eyelid, and 
forceps. Goblet cells produce 
mucin[21]. 

Multilayer non kerat-
inized columnar epi-
thelium (goblet cells) 
in contact with lamina 
propria (highly vas-
cularized connective 
tissue)[21]. 

TFF1 and TFF3 
proteins are in-
volved in the 
scarring process of 
corneal tissue[19]. 

Scleral 0.53 ± 
0.14 mm 

Viscoelastic properties 
give eye strength and 
resistance when in-
traocular pressure 
increases[14]. 

The matrix is composed of pro-
teoglycan, elastin, and large col-
lagen fibers. It is indirectly nour-
ished by the sclera and irrigated by 
long and short posterior ciliary 
vessels and choroids. Venous 
drainage occurs in the vortex 
vein[22]. 

Five-sixths of the eye 
robe. The innermost 
layer (Lá Mina fus-
ca)[14]. 

 

Use 

Iris and 
cili-
ary bod
y: 1–2 
mm 

Iris, light input regu-
lator. Ciliary body: 
regulates, produces 
(apigenin) and regu-
lates (electrochemical 
gradient) aqueous 
humor flow and se-
cretes hyaluronic acid 
to the vitreous. 
Aqueous humor: nu-
trition of avascular 
ocular structure, ho-
meostasis of ocular 
tissue, clearance of 
metabolites, transport 
of neurotransmitters, 
and stability of ocular 
structure[23]. 

Ciliary body cornea scleral junc-
tion (iris angle): the space where 
aqueous humor flows from the 
posterior chamber to the anterior 
chamber. 
Aqueous humor contributes to the 
circulation of inflammatory cells 
and mediators under pathological 
conditions and the diffusion of 
drugs to different tissues[24]. 

The middle part of the 
eyeball is composed 
of the iris, cili-
ary, body, and choroid. 
Iris (three layers): 
posterior iris (pigment 
epithelium), anterior 
iris muscle (round or 
contractile, radial or 
dilator of the pupil), 
and matrix (vascular-
ized connective tis-
sue). The ciliary body 
(flat part and fold 
part)[24]. 

Aqueous humor 
consists of organic 
and inorganic 
ions, carbohy-
drates, glutathi-
one, urea, amino 
acids, proteins 
(collagenase, im-
munoglobulin), 
oxygen, carbon 
dioxide, and wa-
ter[23]. 

Crystal-
line 

3.5–5 
mm 

Reflex power (20% of 
the total eyeball). 
An image focused on 
the outside of the 
retina. 
Enzyme-mediated 
oxidant defense 
mechanisms (gluta-
thione reductase and 
catalase)[25]. 

It is nourished by aqueous humor. 
Metabolic activity is involved in 
ion exchange through sodium, 
potassium, calcium, and chloride 
channels, as well as glucose, 
amino acids, and antioxidants 
(glutathione) [26]. 

No vascular structure, 
transparent. 
It is divided into the 
capsule, crystalline 
epithelium, cortex, 
and nucleus. 
60% protein (crystal-
line α, β, γ). 
It is surrounded by 
collagen capsules 
(mainly type IV and 
XVIII) and laminin, 
entactin, proteoglycan 
(heparan sulfate), 
pearl, and fibronectin. 
In the banded region, 
the main components 
are fibrin and elas-
tin[25,26]. 

Membrane pro-
teins (different 
cell connections of 
lens epithelial 
cells): Cadherin, 
calmodulin, type 
II neural adhesion 
molecule, endog-
enous major pro-
tein (hydropho-
bic), and apigenin 
0 enzyme (glycer-
aldehyde 3 phos-
phate dehydro-
genase). The 
cytoskeleton in-
cludes actin, 
α-actin, anquirina, 
trompomudulina, 
myosin, and spec-
tria[25,26]. 
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Table 1. (Continued) 

Obstacle 
Barrier 
thick-
ness 

Obstacle Barrier thickness Obstacle Barrier thickness 

Choroid 220–350 
μm 

Flush the retina and 
replenish oxygen and 
nutrition. 
Absorb light, regu-
late body temperature, 
and adjust intraocular 
pressure by control-
ling blood flow[27]. 

Drainage of aqueous humor from 
the anterior chamber through the 
uveoscleral pathway (accounting 
for 35% of its drainage vol-
ume)[27]. 

Blood vessels, mela-
nocytes, fibroblasts, 
immunocompetent 
cells, and supporting 
structures (collagen 
and elastic connective 
tissue). Four layers: 
chorion, chorionic 
column, two layers 
of blood vessels, and 
suprachoroidal[27]. 

 

Vitreous 
humor 4 cc 

Its transparency al-
lows light to pass 
through the retina and 
gives the eye struc-
ture. 
Due to its physico-
chemical properties 
and ionic charge, it 
poses obstacles and 
challenges to drugs 
working at the poste-
rior pole level[28]. 

 

The viscoelastic gel is 
located between the 
lens and retina. It 
contains water (98%), 
collagen fibers (II, V, 
IX, and XI), polyure-
alic acid, electrolyte 
(sodium, potassium, 
calcium, and chlo-
rine), prealbumin, and 
transfer protein. 
Equivalent to 80% (4 
cc) of eye vol-
ume[29.30]. 

More than 1,205 
proteins[30]. 

Retinal 
pigment 
epithe-

lium 

0.4–1 
mm[31] 

The light energy 
gathered at the macula 
is absorbed through 
the ocular refraction 
system (cornea and 
lens) to improve the 
visual quality. 

The cell’s own DNA repair 
mechanism includes the defense 
mechanism against reactive oxy-
gen species[33]. High infusion of 
chorionic gonadotropin (1400 
cc/min/100 g tissue)[34]. 

 

Antioxidants: 
superoxide dis-
mutase and cata-
lase. 

Retinal 
pigment 
epithe-

lium 

0.4–1 
mm[31] 

Through the melanin 
in EPR melanosomes, 
carotenoids (lutein 
and zeaxanthin), and 
ascorbic acid in light 
receptors, photooxi-
dation, and oxidative 
damage are prevented 
through the light ab-
sorption mecha-
nism[32]. 

It transports ions and water from 
subretinal space to chorionic ca-
pillaries through the 
Na+-K+-ATPase pump and K+/Cl- 
transporter and maintains intraoc-
ular pressure to a certain ex-
tent[33,35] 

 

The maintenance 
of intracellular pH 
is mediated by the 
chloride bicar-
bonate exchanger 
on the basement 
lateral membrane 
of EPR[33]. 

Retinal 
nerve 

sensation 
 Light transduction of 

external images[36]. 

It is perfused by the central retinal 
artery and receives metabolic 
input through the choroid[31]. The 
self-regulation of retinal pressure 
is mainly mediated by the increase 
in retinal vascular resistance[37]. 

The outer membrane 
(photoreceptor and 
Muller cell), outer 
nuclear layer (photo-
receptor nucleus), 
outer plexiform layer 
(photoreceptor axon), 
inner nuclear layer 
(bipolar cell), inner 
plexiform layer (bi-
polar cell and ama-
crine cell), ganglion 
cell layer, nerve fiber 
layer, inner limiting 
membrane (basement 
membrane formed by 
Muller cell exten-
sion)[31,36]. 
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Figure 1. Nanotechnology delivers ophthalmic drugs through different ocular anatomical structures. NP: nanoparticles. 

3. Nanotechnology concept 
Nanotechnology is a discipline that studies, 

designs, synthesizes, operates, and applies func-
tional materials, equipment, and systems by con-
trolling nanomaterials (1–100 nm). 

The application of nanotechnology in the di-
agnosis, treatment, and control of various diseases 
is being implemented rapidly. This new branch of 
science is called nanomedicine. With the advance-
ment of nanotechnology in medicine and surgery, 
its application in ophthalmology has made progress. 
Therefore, new eye nano-systems with different 
shapes and characteristics to optimize the bioavail-
ability of drugs, prolong the contact time and re-
duce the eye removal process had been designed[39]. 

There are many nano-systems that have been 
applied in the treatment of different eye diseases. 
Nanoparticle-filled contact lenses with acetazola-
mide for the treatment of glaucoma[40], biodegrada-
ble subconjunctival implants for the treatment of 
xerophthalmia [41,42], the development of diclofenac 
eye release nano colloid system based on hydro-
gel[43,44], polymer nano colloid system for inflam-
matory diseases[45,46], and nanostructured lipid 
transporters for controlling drug delivery in ocular 
infections[47,48]. 

3.1 Liposome 
Liposomes are lipid vesicles comprising one or 

more phospholipid double chains that surround an 
aqueous core. According to the size of liposomes 
and the number of phospholipid double chains, lip-
osomes can be divided into small monolayer vesi-
cles (10 and 100 nm), and large monolayer vesicles 
(100 and 300 nm) and multi membrane vesicles[49] 
containing more than one phospholipid double 
chain. Liposomes are ideal because they encapsu-
late both hydrophilic and hydrophobic drugs and 
show good compatibility with eye tissues[50,51]. 
Examples of applications of such nanoparticles in-
clude intravitreal nanoliposome suspensions of 
prednisolone and infliximab[52,53]. 

3.2 Polymer nanoparticles 
Polymer micelles are self-assembled nano-

scopic core-shell structures formed by amphiphilic 
copolymer inside water. The core/shell structure 
allows the hydrophobic drug to be encapsulated in 
its hydrophobic core. Because the core is protect-
ed by the hydrophilic crown, the bioavailability of 
the drug in the local administration of ocular tissue 
is significantly prolonged[54,55]. An experimental 
study conducted by Mittal et al. in rabbits showed 
that timolol maleate was biocompatible with the 
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cornea, and the intraocular pressure (IOP) de-
creased for a longer time.[56]. 

3.3 Nano suspension 
Nano suspensions are colloidal dispersions in 

which the hydrophobic phase is uniformly dispersed 
in the aqueous medium with the help of surfactant[9]. 
For example, prednisone, dexamethasone, hydro-
cortisone, and other corticosteroids have been ad-
ministered through nanosuspensions to treat anteri-
or inflammation without the expected side effects of 
high-dose application, such as cataract and glauco-
matous optic neuropathy. 

3.4 Dendrimer 
Dendrimers are monodisperse mac-

ro-molecules. Several reaction end groups form an 
inner cavity around a small molecule. Its 
tree branch structure presents various repeated ter-
minal groups. In particular, low-generation den-
drimers can encapsulate hydrophobic drug mole-
cules in their inner cavities. Due to this unique 
structure, dendrimers allow the dissolution of drugs 
with poor water solubility. In addition, dendrimers 
can be considered real simulations of globular pro-
teins. They are called “artificial proteins” because 
of their systematicness, electrophoresis, size scale, 
and other bionic properties[57,58]. 

Drugs developed using this technology include 
intravitreal injection of fluocinolone acetoacetate 
for retinitis pigmentosa and subconjunctival car-
boplatin for retinoblastoma[59,60]. 

3.5 Nano micelles 
Nano micelles are drug delivery systems 

composed of hydrophobic nuclei and hydrophilic 
caps, which allow the dissolution of hydrophobic 
drugs and produce transparent aqueous preparations 
when they are ready to be administered to the ante-
rior segment of the eyeball. One of the drugs used 
in this nanotechnology is cyclosporine. A phase III 
clinical trial has proved that it is effective, safe, and 
rapid in the treatment of keratoconjunctivitis sic-
ca[61].  

3.6 Niosome 
Niosomes are two-layer non-ionic surfactant 

vesicles that can capture hydrophilic and lipophilic 
drugs. Niosomes are chemically stable, and their 
non-ionic properties make them less toxic. Due to 
its hydrophilic surface, niosomes can easily interact 
and cross the tear film barrier, so they can reach the 
cornea/conjunctival tissue[63]. Niosomes have been 
evaluated as anticholinergic and antibiological 
agents[62,64,65]. The most important characteristics of 
the drug delivery carrier for the eye are: (i) the size 
of the gallbladder is large enough to resist the 
drainage caused by reflex tear and blinking; (ii) the 
presence of an irregular shape so that it can be cor-
rectly installed at the bottom of the eye bag and ac-
commodated on the surface of the eye; (iii) it is 
preferable to be heat sensitive and release the drug 
content in a controlled manner, but at the same 
time, before removal with blinking and nasolacri-
mal duct drainage[66,67]. 

3.7 Cube 
The structure of the cube consists of a contin-

uous, highly distorted lipid double chain with two 
disjoint and consistent waterways. Compared with 
the simple liposome structure, the cube has in-
creased surface area and the ability to encapsulate 
various hydrophilic, hydrophobic, and amphiphilic 
molecules. Due to the strong electric repulsion and 
the high proportion of liposomes[68–70], cuboids have 
higher physicochemical stability than liposomes. 
The use of dexamethasone in eye drops is associat-
ed with this nanoparticle, indicating a higher avail-
ability of the drug in aqueous humor[71]. 

3.8 Hydrogel 
Hydrogels are a network composed of multi-

functional monomers and relays, which react to 
form a flexible underwater structure. Because the 
porosity of the hydrogel matrix can be adjusted by 
changing the crosslinking density, the hydrogel 
network has been widely studied as a controlled and 
continuous drug delivery system. The ability to 
change with the surrounding environment is of 
great significance for the formation of hydrogels in 
situ. Hydrogels will be crosslinked when the tem-
perature rises from room temperature to body tem-
perature, and their phase-controlled release is af-
fected by pH value or light stimulation[72,73]. 
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Controlled release silicone and hydrogel contact 
lenses containing timolol are a new technology de-
veloped in recent years[74]and have good application 
prospects. 

3.9 Polymer nanofibers 
Nanofibers are made of solid fiber materials 

with a diameter of less than microns. They have a 
porous structure and a very high surface area. 

Nanofibers are nonwoven fiber structures sim-
ilar to the extracellular matrix. They are composed 
of highly organized polymer fibers and aqueous 
compounds comprised of protein polysaccharides to 
support tissue formation. Therefore, tissue engi-
neering is one of its main applications. The device 
developed and studied is regenerative therapy. This 
is to protect the biocompatibility, physiology, and 
transparency of the cornea[75,76[. 

In addition, because the diameter of nanofibers 
is very small and the surface area is very large, 
higher drug content can be loaded in a very small 
part of[77,78] packages. 

3.10 Nano preparation for treating eye dis-
eases 

Most ophthalmic products on the market are 
topical preparations for anterior administration. 
The biggest disadvantage is that only 5% of the in-
jected dose reaches the anterior chamber. Also, the 
dose penetrating the posterior chamber is small due 
to multiple and complex anatomical barriers of the 
eyeball. Nano-sized ophthalmic drugs (Figure 1) 
have the advantages of good solubility, large disso-
lution area, fast dissolution speed, strong biological 
adhesion, and strong corneal penetration. It is sug-
gested that the particle size should be less than 10 
μm to minimize the irritation to the eye structure 
and reduce the tear and bleeding of the drip dose, so 
as to improve the effectiveness of eye treatment. 

3.11 Nano suspension 
Nano suspension is a submicron colloidal dis-

persion of pure drug particles in the external liquid 
phase. An important feature of nanosuspension is to 
increase the saturated solubility, so as to improve 
the dissolution rate of compounds. In this system, 
the drug is bound or dissolved in the structure, en-

capsulated or captured in the structure by binding to 
the matrix, and a general drug delivery system is 
generated, including microemulsion, liposome, ni-
osomes, dendrimer, and cyclodextrin[79,80]. 

Advantages of using nanoparticles include im-
proved local delivery of macromolecules and low 
water-soluble molecules, such as glucocorticoids or 
cyclosporine, for the treatment of immune diseases 
affecting vision[81]. Other unstable macromolecules, 
such as nucleic acids, are administered through na-
noparticles, providing promising results for gene 
transfer in the treatment of retinopathy[82,83]. Nano-
particle-mediated drug delivery increases the con-
tact time between the administered drug and the 
target tissue, such as brimonidine, one of the tradi-
tional glaucoma treatment methods, or corticoster-
oids for the treatment of autoimmune uveitis[78,84]. 
Some nano-formulations allow the nonsteroidal an-
ti-inflammatory drug indomethacin to reach the 
posterior internal structure of the eye through a 
transmucosal pathway[85]. New applications include 
the use of gold nanoparticles to make the possibility 
of targeted drug delivery reach specific types of 
cancer, such as choroidal melanoma, and keep nor-
mal cells intact[86]. 

3.12 Contact lenses 
Contact lenses are hard or soft polymer devic-

es designed to directly adapt to the cornea to correct 
refractive abnormalities. In 1965, Wichterle et al.[87] 
patented the idea of using hydrogel contact lenses 
as drug delivery devices. The patent refers to the 
inclusion of drugs in the lens hydration process to 
provide higher drug availability in use. 

Wrapping drug-loaded nanoparticles in the 
polymer matrix of contact lenses is an effective 
strategy to prolong drug delivery. The incorporation 
of drugs is achieved by printing, simple immersion, 
and colloidal nanoparticles[88–90]. The diameter of 
nanoparticles must be very small and used in con-
tact lenses to prevent particles from hindering users’ 
vision. Therefore, it is necessary to delay the release 
of drugs in other ways. This can be achieved by 
combining the drug with the particles or dispersing 
the particles through separable chemical bonds so 
that the affinity of the drug to the particles is greater 
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than that to the surrounding lens material[89]. This 
method allows the sustainable release of drugs, 
which can be adjusted from hours to weeks accord-
ing to the needs of patients, and allows the treat-
ment of anterior segment lesions. 

Different nanoparticles, lead liposomes and 
microemulsions have been patented, which contain 
pharmaceutical products and then loaded into con-
tact lenses. Liposomes are used in various drug de-
livery applications due to their high biocompatibil-
ity, transparent permanent lens, and several days of 
drug release. The initial release is due to the un-
packaged drug in the lens. Contact lenses loaded 
with releasing microemulsion will be administered 
for 4–8 days, and the initial peak is attributed to the 
unpackaged drug[89]. 

In 2013, Jung et al. dispersed timolol nanopar-
ticles in silica gel contact lenses for 30 days. Pre-
liminary studies in beagle dogs have shown prom-
ising results in treating glaucoma. The incorporation 
of nanoparticles into silicon hydrogels leads to the 
decrease of ion and oxygen permeability and the 
increase of modulus. The impact on each precursor 
is directly proportional to the charge of particles[74]. 
In 2018, Maulvi et al. added gold nanoparticles into 
contact lenses to improve the absorption of timolol 
from drug solvent solution, and obtained satisfac-
tory release kinetics in vivo, while maintaining the 
characteristics of contact lenses[91]. The device 
studied has excellent mechanical properties, and the 
researchers believe that this material is suitable for 
administration from daily reusable contact lenses. 

3.13 Intraocular implant 
Ocular implants are a new treatment method 

for the controlled release of drugs by reducing the 
dose and increasing the drug load. In addition, the 
systemic side effects are lesser and closer to the 
target site, namely the posterior segment of the eye. 
Biodegradable or non-biodegradable polymers 
can be used in eye implant systems. Although bio-
degradable implants do not need to be removed af-
ter implantation into the eye, non-biodegradable 
implants require additional intervention to remove 
or fill the implant, which brings additional costs and 
intraoperative or postoperative surgical risks. The 

latest development of a biodegradable implant sys-
tem is the ENV705™ implant Envisia therapeutic 
agent and Zordera[92] nanoporous membrane device. 

The invention discloses a nanoporous mem-
brane skunk device, which comprises two layers 
of biodegradable waterproof films There are na-
nopores with the same diameter as the active mate-
rial on one side, and only one drug molecule is al-
lowed to flow out of the reservoir of each pore at a 
time. When injecting the device into the vitre-
ous body, it is very thin, only 40 μ m in diameter, 
and the drug release order is close to 0. When most 
drugs are released, the polymer layer then degrades, 
eliminating the need to remove the device. This im-
plant controls the release rate by adjusting the size 
of the hole and has been shown to last for 4 months. 
Therefore, it may become the best biodegradable 
implant for the treatment of chronic retinal diseas-
es[93]. A similar situation occurred when sirolimus 
was released to the posterior pole[94] through the 
same device. 

3.14 Clinical application 
In order to clearly understand the anatomy, 

histology, and physiology of different eye barriers, 
as well as the main nanoparticles developed in the 
research field, Table 2 lists the most common eye 
diseases treated with nanotechnology at different 
action sites of eye tissue and the most influential 
eye diseases on vision. 

4. Expectation 
Nanotechnology and nanomedicine are widely 

used in the field of ophthalmology. In many ways, 
the use of these devices and nano agents contributes 
to the bioavailability of drugs, allows diffusion 
through anatomical barriers which may reduce the 
side effects of the traditional use of topical oph-
thalmic drugs, and is likely to reduce invasive in-
tervention to the posterior pole to some extent as 
well as reducing complications after using some 
drugs that need surgical treatment. Finally, the ben-
efits of drugs have been optimized and the negative 
effects have been reduced, opening a huge window 
within the scope of so-called personalized drugs, 
which likely require further research on people with  
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Table 2. Common eye diseases and treatment application 

Pathology Drugs/Devices Therapeutic target Associated nanoparti-
cles 

Mechanism of NP ac-
tion 

Keratitis Ofloxacino, colirios, Aciclovir[95] 

Fluoroquinolone. Inhi-
bition of topoisomerase 
II and IV. 
Herpes polymerase 
DNA inhibitor 

Polyethylene glycol 
oxide and Eudragit® in 
the form of micro-
spheres 
Acyclovir drug encap-
sulated by polylactic 
acid microspheres 

Improve the bioavaila-
bility and controlled 
release of antibiotics. 
Delay the degradation of 
acyclovir prodrug 

Conjunctivitis Tobramicina, colirios[96] 
Inhibit the synthesis 
and binding of polypep-
tides in ribosomes. 

Solid lipid NP 

They increase the bioa-
vailability of the corneal 
surface and help retain it 
in the conjunctival sac 

Dry kerato-
conjunctivitis Ciclosporina A, colirios[97] 

Immune modulators that 
prevent T lymphocyte 
activation. 

Chitosan Sustained release carrier 

Uveitis 

Nano suspension of predni-
sone[52] 
Subconjunctival prednisolone 
injection[52] 
Intravitreal injection of inflixi-
mab[53] 

Prostaglandin and leu-
kopenia monoclonal 
antibody synthesis in-
hibitors that inhibit 
TNF-α activity. 

Submicron colloidal 
carrier of hydrophobic 
drugs in surfactant sta-
bilized medium 

Sustained release and 
controlled release of 
drugs, as well as high-
er bioavailability and 
lower toxicity 

Cataract 
Lithium with metabolic activi-
ty[98] 
 

Inhibit ROS activity and 
regulate the level of 
H2O2 and lipid peroxi-
dation in the surround-
ing environment. 

Deposition of platinum 
nanoparticles by mag-
netron sputtering 

Inorganic catalytic anti-
oxidant 

Glaucoma 

Nano transporters: pilocarpine, 
timolol, carbonic anhydrase in-
hibitor, acetazolamida, dor-
zolamida, brinazolamida 
and brimonidina[99] 
Silicone and hydrogel contact 
lenses hydrogel contact lenses 
containing thymolol[74] 
Thymolol-containing contact 
lenses[91] 
Wireless sensors[95] 

Traditional treatment of 
non-selective β-blockers 
to reduce aqueous hu-
mor. 
Continuous intraocular 
pressure monitoring. 

Dendrimers, liposomes, 
nanocapsules, nano-
spheres, hydrogels 
PGT (triglyceride) 
NP gold 

Drug sustained release 
increases the loading and 
absorption of the thymus 

Wet DMRE 

Hyaluronic acid implant: 
Bevacizumab[100] 
Nanopore devices: ranibi-
zumab biodegradable[92] 

Humanized monoclonal 
antibody against vascu-
lar endothelial growth 
factor. 

Chitosan NA 
Sustained release vehicle 
Drug release through 
nanopores 

Diabetic ret-
inopathy 

Reservoir stimulation response 
device: nintedanib[101] 

Vascular kinase inhibi-
tor, blocking VEGF 
receptor, plate-
let-derived growth fac-
tor receptor, fibroblast 
growth factor receptor 

Polylactic acid glycolic 
acid microspheres and 
nitrobenzene monomer 

UV stimulates drug re-
lease 

Retinitis 
pigmentosa Vitreous fluorooctane sulfonate Microglia activity at-

tenuation. 
Polyamide dendritic 
molecule Drug sustained release 

Retinoblas-
toma 

Subconjunctival carboplatin[60]  
Photodynamic therapy and ver-
tepofina[102] 

Alkylating agent, inhib-
iting DNA replication, 
RNA transcription, 
Dano protein synthesis, 
selective neovascular 
endothelial cells, in-
ducing apoptosis and 
autophagy. 

NP dendritic polyami-
doamine non-thermal 
laser activated liposome 
vertebral body. 

Sustained release and 
controlled release of 
drugs 
Reactive oxygen species 
production and cell death 
in tumor cells. 
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Table 2. (Continued) 

Pathology Drugs/Devices Therapeutic target Associated nanoparti-
cles 

Mechanism of NP 
action 

Optic neuro-
myelitis Biosensor[104] NA Carbon nano-tubes AQP4 antibody detec-

tion. 

Endophthal-
mitis Damycin, cholinesterase[105] 

Anti-gram positive natural 
lipopeptide antibiotics, 
including SAMR. 

Chitosan 

Promote the penetration 
of antibiotics by open-
ing the connec-
tion between corneal 
cells. 

AQP4: antithrombin 4; DMRE: age-related macular degeneration; ERK: extracellular signal-regulated kinase; LIO: intraocular lens; 
NA: not applicable; NP: nanoparticles; PIO: intraocular pressure; ROS: reactive oxygen species; SAMR: Methicillin-resistant Staph-
ylococcus aureus; VEGFR-2: Vascular endothelial growth factor receptor 2.

individual characteristics, including continuous re-
search on various animal and laboratory models. 
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