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Abstract: Quantum dot can be seen as an amazing nanotechnological discovery, including 

inorganic semiconducting nanodots as well as carbon nanodots, like graphene quantum dots. 

Unlike pristine graphene nanosheet having two dimensional nanostructure, graphene quantum 

dot is a zero dimensional nanoentity having superior aspect ratio, surface properties, edge 

effects, and quantum confinement characters. To enhance valuable physical properties and 

potential prospects of graphene quantum dots, various high-performance nanocomposite 

nanostructures have been developed using polymeric matrices. In this concern, noteworthy 

combinations of graphene quantum dots have been reported for a number of thermoplastic 

polymers, like polystyrene, polyurethane, poly(vinylidene fluoride), poly(methyl 

methacrylate), poly(vinyl alcohol), and so on. Due to nanostructural compatibility, dispersal, 

and interfacial aspects, thermoplastics/graphene quantum dot nanocomposites depicted unique 

microstructure and technically reliable electrical/thermal conductivity, mechanical/heat 

strength, and countless other physical properties. Precisely speaking, thermoplastic 

polymer/graphene quantum dot nanocomposites have been reported in the literature for 

momentous applications in electromagnetic interference shielding, memory devices, florescent 

diodes, solar cells photocatalysts for environmental remediation, florescent sensors, 

antibacterial, and bioimaging. To the point, this review article offers an all inclusive and 

valuable literature compilation of thermoplastic polymer/graphene quantum dot 

nanocomposites (including design, property, and applied aspects) for field 

scientists/researchers to carry out future investigations on further novel designs and valued 

property-performance attributes. 

Keywords: thermoplastics; graphene quantum dot; nanocomposite; EMI shielding; memory 

devices; bioimaging 

1. Introduction 

Continuous advancements in the field of high-performance nanocomposites have 

introduced wide-ranging nanoadditives to upsurge intrinsic features of matrices, 

especially polymers [1]. For polymeric nanocomposites, carbonaceous nanoparticles 

have been distinctively used to attain desired physical properties and performance [2]. 

In addition to unique carbon nanoparticles, like graphene, carbon dots own further 

enhanced physical properties and applications [3]. In polymeric matrices, adding 

graphene quantum dots has been documented to develop compatible matrix-nanofiller 

associations depending upon its surface functionalities, matrix type, and processing 

strategies used [4]. Particularly, polymer/graphene quantum dot nanomaterials may 

have physical interactions (hydrogen bonding, electrostatic, van der Waals, etc.) [5] 

or covalent bonding to form robust interfacial contours [6]. Thermoplastic polymers 

(a major polymer grouping) with graphene quantum dots have been investigated for 

superior microstructure, strength, heat stability, electrical/thermal conductivity, and a 
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number of allied properties leading to technical end uses [7]. Incidentally, 

thermoplastic polymer/graphene quantum dot nanocomposites revealed applied 

potential for devices, radiation shields, and biological arenas [8,9]. 

This comprehensive review article covers essential design, characteristics, and 

technical aspects of multifunctional thermoplastic polymer/graphene quantum dot 

nanocomposites prepared via facile processing techniques. In this concern, we have 

tried to report almost all important thermoplastic matrices explored so far in the 

literature with graphene quantum dots for significant structural, physical, and applied 

characters. Herein, the type of thermoplastic matrix and graphene quantum dot surface 

functionalities govern their mutual amalgamation and final structure-property profiles 

needed for next-level industrial applications. 

2. Thermoplastic nanocomposites 

The thermoplastics or thermoplastic polymers form a major cataloging of 

synthetic as well as naturally occurring polymers [10]. Thermoplastic polymers are 

either amorphous or semicrystalline in nature owing to the distribution of high 

molecular weight polymeric chains [11]. In semicrystalline thermoplastics, a few of 

the macromolecular chains may get orderly arranged to form small ordered chain 

fragments, rendering partial crystallinity to these polymers [12]. Conversely, 

amorphous polymers own nearly all randomly oriented chains throughout the polymer, 

so having no crystallinity in the backbone [13]. These polymers usually have restricted 

temperature ranges for rubbery to glassy state transformations and so show phase 

transformations above their glass transition temperatures [14]. Notable physical, 

electrical, thermal, barrier, anticorrosion, and chemical properties of lightweight and 

low-cost thermoplastics have been reported for methodological applications in a 

myriad of applications, including automotive, civil, households, toys, cosmetics, 

pharmaceuticals, etc. [15]. 

To enhance essential features and performance aspects of thermoplastic 

polymers, inorganic and carbon additives or nanoadditives have been used to form 

composite or nanocomposite materials [16]. An important use of nanoadditives in 

thermoplastic polymers has been observed in upsurging the intrinsically low 

mechanical properties of these matrices via nanoparticle dispersion and interface 

formation effects [17,18]. In addition, nanoparticle dispersion may form a percolation 

network throughout the polymers for facilitated electron, charge, or ion flow through 

the nanocomposite phases [19]. In these nanocomposites, the increase in physical 

properties seemed to be reliant upon nanofiller functionalities, amount/orientation in 

the matrix, and interaction/compatibility with matrices [20–22]. In this way, by 

optimizing the nanofiller type, amount, and surface properties, desired high-

performance thermoplastic nanocomposites have been reported [23]. 

3. Graphene quantum dot 

A quantum dot is a nanoentity having a size of a few nanometers, usually 2–10 

nm, an enormously high surface area, surface features, and marvelous electronic, 

optical, fluorescence, and physical attributes [24]. Quantum dots can be formed using 

inorganic or organic materials, and so resulting nanoparticles may have distinct 
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features and technical significance [25]. Among organic quantum dots, carbon-based 

nanodots of 5–10 nm in size have been reported [26]. Carbon-structured quantum dots 

can be broadly listed as polymer dots, carbon nanodots, and graphene quantum dots 

depending upon their backbone compositions, as presented in Figure 1 [27]. 

 

Figure 1. Carbon structured quantum dots. 

Owing to the graphene backbone, the graphene quantum dot owns sp3 and sp2 

hybridization in its structure [28]. However, unlike parent graphene, the quantum dot 

has zero dimensions, a size of < 10 nm, and quantum-related effects (Figure 2) [29]. 

Due to armchair or zigzag edge-related effects, valued electronic, optical, 

photoluminescence, magnetic, non-toxic, and biocompatible properties have been 

observed for graphene quantum dots [30]. Here, it is important to understand key 

differences between carbon quantum dots and graphene quantum dots. Firstly, carbon 

quantum dots have sp3 hybridization in structure, whereas graphene quantum dots are 

sp2 hybridized; secondly, carbon quantum dots are amorphous, while graphene 

quantum dots are crystalline in nature, having relatively superior semi-conductivity 

properties; third, carbon quantum dots usually have a diameter/nanosize of ˂ 10 nm, 
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while on the other hand, graphene quantum dots may have a size of up to 2–20 nm to 

show the fluorescence phenomenon; finally, carbon quantum dots can be synthesized 

using any type of carbon precursor; conversely, precursors for graphene quantum dots 

must be some graphene-based material. Due to progressive research on graphene 

quantum dot, a range of top down (carbon nano-cutting, exfoliation, solution, etc.) and 

bottom up (hydrothermal, chemical vapor deposition, microwave, plasma, 

electrochemical, chemical, etc.) synthesis methods have been used [31]. Ensuing 

graphene quantum dots have been examined in the literature for capacitors, batteries, 

LEDs (light-emitting diodes), solar cells, sensors, NEMS (nanoelectrochemical 

systems), labs on a chip, and biomedical sectors [32]. Another worthwhile application 

of graphene quantum dot has been observed for the formation of nanocomposites 

having superior physical features and applied prospects [33]. 

 

Figure 2. Structures of graphene, graphene oxide, and graphene quantum dots. 
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4. Thermoplastic/graphene quantum dot nanocomposites 

Thermoplastic polymer/graphene nanocomposites have been frequently explored 

in the literature using innumerable matrices (polyethylene, polystyrene, poly(vinyl 

fluoride, nylon, and so on), synthesis techniques, advantageous physical properties and 

applications [34–36]. Similarly, graphene quantum dots have been reinforced in the 

thermoplastic matrices to attain versatile nanocomposite nanomaterials [37,38]. 

Among thermoplastics, polystyrene is one of the most recurrently used 

commodity polymers, having low cost, light weight, and facile processing [39]. In 

spite of this, brittleness of polystyrene limits its potential applications in significant 

engineering fields [40]. Consequently, recent researches on polystyrene suggest its 

processing as nanocomposite materials employing beneficial nanoadditives, like 

graphene, to enhance its inherent properties [41]. Hence, reports on superior 

mechanical, thermal, and physical features of polystyrene/graphene nanomaterials 

suggest further use of graphene derivatives (e.g., graphene quantum dot) to form high 

performance nanocomposites [42]. 

Ma et al. [43] formed carbon-functional graphene quantum dots via the pyrolysis 

technique and processed them with polystyrene using the Pickering emulsion 

polymerization method, as outlined in Figure 3A. The resulting polystyrene/carbon 

functional graphene quantum dot nanocomposites with 0.1–2 wt.% nanodot contents 

were investigated for microstructure, thermal, and flame resistance properties. Figure 

3B (a & b) show scanning electron microscopy micrographs for neat polystyrene and 

polystyrene/carbon functional graphene quantum dot nanocomposite, respectively. As 

per results, pristine polystyrene microspheres formed by Pickering emulsion method 

had uniform surface. On the other hand, surface roughness and wrinkling of the 

nanocomposite microspheres can be observed in the micrographs due to the deposition 

of polymer chains. According to thermogravimetric analysis, neat polystyrene had 

one-step degradation (350 °C–450 °C), whereas 860 W g−1 nanocomposite showed 

additional weight loss steps (280 °C–380 °C and 520 °C–600 °C) due to the presence 

of nanodot nanoparticles (Figure 3C). Figure 3D shows heat release rate curves for 

pristine and composited polystyrene-based nanomaterials. Here, the decrease in the 

peak heat release rate of unfilled polystyrene (~860 W g−1) in polystyrene/carbon 

functional graphene quantum dot (~520 W g−1) confirmed the enhancement in the 

flame resistance of the nanocomposites with the nanodot addition. This fact was 

explained on the basis of the formation of a flame protection layer causing a barrier 

effect by quantum dot nanoparticles, so limiting the decomposition of polystyrene 

during the combustion process (Figure 3E). The overall enhancement in heat/flame 

resistance of the nanocomposites can be credited to the modified graphene quantum 

dot-based designs as well as the effectiveness of the fabrication technique used in this 

attempt. However, literature shows limited reports on polystyrene/graphene quantum 

dot nanocomposites. 
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Figure 3. (A) Schematic for formation of PS/C-GQDs nanocomposites; (B) scanning 

electron microscopy images for (a) neat PS and (b) PS/C-GQD 5; (C) 

thermogravimetric analysis curves of PS and PS/C-GQDs nanocomposites; (D) heat 

release rate (HRR) curves of PS and PS/C-GQDs nanocomposites; and (E) 

mechanisms of flame retardancy of PS nanocomposites [43]. PS = polystyrene; C-

GQDs = carbon-modified graphene quantum dots; PS/C-GQDs = polystyrene/carbon-

modified graphene quantum dots. Reproduced with permission from Springer. 
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Polyethylene is another common low-price plastic material having high 

molecular weight and hydrophobic properties [44]. Moreover, polyethylene has fine 

flexibility, toughness, chemical resistance, etc., for commercial applications [45]. It is 

commonly practiced as low-density polyethylene, high-density polyethylene, as well 

as ultra-high molecular weight polyethylene forms [46]. To upsurge the industrial 

significance, polyethylene was composited with metal or inorganic nanoparticles as 

well as carbon nanoadditives, like graphene, carbon nanotube, etc. [47]. Accordingly, 

plenty of research can be seen for polyethylene/graphene nanocomposites [48]. Few 

attempts have been observed on polyethylene/graphene quantum dot hybrids in the 

literature to date. For example, Yin et al. [49] investigated polyethylene/carbon 

quantum dot/silica for microstructural and fluorescent emission spectral behavior. For 

this purpose, Stöber method was used to form silica microspheres and then 

polyethylene/carbon quantum dot/silica were designed using compression molding 

approach. Using this method, polyethylene chains were believed to be confined 

between silica nanoparticles to ensure fine dispersion and interaction towards the 

nanodot (Figure 4A). Accordingly, high resolution transmission electron microscopy 

of the nanocomposite depicted lattice spacing (~2.1 Å) and lattice plane (100) 

confirming the structural integrity and dispersion of carbon quantum dot in the 

nanocomposite (Figure 4B). Figure 4C illustrates fluorescent emission spectra of 

polyethylene/carbon quantum dot/silica hybrid with red shift (340 to 380 nm) and blue 

shift (380–500 nm) at lower and higher wavelengths, respectively. Such results also 

confirmed the surface defects and fluorescent features of carbon quantum dots. Figure 

4D shows rectangle, triangle, and circle shapes for pristine polystyrene, 

polyethylene/carbon quantum dot, and polyethylene/carbon quantum dot/silica 

hybrids, respectively, studied simultaneously under daylight and UV excitation (~360 

nm). Thus, fluorescence can be seen for the nanocomposite sample shapes under UV 

excitation, relative to unfilled matrix shapes. 

Additionally, among polyethylene derivative thermoplastics, poly(ethylene 

glycol) nanocomposites reinforced with graphene quantum dot have been designed 

and reported [50,51]. Kim et al. [52] stated the nanomaterials based on poly(ethylene 

glycol) filled with fluorescent graphene quantum dot, obtained through a solution 

processing technique (water solvent). The poly(ethylene glycol)/graphene quantum 

dot nanocomposite had a higher fluorescence quantum yield of ~5% with excitation at 

a 320 nm wavelength, compared with pristine graphene quantum dot. In addition, low 

toxicity and chemical stability features of the nanomaterials have been observed. 

Consequently, the as-designed poly(ethylene glycol)/graphene quantum dot 

nanocomposites were suggested to be useful for light-emitting diode applications. The 

resulting device depicted luminance > 800 cd m−2. Similarly, other articles can be seen 

in the literature regarding the synthesis and fluorescence features of poly(ethylene 

glycol)/graphene quantum dot nanocomposites [53,54]. 
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Figure 4. (A) Polyethylene in cavities/pores of silica nanoparticle aggregates; (B) high resolution transmission electron 

microscopy of polyethylene/carbon quantum dot/silica; (C) fluorescent emission spectra polyethylene/carbon quantum 

dot/silica hybrid at varying wavelengths; (D) photos of pure polyethylene (rectangles), polyethylene/carbon quantum 

dot (triangles), and polyethylene/carbon quantum dot/silica (circles) films in: (a) Daylight and (b) upon excitation with 

~360 nm light [49]. Reproduced with permission from ACS. 

Poly(vinylidene fluoride) appeared as a widely studied unique high performance 

thermoplastic, especially for the formation of nanocomposites [55]. Its important 

properties can be listed as optical, electronic, piezoelectric, ferroelectric, and dielectric 

characteristics, especially useful for energy/electronic device applications [56,57]. Out 

of carbon nanofillers, graphene-based poly(vinylidene fluoride) nanocomposites have 

been explored for technical features and performance [58]. Like graphene, its quantum 

dot nanostructures have been amalgamated with poly(vinylidene fluoride) to form 

high-performance nanocomposites [59]. Adding graphene quantum dots in 

poly(vinylidene fluoride) has been found to affect the piezoelectric features of the 

nanomaterials, e.g., β polymorph formation in the matrix [60]. Cho et al. [61] formed 

poly(vinylidene fluoride)/amino-modified graphene quantum dot nanocomposites. 

Including modified quantum dots developed hydrogen bonding and resulted in α→β 

form changes of poly(vinylidene fluoride) matrix. Moreover, these nanomaterials had 

a high dielectric constant of ~61. Recently, Tay et al. [62] formed silver-modified 

graphene oxide quantum dots for a poly(vinylidene fluoride) matrix by the solution 

method. The poly(vinylidene fluoride)/silver-modified graphene oxide quantum dot 

nanomaterials had antimicrobial features against the E. coli bacterial strain. Zhang et 

al. [63] prepared important nanofiber designs of graphene oxide quantum dot using a 

poly(vinylidene fluoride) derivative, i.e., poly(vinylidene fluoride)(tetrabutyl 

titanate)/poly(vinyl pyrrolidone) (tetrabutyl titanate) by electrospinning method. For 

this purpose, graphene oxide quantum dots were synthesized using the hydrothermal 

method. In this way, pristine poly(vinylidene fluoride)(tetrabutyl titanate)/poly(vinyl 
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pyrrolidone)(tetrabutyl titanate) as well as poly(vinylidene fluoride)(tetrabutyl 

titanate)/poly(vinyl pyrrolidone)(tetrabutyl titanate)/graphene quantum dots 

nanocomposite nanofibers have been prepared. Figure 5A shows luminescent 

behavior of pristine nanodots at wavelength of 365 nm. Figure 5B, C show 

transmission electron microscopy micrographs of graphene quantum dots with 

uniform discrete nanoparticle dispersion. Accordingly, Figure 5D presents a size 

distribution spectrum of pristine nanodots around 1.8–3.0 nm. Figure 5E, F present 

neat polymer and graphene quantum dot-filled nanocomposite nanofibers, 

respectively. Relative to the smooth surface morphology of unfilled poly(vinylidene 

fluoride)(tetrabutyl titanate)/poly(vinyl pyrrolidone)(tetrabutyl titanate) nanofibers, 

the quantum dot-filled nanocomposite nanofibers had visible deposition of graphene 

quantum dots on the surface. These nanocomposite nanofibers were studied and found 

effective for photocatalytic degradation features regarding Rhodamine B. 

 
Figure 5. (A) Photograph of graphene quantum dot under 365 nm ultraviolet light; (B,C) transmission electron 

microscopy (TEM) images of quantum dot at low and high magnifications; (D) size distribution chart of graphene 

quantum dot; scanning electron microscopy of (E) poly(vinylidene fluoride)(tetrabutyl titanate)/poly(vinyl 

pyrrolidone)(tetrabutyl titanate) nanofiber; and (F) poly(vinylidene fluoride)(tetrabutyl titanate)/poly(vinyl 

pyrrolidone)(tetrabutyl titanate)/graphene quantum dot nanofiber [63]. Reproduced with permission from MDPI (open 

access). 

Poly(vinyl alcohol) is also a common name among thermoplastics for 

nanocomposite formation [64,65]. It has advantageous features of water solubility, 

facile processing, and environmental friendliness. Owing to its abundant use as matrix 

material, inorganic and carbon nanofillers have been used to form the corresponding 

[66]. Graphene is a commonly reinforced nanocarbon in a poly(vinyl alcohol) matrix. 

Likewise, graphene quantum dot has been investigated for poly(vinyl alcohol) 

nanocomposites [67,68]. Adding quantum dots in a poly(vinyl alcohol) matrix was not 
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observed to repress the solubility, dispersion, luminescent properties, and quantum 

yield of the nanodots [69–72]. Fauzi et al. [73] developed poly(vinyl 

alcohol)/graphene quantum dot nanomaterial by the spin-coating method. The as-

obtained nanocomposite was applied as a sensor for carbaryl detection, having a limit 

in the range of 0.001–0.007 ppb. Ogi and workers [74] filled graphene quantum dots 

in a poly(vinyl alcohol) matrix via a hydrothermal technique. These nanocomposites 

had remarkable photoluminescence intensity and a high quantum yield of 44%. 

Elumalai et al. [75] reported on solution-formed poly(vinyl alcohol)/graphene 

quantum dot nanocomposites. Figure 6A depicts a facile route for the formation of 

these nanomaterials having intense blue color illumination in UV light. According to 

the differential thermal analysis data of unfilled and filled matrix given in Figure 6B, 

the neat poly(vinyl alcohol) sample had crystalline melting peaks around 220 °C and 

moisture peaks at 120 °C. On the other hand, the nanocomposite depicted altogether 

different thermograms with a glass transition temperature of about 59 °C and 

exothermic peaks due to matrix-nanofiller interfacial interactions. Hence, poly(vinyl 

alcohol)/graphene quantum dot nanocomposites have been mostly explored for 

fluorescence emission properties, as per available reports so far. 

5. Applications of thermoplastic/graphene quantum dot 

nanocomposites 

As discussed in preceding sections of this review, graphene quantum dots have 

several structure-property advantages of extremely tiny sizes, zero dimensions, and 

high surface area, as well as quantum confinement effects, relative to pristine graphene 

nanosheets, which are in turn useful in varying technological devices and biomedical 

appliances [76–78]. An important application of graphene quantum dots and derived 

nanocomposites has been observed for electromagnetic interference (EMI) shielding 

[79]. For radiation shielding, literature reports on countless designs of carbonaceous 

nanocomposites using carbon nanotubes, graphene, carbon black, and other 

nanocarbons [80–82]. Generally, nano-sizes, compatibility with polymers, interface 

formation, and electron conduction or percolation behavior of nanocarbons were found 

useful for shielding the effects of ecologically hazardous electromagnetic radiations 

continuously emitted by functional electronics and allied equipment. The EMI defense 

was mainly accredited to the conducting behavior of nanocarbon. Amongst 

nanocarbon nanofillers, graphene is an exclusive two-dimensional nanosheet 

nanocarbon graphene, which has been commonly used for EMI defense applications 

[83–85]. Graphene quantum dot-based nanomaterials have lightweight, fine 

nanoparticle dispersion, electrical conductivity, dielectric, and electromagnetic 

features for high-end EMI shielding applications [86]. All these EMI shielding-related 

features of the nanocomposites rely upon graphene quantum dot dispersion as well as 

matrix-nanofiller associations.  
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Figure 6. (A) Fabrication of pristine PVA and PVA/GQD nanocomposite films; (B,C) differential thermal analysis 

data of neat PVA and PVA/GQD nanocomposite films, respectively [75]. PVA = poly(vinyl alcohol); PVA/GQD = 

poly(vinyl alcohol)/graphene quantum dots nanocomposite. Reproduced with permission from MDPI (open access). 

Lakshmi et al. [87], for instance, explored electromagnetic shielding 

effectiveness of the poly(vinylidene fluoride)/graphene decorated graphene quantum 

dots and poly(vinylidene fluoride)/graphene decorated graphene quantum dots/silver 
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nanoparticles nanocomposites. According to the results for the nanocomposites having 

2 wt.% nanofiller loadings, the poly(vinylidene fluoride)/graphene decorated graphene 

quantum dots/silver nanoparticles (with contents) had a total shielding effectiveness 

of 43 dB, i.e., ten times higher than that of the poly(vinylidene fluoride)/graphene 

decorated graphene quantum dots (31 dB) as shown in Figure 7a. Upsurges in the total 

shielding effectiveness of the graphene-decorated graphene quantum dots/silver 

nanoparticles-based nanocomposites seemed to be due to their mutual nanostructural 

effects between the quantum dots and the metal nanoparticles, therefore resulting in 

their uniform dispersions and an interconnecting network formation for a facilitated 

electron flow through the epoxy matrix. Accordingly, the graphene-decorated 

graphene quantum dots/silver nanoparticles were capable of shielding around 99.9% 

of electromagnetic radiations, relative to the neat epoxy matrix. Additionally, as 

shown in Figure 7b, both absorption and reflection of electromagnetic waves for the 

graphene-decorated graphene quantum dots/silver nanoparticles-filled 

nanocomposites were observed to be higher, as compared to the non-modified 

graphene-decorated graphene quantum dots nanocomposites. Herein, superior 

reflection/absorption from the graphene-decorated graphene quantum dots/silver 

nanoparticles-based nanocomposites was attributed to their better dispersion in the 

poly(vinylidene fluoride) matrix, therefore, facilitating more surface charges and 

higher conductivity of their nanocomposites, relative to the non-modified quantum 

dots-based system. Moreover, electromagnetic wave attenuations of the 

poly(vinylidene fluoride)/graphene decorated graphene quantum dots (left image in 

Figure 7c) and poly(vinylidene fluoride)/graphene decorated graphene quantum 

dots/silver nanoparticles nanocomposites (right-hand image in Figure 7c) were 

investigated. It was suggested that graphene-decorated graphene quantum dots/silver 

nanoparticles developed a denser interconnecting network in the epoxy matrix, relative 

to that of the non-modified graphene-decorated graphene quantum dots, therefore 

resulting in superior tunneling phenomena and wave attenuation characteristics of 

their nanocomposites. 

Since pristine polymeric matrices are usually nonconductive and do not absorb 

radiation. Including semiconducting nanoparticles, like graphene quantum dots, in 

polymers has been reported to enhance the electrical conductivity and electromagnetic 

absorption properties of polymeric nanocomposites. The electrically conducting 

graphene quantum dots usually have the capability to dissipate electrical charges, 

thereby reducing electromagnetic field buildup. In addition, EMI shielding mechanism 

of polymer/graphene quantum dot nanocomposites seemed to be relying upon network 

formation, alignment, and selective localization of quantum dots nanoparticles at 

matrix-nanofiller interfaces, so contributing to EMI shielding competence. In this way, 

semiconducting quantum dots exhibited fine electromagnetic reflection/absorption 

characteristics to effectively enhance radiation shielding of nanocomposites. 
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Figure 7. (a) Total shielding effectiveness of poly(vinyledene fluoride)/graphene decorated graphene quantum dots, 

PVDF/G-D-GQDs, and poly(vinyledene fluoride)/graphene decorated graphene quantum dots/silver nanoparticles, 

PVDF/GD-GQDsAg, nanocomposites in the X-band range and (b) reflection and absorption of the PVDF/G-D-GQDs 

and PVDF/GD-GQDsAg nanocomposites in the X-band range; (c) schematic of attenuation of electromagnetic (EM) 

wave of PVDF/G-D-GQDs nanocomposites (left) and PVDF/GD-GQDs/Ag nanocomposites (right) [87]. Reproduced 

with permission from Taylor and Francis. 

Due to the charge-storing properties of graphene quantum dots, interesting 

applications can be seen regarding the memory and charge-trapping devices [88,89]. 

Nevertheless, such applications demand low-cost and facile material fabrication on a 

commercial scale without environmentally harmful effects. In this concern, Kou et al. 

[90] hydrothermally formed poly(methyl methacrylate) filled with graphene quantum 

dots. A transmission electron microscopy study was used to confirm the consistent 

dispersion of graphene quantum dots having 7 nm in size throughout the matrix. 

Figure 8A shows the final design of a flexible memory device of poly(ethylene 

terephthalate)/indium-tin-oxide/poly(methyl methacrylate)/graphene quantum dot 

(PET/ITO/PMMA:GQDs/Al). Figure 8B presents comparative photoluminescence 
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spectra of pristine poly(methyl methacrylate), graphene nanosheet, graphene quantum 

dot, and PMMA/GQD nanocomposite. 

 

Figure 8. (A) A graphic of a flexible poly(ethylene terephthalate)/indium-tin-

oxide/poly(methyl methacrylate)/graphene quantum dot (PET/ITO/PMMA: 

GQDs/Al) memory device; (B) photoluminescence spectra of poly(methyl 

methacrylate), PMMA, graphene nanosheet (GNS), GQD, and PMMA/GQD 

nanocomposite films excited at 260 nm, where Inset: Photograph of GQD 

chlorobenzene solution taken under visible light and 365 nm UV light, from left to 

right, respectively [90]. GQD = graphene quantum dots; PMMA/GQD = poly 

(methyl methacrylate) and graphene quantum dots-based nanocomposites; GNS = 

graphene nanosheet. Reproduced with permission from Elsevier. 

As per results, the nanocomposite revealed a photoluminescence peak of visibly 

higher intensity at a wavelength of 405 nm, relative to neat graphene quantum dots. 

The change in fluorescence spectral intensity indicated homogeneous dispersion and 

compatibility of nanodots in the nanocomposite matrix, which was found useful for 

manufacturing the desired memory device. On the other hand, graphene showed a 

broad photoluminescent peak at 510 nm owing to the broad size distribution of 
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nanosheets. However, few researches have been seen on the use of thermoplastic 

polymer/graphene quantum dots for these systems, and future studies may unveil 

important results for designing advanced high-tech memory devices. 

Regarding optoelectronic applications of thermoplastic polymer/graphene 

quantum dot nanomaterials, few important studies have been noticed so far on systems 

having fine electronic, optical, and luminescence features [91]. In this concern, Liu et 

al. [92] designed starch and nitrogen-doped reduced graphene oxide quantum dot-

based nanocomposites having conductivity and fluorescence properties. Including 10 

wt.% nitrogen-doped reduced graphene oxide quantum dot led to low resistivity of 

~0.08 Ω·m, reasonably high light transmittance of 80%, and fluorescence intensity of 

up to 9000 CPS. These multifunctional, ecologically friendly nanocomposites were 

suggested for wearable optoelectronic devices. Chen et al. [93] proposed melt-

processed thermoplastic starch and graphene quantum dots-based fluorescent 

nanocomposites. Adding 10 wt.% nanofiller depicted low resistivity and notable 

photoluminescence intensity properties of the nanocomposites. According to the 

results, these environmentally friendly nanocomposites exhibited high-end potential 

application as optoelectronic packaging materials. 

Photocatalytic performance of thermoplastic polymer/graphene quantum dot 

nanocomposites has been found valuable for environmental remediation [94]. In this 

concern, Mafukidze et al. [95] formed solution-processed polystyrene and zinc 

phthalocyanine functional graphene quantum dot-derived nanocomposites and 

photocatalytic activity for the remediation of 4-chlorophenol from water. These 

nanocomposites followed second-order kinetics for photocatalytic oxidation of 4-

chlorophenol. Apostolaki et al. [96] formed polystyrene and titania-modified graphene 

quantum dot-based photonic crystals. The ensuing nanocomposite exhibited blue 

luminescence at 350 nm due to n-π* transitions. The polystyrene/titania-graphene 

quantum dot photonic crystals were found useful for photocatalytic degradation of 

salicylic acid. 

Similarly, few studies on thermoplastic polymer/graphene quantum dots 

mentioned potential towards chemical sensing applications [97–99]. Notably, Majid 

Masteri-Farahani et al. [100] developed poly(methyl methacrylate)/graphene quantum 

dots-based fluorescent nanosensors using the molecular imprinting method for 

methamphetamine detection. These nanocomposites had a fine detection limit of ~1.7 

μg/L for methamphetamine. 

In the biomedical sector, carbon nanodots, especially graphene quantum dots, 

attained significance owing to their biocompatibility and non-toxic nature [101,102]. 

Furthermore, these nanoparticles have remarkable fluorescent and surface/edge-

related quantum effects for biomedical uses [103,104]. Besides, graphene quantum 

dots have been reported for their biologically inert nature, leading to technical 

utilization in fluorescent bioimaging probes [105]. Zhu et al. [106] formed fluorescent 

graphene quantum dot-based bioimaging probes using the solvothermal method. The 

obtained graphene quantum dot had a high quantum yield of > 11%. Nurunnabi et al. 

[107] reported on graphene quantum dots coated with polydopamine obtained by 

oxidation/exfoliation techniques. The as-formed polydopamine/graphene quantum dot 

nanocomposites depicted notable properties, like in vivo stability, non-toxicity, 

photoluminescence, etc. Such nanocomposite architectures were discovered to be 
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advantageous for drug delivery as well as optical imaging applications [108]. As per 

literature, Figure 9 illustrates the use of bioactive graphene quantum dots for 

malignancy diagnosis via the bioimaging method [109]. For designing fluorescent 

bioimaging probes, photoluminescence properties of graphene quantum dots were 

found valuable [110,111]. Similarly, Sheng et al. [112] fabricated 

polyvinylpyrrolidone/nitrogen-doped graphene quantum dot hybrids via hydrothermal 

means. The ensuing nanocomposites have high quantum efficiency (> 64%), which 

was found beneficial for employment in fluorescence probes for chromium (VI) 

detection. Thus, bioactive graphene quantum dots have been effectively explored in 

manufacturing fluorescent bioimaging probes [113]. Nonetheless, future attempts in 

this direction may lead to the formation of reproducible commercial designs of 

fluorescent graphene quantum dots for bioimaging applications. 

 
Figure 9. Use of bioactive graphene quantum dots (GQD) for malignancy diagnosis via bioimaging [99]. Reproduced 

with permission from MDPI. 

Furthermore, scientific attempts have been observed on the antimicrobial activity 

of graphene quantum dots-based nanomaterials [114]. In this concern, Rajendiran et 

al. [115] functionalized graphene quantum dots with poly(ethylene glycol), 

polyethyleneimine, and poly-l-lysine polymers. These non-toxic polymer/graphene 

quantum dot nanocomposites showed antibacterial and antifungal activities. Liu et al. 

[116] formed polyethylenimine/graphene quantum dot/zinc oxide nanocomposites 

using sol-gel and solution methods. These nanomaterials showed fine antimicrobial 

activity towards the E. coli bacterial strain. However, limited literature has been seen 

so far in this important biomedical area of graphene quantum dots. 

 

6. Conclusions and views 

In short, thermoplastic polymers have been decisively reviewed with graphene 

quantum dot nanofillers, considering different matrices, fabrication techniques, 

physical features, and applied prospects. Amalgamation of thermoplastic polymer 
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with graphene-structured quantum dots revealed interesting structural, morphological, 

and wide-ranging physical attributes. The upsurges in these properties of thermoplastic 

polymer/graphene quantum dot can be credited to the quality of these polymers to 

consistently disperse the nanodot for robust interfacial interactions. Here, functional 

graphene quantum dots seem to effectively interact with thermoplastics for the 

formation of compatible nanocomposite nanostructures. Among prominent 

application zones, thermoplastic polymer/graphene quantum dot nanocomposites 

revealed success for radiation shielding, memory devices, optoelectronics, 

photocatalysts, sensing, antibacterial, and bioimaging. For future high-performance 

designs and applications, challenges regarding polymer and nanodot functionalities, 

synthesis, mutual compatibility, and large-scale production need to be technically 

resolved. 

Broadly speaking, graphene quantum dots have been found to develop fine 

interfacial miscibility with thermoplastic polymers, thereby leading to unique 

microstructures, electron/charge transference, fluorescence, heat stability, 

nonflammability, biomolecular sensing, catalytic, and antibacterial properties. All 

these key advantageous characteristics and applied aptitudes of polymer/graphene 

quantum dot nanomaterials depend upon seamless nanoparticle dispersion and 

network formation in matrices, which can be attained via appropriate processing 

techniques to develop strong matrix-nanofiller interactions. 

For synthesizing thermoplastic polymer/graphene quantum dot nanocomposites, 

most studies focused on facile solution processing and Pickering emulsion 

polymerization techniques. Few reports have also been observed on melt mixing or 

compression molding methods for the formation of graphene quantum dots filled 

nanomaterials. Beside conventional solution and melt techniques, sophisticated 

approaches, like spin coating and hydrothermal/solvothetmal have also been used to 

integrate quantum dots in polymeric nanocomposites. Here, selection of an appropriate 

technique seems to directly influence the physical features of the as-prepared 

polymer/graphene quantum dot nanocomposite. All these techniques used so far have 

certain advantages and disadvantages, which must be considered before 

nanocomposite synthesis. Out of these, solution processing has been considered a low-

cost and environmentally friendly method for the formation of polymer/graphene 

quantum dot nanocomposites. This technique has been used to attain fine nanofiller 

dispersion in the matrices. The melt method has also been reported for fine nanofiller 

dispersion in polymeric matrices; however, it has its own limitations of using extreme 

temperature/shear conditions. Relative to solution/melt methods, the spin coating 

method has been found more effective for uniform quantum dot dispersion in 

polymers. Consequently, homogeneous nanofiller dispersion may ensure strong 

interfacial bonding with polymers, thereby leading to desirable enhancements in 

physical properties (microstructure, structural integrity, heat stability, electrical 

percolation, etc.) of the nanocomposites. Along with the choice of an appropriate 

technique, control of processing parameters seems indispensable for large-scale 

processing to attain high-performance polymer/graphene quantum dot 

nanocomposites. 
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