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Original Research Article  

Simulation study of pressure swing adsorption to purify helium using 

zeolite 13X 
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1,2*
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1
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ABSTRACT 

A two-bed pressure swing adsorption system on a commercial type of zeolite 13X adsorbent has been studied nu-

merically over a wide range of operating conditions to helium separation from gaseous mixture. The model includes 

energy, mass and momentum balances. The coupled partial differential equations are solved using fully implicit forth 

order Rung-Kutta scheme in the simulation. The effects of adsorption step pressure, adsorption step time and feed flow 

rate on the helium purity and recovery were investigated. Results shown that as the adsorption step pressure increases 

the helium purity will be increased. In addition, the helium recovery increases, and the helium purity decreases when 

the feed flow rate increases. Finally, the simulation results indicated a very good agreement with some current literature 

experimental work. 
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1. Introduction 

Helium is a chemical element with symbol He and atomic number 2. It 

is a colorless, odorless, tasteless, non-toxic, inert and monatomic gas, which 

is the first in the noble gas group in the periodic table. The boiling and melt-

ing points of He are the lowest among all the elements. 

Helium is the second lightest element and is the second most abundant 

element in the observable universe, being present at about 24% of the total 

elemental mass, which is more than 12 times the mass of all the heavier ele-

ments combined. Helium was first detected as an unknown yellow spectral 

line signature in sunlight during a solar eclipse in 1868 by French astrono-

mer Jules Janssen. In 1903, large reserves of helium were found in natural 

gas fields in parts of the United States, which is by far the largest supplier of 

the gas today. 

Liquid helium is used in cryogenics (its largest single use, absorbing 

about a quarter of production), particularly in the cooling of superconducting 

magnets, with the main commercial application being in MRI scanners. He-

lium’s other industrial uses—as a pressurizing and purge gas, as a protective 

atmosphere for arc welding and in processes such as growing crystals to 

make silicon wafers, account for half of the gas produced. A well-known but 

minor use is as a lifting gas in balloons and airships[1]. On the Earth, it is rel-

atively rare 5.2 ppm by volume in the atmosphere. 

Pressure swing adsorption (PSA) process is a wide operating unit to 

separate and purify the gases that operates based on capability of solids ad- 

mailto:ehsan.javadi@hotmail.com
mailto:baghbani2003@yahoo.com
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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sorption and selective separation of gases. The im-

portant operational parameter in this system is the 

pressure, and most industrial units operate at/or vi-

cinity of the surrounding temperature. Today, the 

PSA process is completely known in a wide region 

of the processes, and this process was preferred in 

contrast to other conventional separation methods, 

especially for lower capacity and higher purity. 

Linde Group developed the world’s first air 

separation plant for the production of oxygen in 

1902 and the first production facility was set up as 

early as 1903. Since then, it is one of the world’s 

largest helium suppliers and since 1994 Linde 

has been the sole provider of helium and helium 

separators by the method of swing adsorption. 

Bhushan[2] purified helium by gas adsorption 

method in 2011 .The purifier was designed to purify 

up to 40% impurity to give 4.5 grade or 99.995% 

pure helium by high pressure and low temperature 

cryosorption process. Activated carbons have been 

used for a long time at low temperature for cryo-

genic applications. The pore geometry and size 

can be used to optimize the carbon structure for a 

specific application. In 1978, Stoll et al.[3] commis-

sioned a fully automatic large capacity helium puri-

fier which included operation, regeneration, re- 

cooling and re-pressurization time. In 2007, E. Van 

Cleve et al.[4] developed a cryogenic pulsed laser 

deposition (PLD) system to deposit lithium films 

onto a quartz crystal microbalance (QCM) and ad-

sorption isotherms of 4 He on lithium were meas-

ured. PLD system was used to form lithium sub-

strates and the first helium adsorption measure- 

ments on this surface were reported. In 2008, Nisith 

Kr. Das[1] employed a technique known as pressure 

swing adsorption to concentrate a lean amount of 

helium present in natural gas through selective 

physical elimination of N2, CO2, CH4 and heavier 

hydrocarbons in a stepwise cycle sequence at pre-

sent time intervals. In 2011, D. Martins et al.[5] re-

ported on the low temperature adsorption properties 

of He, H2, and N2, using three activated carbons 

with different pore size distributions. In 2012, R. 

Majidia et al.[6] used the molecular dynamics simu-

lation to study the helium adsorption on the CNCs 

with a declination angle of 240 and 300. The re-

sults indicated that the adsorption capacity of the 

CNCs became considerable by decreasing the dec-

lination angle. In the same year, Nisith Kr. Das et 

al.[7] developed a helium purification system using a 

three-bed seven-step pressure swing adsorption 

(PSA). It removed impurities like N2 and O2 from a 

ternary mixture leaving out high-purity helium from 

the gas mixture. The PSA system operated success-

fully resulting in high-purity helium (>99.9%) with 

a yield of around 89%. The adsorption capability of 

carbon dioxide on 5A molecular sieve (5AMS) was 

investigated in a fixed-bed apparatus with two-road 

gas mixing system by dynamic column break-

through method with helium as the carrier gas for 

helium purification system of high-temperature 

gas-cooled reactor (HTGR) in 2013 by Chang Hua 

et al.[8] 

In 2014, Bartolomei et al.[9] performed quan-

tum dynamical simulations on reliable new force 

fields in order to assess the graphdiyne capability 

for helium chemical and isotopic separation. 

In this work, a semi-industrial PSA unit for he-

lium recovery from gaseous mixture was simulated. 

In this process, the effect of some operating varia-

bles such as adsorption time, feed flow rate, and 

adsorption pressure on process performance was 

investigated. The simulated PSA process is a 

six-step process with the following sequence (Fig-

ure 1): (I) co-current feed pressurization (PR); (II) 

high-pressure adsorption (AD) step; (III) coun-

ter-current depressurizing pressure equalization (ED) 

step; (IV) counter-current blow down (BD) step; (V) 

counter-current purge with a light product (PG) step; 

(VI) co-current pressurizing pressure equalization 

(EP) step. The sequence time table of the PSA pro-

cess was also depicted in Table 1. 
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Table 1. Step sequence of the PSA process 

No. 1 2 3 4 5 6 

Time (sec.) 25 60 10 25 60 10 

Column 1 PR AD ED BD PG EP 

Column 2 BD PG EP PR AD ED 

SV1 on on off on on off 

SV2 off off on off off off 

SV3 off off off off off on 

SV4 on on off on on off 

SV5 on on off on on off 

SV6 on on off on on off 

SV7 off off off off on off 

SV8 off on off off off off 

SV9 off off off off on off 

SV10 off on off off off off 

SV11 off on off off on off 

SV12 off on off off off off 

SV13 off off off on on off 

  

 

 

 

 

 

 

 

 

 

 
Figure 1. Schematic diagram of He-PSA. 

2. Mathematical model 

In order to develop a mathematical model for 

an adsorption bed, the following assumptions were 

made: 

1- Gas behaves as an ideal gas; 

2- The flow pattern is axially assumed as plug- 

flow model; 

3- Equilibrium equations for air are expressed 

as multi-component Langmuir-Freundlich isotherm; 

4- Rate of mass transfer is presented by linear 

driving force (LDF) relations; 

5- Bed is clean at initial state and there is no 

gas flow in it; 

According to these assumptions, dynamic be-

havior of system in terms of mass, energy and mo-

mentum balances can be expressed as follows: 

Dimensionless partial mass balance for gas 

phase in the adsorption bed is
[9–12]

: 

− (
1

𝑃𝑒
𝑚) .

𝜕2𝑦𝑖

𝜕𝑧̂2
+ 𝑦𝑖 .

𝜕𝑢

𝜕𝑧̂
+ 𝑢̂. (

𝜕𝑦𝑖

𝜕𝑧̂
+ 𝑦𝑖 . (

1

𝑃̂
.

𝜕𝑃̂

𝜕𝑧̂
−

1

𝑇̂
.

𝜕𝑇̂

𝜕𝑧̂
)) +

𝜕𝑦𝑖

𝜕𝜏
+

𝑦𝑖 . (
1

𝑃̂
.

𝜕𝑃̂

𝜕𝜏
−

1

𝑇̂
.

𝜕𝑇̂

𝜕𝜏
) + (

𝜌𝑝.𝑅.𝑇0.𝑇̂

𝑃0.𝑃̂
) . (

1−𝜀

𝜀
) . (𝑞𝑚,𝑖 .

𝜕𝑞̂𝑖

𝜕𝜏
+ 𝑞̂𝑖 .

𝜕𝑞𝑚,𝑖

𝜕𝜏
) = 0

  

(1) 

Dimensionless equilibrium loading of ith 

component for solid phase in the adsorption bed is: 

𝜕𝑞𝑚,𝑖

𝜕𝜏
=

𝜕𝑞𝑚,𝑖

𝜕𝑇̂
×

𝜕𝑇̂

𝜕𝜏
= 𝑘2,𝑖𝑇0 ×

𝜕𝑇̂

𝜕𝜏
              (2) 

Dimensionless loading of ith component for 

solid phase in the adsorption bed is (LDF relation): 

𝜕𝑞̂𝑖

𝜕𝜏
= 𝛼𝑖 . (

𝛽𝑖.𝑦𝑖
𝑛𝑖

1+∑ 𝛽𝑗.𝑦𝑗
𝑛𝑗

𝑁

𝑗−1

− 𝑞̂𝑖) − (
q̂𝑖

𝑞𝑚,𝑖
.

𝜕𝑞𝑚,𝑖

𝜕𝜏
)  (3) 

According to equation (3), the LDF relation 

depends on various parameters such as: equilibrium 

parameter for the Langmuir model, mole fraction of 

species i in the gas phase, average amount adsorbed 

and equilibrium parameter for the Langmuir model. 

The equilibrium of triple Langmuir-Freundlich 

isotherm is as follows: 

𝑞̂𝑖
∗ =

𝛽𝑖𝑦𝑖
𝑛𝑖

1+∑ 𝛽𝑗.𝑦𝑗
𝑛𝑗

𝑁

𝑗−1

                        (4) 

where β, n and qm are as follows: 

𝑞𝑚,𝑖 = 𝑘1 + 𝑘2𝑇0𝑇̂                         (5)  

𝛽𝑖 = 𝑘3exp (
𝑘4

𝑇0𝑇̂
)                          (6) 

𝑛 = 𝑘5 +
𝑘6

𝑇0𝑇̂
                             (7) 

Overall dimensionless mass balance for gas 

phase in the adsorption bed is
[13–16]

: 

(
1

𝑃̂
) ∙

𝜕𝑃̂

𝜕𝜏
+

𝜕𝑢

𝜕𝑧̂
+

𝑢

𝑃̂
∙

𝜕𝑃̂

𝜕𝑍̂
− (

1

𝑇̂
) ∙ (

𝜕𝑇̂

𝜕𝜏
+ 𝑢̂

𝜕𝑇̂

𝜕𝑧̂
) +

(
𝑃𝑝𝑅𝑇0𝑇̂

𝑃0𝑃̂
) ∙ (

1−𝜀

𝜀
) ∙ ∑ (𝑞𝑚,𝑖 ∙

𝜕𝑞𝑖̂

𝜕𝜏
+ 𝑞̂𝑖 ∙

𝜕𝑞𝑚,𝑖

𝜕𝜏
)3

𝑖−1 = 0  

(8) 

Dimensionless energy balance for gas phase in 

the adsorption bed is[17–21]: 
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− (
1

𝑃𝑒
ℎ) .

𝜕2𝑇̂

𝜕𝑧̂2
+ 𝜀. (û

𝜕𝑇

𝜕ẑ
+ 𝑇̂

𝜕𝑢̂

𝜕𝑧̂
) + (𝜀𝑡 +

𝜌𝐵.𝑐𝑝,𝑠

𝜌𝑔.𝑐𝑝,𝑔
) .

𝜕T̂

𝜕𝜏
− (

𝜌𝐵

𝑇0.𝜌𝑔.𝑐𝑝,𝑔
) .

∑ [(𝑞𝑚,𝑖 .
𝜕𝑞̂𝑖

𝜕𝜏
+ 𝑞̂𝑖 .

𝜕𝑞𝑚,𝑖

𝜕𝜏
) . (−𝛥𝐻̅𝑖)]

3

𝑖=1
+ (

2ℎ𝑖.𝐿

𝑅𝐵,𝑖.𝑈0.𝜌𝑔.𝑐𝑝,𝑔
) . (T̂ − 𝑇̂𝑤) = 0

   

    (9) 

Dimensionless energy balance for the wall of 

adsorption bed is: 

𝜕T̂𝑤

𝜕𝜏
= [

2𝜋. 𝑅𝐵,𝑖 . ℎ𝑖 . 𝐿

𝜌𝑤. 𝑐𝑝,𝑤. 𝐴𝑤 . 𝑈0

] . (T̂ − T̂𝑤) − [
2𝜋. 𝑅𝐵,𝑜. ℎ𝑜. 𝐿

𝜌𝑤. 𝑐𝑝,𝑤. 𝐴𝑤 . 𝑈0

] . (T̂𝑤 −
𝑇𝑎𝑡𝑚

𝑇0

) 

    (10) 

Cross-sectional area of adsorption bed wall is: 

𝐴𝑤 = 𝜋. (𝑅𝐵,𝑜
2 − 𝑅𝐵,𝑖

2 )                    (11) 

Ergun equation is utilized in order to investi-

gate the pressure drop across the 

tion bed[22,23]. 

−
𝑑𝑃̂

𝑑𝑧̂
= [𝑎. 𝜇. 𝑈0. 𝑢̂ + 𝑏. 𝜌. 𝑈0

2. 𝑢̂. |𝑢̂|]. (
𝐿

𝑃0
)    (12) 

𝑎 =
150

4𝑅𝑝
2 .

(1−𝜀)2

𝜀2 ; 𝑏 = 1.75
(1−𝜀)

2𝑅𝑝𝜀
             (13) 

Physical properties of adsorbents and charac-

teristics of adsorption bed are depicted in Tables 2 

and 3, respectively. 

Table 2. Physical properties of bed and adsorbent[24] 

Characteristic Zeolite 13X 

Type Sphere 

Average pellet size, RP (cm) 0.07 

Pellet density, ρp (g/cm3) 1.17 

Heat capacity, Cps (cal/g.K) 0.32 

Bed porosity, ε 0.391 

Bed density, ρB (g/cm3) 0.713 

Table 3. Adsorption bed properties[25] 

Characteristic Zeolite 13X 

Length, L (cm) 76 

Inside radius, RBi (cm) 2.138 

Outside radius, RBo (cm) 2.415 

Heat capacity of the column, Cpw (cal/g.K) 0.12 

Density of column, ρw (g/cm3) 7.83 

Internal heat-transfer coefficient, hi 

(cal/cm2.K.s) 
9.2 × 10-4 

External heat-transfer coefficient, ho  

(cal/ cm2.K.s) 
3.4 × 10-4 

Axial thermal conductivity, KL (cal/cm.s.K) 6.2 ×10-5 

Axial dispersion coefficient, DL (cm2/s) 1 × 10-5 

3. Results and discussion 

The fourth order Runge-Kutta Gill scheme was 

used to solve a mathematical model considered as 

coupled partial differential equations. The experi-

mental data obtained from literatures has been sim-

ulated in order to validate the simulation results in 

this study[10,22,26]. An experimental and simulation 

study of a PSA unit which is running a traditional 

Skarstrom cycle and a Skarstrom cycle with 

co-current equalization owing to separate oxygen 

from air using a 5A zeolite has been proposed by 

Mendes et al.[11] in 2001. Moreover, a small-scale 

two-bed six-step PSA process using zeolite 13X 

was performed by Jee et al.[27–30] in order to provide 

oxygen-enriched air. They showed that there is a 

strong effect of feed flow rate on O2 purity. The ef-

fects of adsorption and desorption on zeolite 5A and 

CMS beds were investigated in a mixture of 

N2/O2/Ar by Jee et al.[28] in 2004. A non-isothermal 

mathematical model was applied in order to simu-

late the adsorption dynamics in their studies[26].  

Figures 2(a) and (b) indicate the effect of 

product flow rate and P/F on the purity and recov-

ery of oxygen during PSA process, respectively. 

The impact of temperature variations in gas phase 

during adsorption as a function of time is illustrated 

in Figure 2(c). It is obviously seen that there is a 

relatively high accuracy in the simulation of ex-

perimental data[27]. 

 
Figure 2a. Numerical simulation of experimental data in this 

work[23]
. 

 
Figure 2b. Numerical simulation of experimental data in this 

work[10]
. 
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Figure 2c. Numerical simulation of experimental data in this 

work[26]
. 

Figure 3 shows the effects of feed flow rate on 

helium purity and recovery at adsorption pressure 

of 8.5 bar and adsorption time of 20 sec. In this fig-

ure it can be seen that the increase in feed leads to a 

decrease in the helium purity while helium recovery 

has increased. The feed flow will rise at a constant 

purge flow in these simulations, which the P/F de-

creases and subsequently helium purity decreases. 

At a certain purge flow rate when the feed amount 

increases therefore, the P/F ratio is reduced and fi-

nally, the product purity decreases. In the other 

word, dead space of the bed in the adsorption step 

will rise with the feed flow rate. Thus, purging 

the bed in the purge step requires more purgative 

flow. In these simulations, a constant purge flow 

rate causes a reduction in the helium purity with the 

feed flow rate. 

 
Figure 3. Helium purity and recovery variations versus feed 

flow rate. 

The variations of helium purity and recovery 

in terms of adsorption step time at pressure of 

5.5 bar and P/F of 0.1 are shown in Figure 4. It is 

clear from this figure that increase of adsorption 

time leads to reduction in helium purity. It is due to 

the well-known breakthrough time of the adsorp-

tion beds. Thus, the adsorption time should be near 

to the breakthrough time in order to achieve the 

maximum process performance in terms of adsorp-

tion time. In fact, the adsorption time is a required 

time for occurring breakthrough time. After this 

time, the product purity is decreased while the en-

tire capacity of the bed has not utilized before this 

time. Therefore, the adsorption time must be close 

to the breakthrough time in order that the best pro-

cess performance in terms of adsorption time is 

achieved[10]. With referring to this figure, the best 

time for adsorption is 25 sec. Furthermore, it 

should be noted that, the helium recovery is in re-

verse order with its purity at all points. It was evi-

dent that the recovery reduces as the gas volume of 

the feed increases through increasing the adsorption 

time. Figure 5 shows the effect of adsorption step 

pressure on the process performance. It is apparent 

from this figure that the higher adsorption pressure 

improves the PSA unit performance. As the adsorp-

tion pressure increases, the amount of adsorbed 

heavy species on the adsorbent will be increased 

and therefore, the helium purity increases. For the 

favorable isotherm systems, if the pressure is in-

creased, the highly adsorbed species are more ad-

sorbed and the product purity will be increased. 

This result was seen in the litera-

ture[10–12,15,16,21,26,31,32]. Helium concentration profile 

curves are depicted in Figure 6. It is obvious from 

this figure that the helium purity has a minimum 

and maximum quantity in the blow down step be-

cause of depressurized bed and the pressurization 

step as result of the cleansed bed, respectively. 

 
Figure 4. Variations of helium purity and recovery in terms of 

adsorption step time. 
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Figure 5. Variations of helium purity and recovery in terms of 

adsorption step pressure. 

 
Figure 6. Helium concentration profile along a whole cycle at 

the top of the bed. 

4. Conclusions 

Helium separation from gaseous mixture in a 

two-bed pressure swing adsorption setup on a 

commercial type of zeolite 13X adsorbent has been 

studied numerically over a wide range of operating 

conditions. The influences of adsorption step pres-

sure, adsorption step time and feed flow rate on the 

process performance were investigated. Results 

showed that as the adsorption step pressure in-

creases, the helium purity will be increased. The 

time of the adsorption step is clearly defined 

through the physical properties of the bed such as 

length, diameter, adsorbent type as well as the feed 

flow rate. Furthermore, the helium recovery in-

creases, and the helium purity decreases when the 

feed flow rate increases. Finally, a considerable 

agreement was found between the experimental 

data and the simulation results for various operating 

variables. 
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ABSTRACT 

The solubilization of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene and pyrene by 

single and mixed anionic dimeric surfactants was investigated and correlated with micellar properties of these surfac-

tants. The surface and micellar properties of single and binary mixed combinations of anionic dimeric surfactants 

have been studied through surface tension as well as conductivity measurements at 300 K. The associations between 

their micelle properties and solubilizing efficiency towards PAHs have been quantified and discussed in terms of the 

molar solubilization ratio (MSR), micelle-water partition coefficient (Km) and standard free energy of solubilization 

(ΔG0
S).The negative value of ΔG0

S exhibits spontaneously the solubilization process. The MSR values increase with the 

order “pyrene < phenanthrene < naphthalene”. The current study provides significant information for the selection of 

mixed dimeric surfactants for solubilizing water-insoluble compounds. 
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1. Introduction 

The contamination of soil and water by hydrophobic organic com-

pounds (HOCs) are a universally widespread environmental problem. HOCs 

are found in the priority list of hazardous substances as listed by the agency 

for toxic substances and disease registry of USA[1]. Among these compounds, 

polycyclic aromatic hydrocarbons (PAHs) are more hazardous compounds to 

human health due to their mutagenic and carcinogenic nature[2,3]. PAHs con-

stitute a class of hazardous organic compounds consisting of two or more 

fused benzene rings in linear, angular or cluster arrangements. These hydro-

phobic pollutants are byproducts of the incomplete combustion of organic 

matter. The major sources of PAHs are the wastes from the combustion of 

fossil fuel, incineration of industrial waste and petroleum products viz., coal 

tar, crude oil, creosote, vehicle emissions, etc.[4] These organic pollutants 

defile sea water, sediments and soil and also remain in the atmosphere for a 

long time due to their low solubility in water. Because of their higher hydro-

phobicity and poor solubility in water, the removal of PAHs from the con-

taminated sites becomes excessively difficult. Advancement of desorption 

and removal of these organics from soil is challenge to researchers and 

technologists.  

It is well known that surfactants can enhance the aqueous solubility of 

hydrophobic compounds by incorporating them into the hydrophobic cores  

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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of micelles. This process is called solubilization[5]. 

Micelle-enhanced solubilization of hydrophobic 

compounds is clearly one of the primary applica-

tions of surfactants in liquid media. It has been re-

ported that the solubility of PAH increases linearly 

with surfactant concentration above the critical mi-

celle concentration (CMC)[6–8]. However, most of 

the previous studies related to solubilizing of PAHs 

on the use of conventional surfactants having single 

monomers with a single hydrophobic tail and a sin-

gle hydrophilic head group[9,10]. A more modern and 

advanced surfactant to aid the removal of contami-

nants from soil dimeric surfactant, differently from 

conventional surfactant, dimeric surfactant consist-

ing of two hydrophobic tails and two hydrophilic 

head groups connected by a spacer group[11]. Their 

surface active properties are better to corresponding 

conventional surfactants with the same chain length. 

Therefore, they have much lower CMC values and 

are more capable in lowering the surface tension of 

water[12]. Recently, dimeric surfactants were shown 

to be of great interest in industrial and scientific 

application due to their efficient solubilization ca-

pabilities[13,14]. As the dimeric surfactants form 

larger micelles than the conventional surfactants, it 

should have a superior solubilizing capacity. 

The specific objectives of the present study are 

to explain how partitioning of PAHs are influ-

enced by the micelles of anionic dimeric surfactants 

and to have the idea about the synergistic solubili-

zation by their equimolar mixed surfactant systems. 

In this study, we have studied water solubilization 

enhancement of three PAHs such as naphthalene, 

phenanthrene and pyrene, having different polari-

ty by anionic dimeric surfactants (CADs, s = 12 and 

16). The molar solubilization ratio (MSR), mi-

celle-water partition coefficient (Km) and standard 

free energy of solubilization (ΔG0
S) towards PAHs 

have been determined. 

2. Experimental procedures 

2.1 Materials 

The anionic dimeric surfactants with carboxy 

late head group, CADs, were synthesized in our 

laboratory, according to our recently reported 

method[15,16]. The molar ratio of reactants i.e., fatty 

amine (N-methyldodecylamine or N-methylhexade- 

cylamine) and EDTA dianhydride was 2:1 and the 

mixture was refluxed in methanol for 20 h at 50°C. 

The purification and characterization of synthesized 

compound was done as discussed previously[15]. 

Naphthalene (Naph), phenanthrene (Phen) and py-

rene (Py) were used as polycyclic aromatic hydro 

carbon in the present work and were also pro-

cured by sigma Aldrich. The formulas and aqueous 

properties of PAHs are listed in Table 1. Surfactant 

solutions were prepared in double distilled water. 

Table 1. Showing water solubility of the selected PAHs[17]
 

Compound 
Molecular 

structure 

Molecular 

weight 

(g/mol) 

Water 

solubility 

at 25 °C 

(mg/L) 

Naphthalene 

 

128.2 34.4 

Phenanthrene 

 

178.2 1.0 

Pyrene 

 

202.3 0.16 

2.2 Methods 

2.2.1 Solubility measurements 

The solubility measurement was similar to de-

scribed elsewhere[18]. The solubility of PAHs i.e., 

naphthalene, phenanthrene and pyrene, were meas-

ured in CADs solutions. Surfactant solutions were 

placed in 25 ml flasks at concentrations higher than 

CMC. An amount of each PAH in excess of its ap-

parent solubility was added to each flask. Extra 

amount of PAHs was added to ensure maximum 

solubility in surfactant solution. These samples are 

then agitated on magnetic stirrer and allowed to 

stand for about 24 h. After this, the sample was col-

lected and then centrifuged at 5000 rpm to settle 

down the excess amounts of PAHs. The determina-

tion of PAHs concentration was done by UV spec-

trophotometer (Elico SL 210). 1 ml of the superna-

tant surfactant solution taken and diluted to 10 ml in 
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flask with 1 ml methanol and rest with the corre-

sponding surfactant-water solution. Naphthalene, 

phenanthrene and pyrene in the solutions were ana-

lyzed at the wavelengths of 220 nm, 254 nm and 

334 nm, respectively. All experiments were per-

formed at room temperature (22–26 °C). 

2.2.2 Surface tension measurements 

The CMC of the pure and mixed surfactant 

systems were determined by the surface tension 

measurement. The surface tension was determined 

using the Du Noüy tensiometer (Jencon, India) by 

the platinum ring detachment method. The tensi-

ometer was calibrated through double-distilled wa-

ter, and the platinum ring was perfectly cleaned and 

dried prior every observation. The surface tension 

values were measured until constant surface tension 

values indicated that equilibrium had been reached. 

The accuracy of the measurements was within ± 0.1 

mNm–1. 

3. Results and discussion 

3.1 CMC of the single and equimolar binary 

CADs surfactants 

Solubilization is closely related to the solution 

properties of the surfactant micelles. Therefore, 

to better understand the solubilization power, we 

have studied the micellar properties of selected sin-

gle dimeric surfactants and their equimolar mixtures. 

The CMC values of single as well as of binary sur-

factant mixtures (CAD12-16) were examined on 

the basis of tensiometric measurements. Surface 

tension decreases as the concentration of the CADs 

increases. The CMC values of the single and binary 

surfactant systems are tabulated in Table 2, which 

were determined from the Figure 1. The CMC val-

ues of CAD12 and CAD16 were observed following 

order CAD16 < CAD12. The surfactant’s chain length 

is main driving factor for micellization as well as 

hydrophobic interactions. As the hydrophobic chain 

length of dimeric surfactant increases, much water 

molecules are released, bringing about more entro-

py increase, and micellization of anionic dimeric 

with longer hydrophobic tail becomes at lower 

concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plots of the surface tension (ɣ) vs. concentration of 

the single; CAD12 and CAD16 (a) and binary dimeric surfactant 

combinations; CAD12-16 (b), at 25 °C. 

Table 2. Micellization properties of single and mixed dimeric 

surfactant systems at 25 °C 

Micellization parameters CAD12 CAD16 CAD12-16 

CMCexp (mM) 0.025 0.018 0.021 

CMCideal (mM)    -     - 0.019 

ɣcmc (mN/M) 31.0 30.1 29.8 

Πcmc (mN/M) 41.0 41.9 42.2 

Γcmc × 10
10 

(mol/cm
2
) 4.09 4.67 4.71 

Acmc (nm
2 
× 10

2
/molecule)      40.6 35.6 36.1 

3.2 Interfacial parameters 

Various surface properties such as, surface ex-

cess or adsorption (Γcmc), occupied area per mole-

cule (Acmc) and surface pressure at the CMC (Πcmc) 

of individual as well as equimolar binary surfactant 

systems were determined, which is given in Table 2. 

The adsorption efficacy of selected surfactants and 

their mixtures at the air/solution interface were cal-

culated by Gibbs equation[19]. 

  1 2 303cmc T
. nRT d / d logC  

         (1) 

where R and T are the ideal gas constant and tem-
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perature, respectively, and n is a constant, which 

depends on the number of species constituting the 

surfactant. Γcmc values were used to calculate the 

minimum area per surfactant molecule (Acmc) at the 

air/water interface using the equation[19]: 

1cmc A cmcA / N 
                     (2) 

Where, NA is Avogadro’s number. The values of the 

surface pressure at the CMC (Πcmc) were deter-

mined from the following equation[19]: 

Πcmc= γ0–γcmc                                         (3) 

Where, γ0 and γcmc are the surface tension of the sol-

vent and surface tension of the mixture at the CMC, 

respectively. 

3.3. Interaction of the mixed micelles sys-

tems 

For the equimolar binary mixed solutions, the 

interactions between the surfactant molecules (syn-

ergism or antagonism) can be explained by various 

parameters and equations. For ideal mixing of di-

meric surfactants system, the ideal CMC value was 

calculated using the Clint equation[20]. 

1

𝐶𝑖
=

𝛼

𝐶1
+

(1−𝛼)

𝐶2
                          (4) 

Where, C1 and C2 are the CMC and the mole frac-

tion of component 1 and 2 in mixed surfactant sys-

tems and α stands for the stoichiometric molar frac-

tion. Table 2 indicates that obtained CMC values 

(CMCexp) was lower than ideal CMC values 

(CMCideal), as signified in the formation of mixed 

micelles, which demonstrate a negative deviation 

with respect to ideal mixture for binary mixed sys-

tems. It is expressed that the mixing effect of CADs 

surfactant system is more reliable than expected in 

the ideal state due to the two tails of dimeric sur-

factant allowing the micellar molecules even more 

hydrophobic. 

3.4. Solubilization of PAHs by individual and 

mixed dimeric surfactants 

Prior to measure the solubilization power 

of binary mixtures of CADs, single systems were 

first studied to understand the efficiency of anionic 

dimeric surfactants. Plots for the variations of solu-

bility of PHAs with concentration of single dimer-

ics CAD12 and CAD16 are shown in Figure 2 and 3. 

All the figures show that with the increasing of 

concentration of CADs, concentration of dissolved 

PHAs is also increasing, or solubility increases with 

the increasing concentrations of dimerics above the 

CMC. This phenomenon demonstrates that solubil-

ization is closely associated to micellization. 

 

 
Figure 2.Variation of the solubility of PHAs with surfactant 

concentration CAD12 (a) and CAD16 (b). 

Figure 3. Variation of the solubility of pyrene with surfactant 

concentration CAD12 (■) and CAD16 (▲). 

Therefore, water solubility of selected 

PHAs by equimolar binary mixed systems of 

CAD12-16 was further to be determined. The appar-

ent solubility of PHAs increases linearly with 

(a) 

(b) 
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equimolar binary mixed surfactant combinations 

(Figure 4 and 5). This process showing the for-

mation of mixed micelles and their potential ability 

to increase the solubility of PHAs in water. 

Figure 4. Solubilization of PAHs in CAD12-16 mixed surfac-

tants. 

Figure 5. Solubility of pyrene with CAD12-16 mixed surfactants. 

To measure the effectiveness of CADs in solu-

bilizing, molar solubilization ratio (MSR) has been 

determined. The MSR is characterized as the num-

ber of moles of compound solubilized by 1 mol of 

micellized surfactant, which is given by Edwards et 

al.[21] and Wei J et al.[18]. 

𝑀𝑆𝑅 =
𝑆𝑎𝑐− 𝑆𝑐𝑚𝑐

𝐶𝑎𝑐−𝐶𝑀𝐶
                        (5) 

where, Sac is the apparent solubility of a PAH com-

pound at the surfactant concentration greater than 

the CMC; Cac is the surfactant concentration, at 

which Sac is measured; and Scmc is the PAH solubili-

ty at the CMC. The MSR may be obtained from the 

slope of the variation of solubilizate concentration 

against surfactant concentration and obtained values 

are listed in Table 3. 

In addition to MSR, the effectiveness of solu-

bilization, the partition coefficient Km was also cal-

culated, which is defined as distribution of the mole 

fraction of PAHs between surfactant micelles and 

the aqueous phase has been obtained as follow-

ing[21]: 

𝐾𝑚 =
𝑆𝑎𝑐−𝑆𝑐𝑚𝑐

(Cac−CMC+Sac−Scmc)(VwScmc)
            (6) 

where, Vw is the molar volume of water (1.8 × 10−2 

l/mol at 25 °C[21]. 

Table 3. Molar solubilization ratios (MSR) of PHAs in indi-

vidual and mixed surfactant systems at room temperature 

Surfactant system 
MSR 

Naph Phen Py 

CAD12 0.027 0.018 0.0006 

CAD16 0.035 0.028 0.0007 

CAD12-16 0.031 0.021 0.00067 

Thus, an expression for Km can be rear-

ranged by substituting MSR to produce: 

𝐾𝑚 =
55.4×𝑀𝑆𝑅

𝑆𝑐𝑚𝑐(1+𝑀𝑆𝑅)
                       (7) 

From the thermodynamic point of view, solu-

bilization behavior of binary surfactant systems 

can be measured by the standard free energy of 

solubilization (𝛥𝐺𝑆
𝑜 ) calculated by the following 

equation[22]. The obtained values of Km and 𝛥𝐺𝑆
𝑜 

are given in Table 4. 

𝛥𝐺𝑆
𝑜 = −𝑅𝑇𝐼𝑛𝐾𝑚                      (8) 

Table 4. log Km and in equimolar mixed dimeric surfactants 

(8) 

PAHs 
log Km (kJ/mol) 

Naph 5.46 −31.21 

Phen 5.38 −29.87 

Py 4.49 −25.61 

4. Conclusion  

Water solubility enhancements of PAHs in sin-

gle anionic dimerics and their equimolar binary 

mixed systems have been measured. The associa-

tions between their micelle properties and solubil-

izing efficiency single and binary surfactant sys-

tems for naphthalene, phenanthrene and pyrene are 

expressed in terms of MSR and other parameters. 

The MSR values increase with the order “pyrene < 

phenanthrene < naphthalene”. The current study 

gives significant information for the selection of 

mixed dimeric surfactants for solubilizing wa-

ter-insoluble compounds. The experimental results 
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of this study will be useful to know the solubiliza-

tion properties of mixed anionic dimeric surfactant 

systems and significant to provide statistical proof 

for exploring novel surfactant systems for practical 

soil and water remediation. 
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ABSTRACT 

The objective of the study was to evaluate the antioxidant response and DNA damage of heavy metals (Cd, Cu and 

Cr) in Elodea canadensis. Superoxide dismutase (SOD), catalase (CAT), Glutathione reductase (GR) and lipid 

peroxidation levels of leaves of Elodea canadensis which was exposed to different concentrations of heavy metals (Cd: 

2, 5, 10, 15, 25 ppb; Cu: 200, 500, 1000, 2500 ppb and Cr: 1, 3, 10, 15, 25 ppb) in a hydroponic culture were 

determined spectrophotometrically. The highest induction in SOD and CAT activities were determined at highest 

concentration of heavy metals. The Random Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR) 

technique was used to investigate the variation of DNA banding patterns of samples that exposed to different 

concentrations of heavy metals. Changing in band intensity and the gain and loss of bands were demonstrated the 

genotoxic effect of heavy metals. Bioaccumulation, oxidative responses and DNA damages were shown that Elodea 

canadensis represents a useful bioindicator. 
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1. Introduction  

Metals form one of the major groups of genotoxic environmental 

pollutants for soil and aquatic ecosystems. These dangerous pollutants 

usually originate from industry and agricultural activities like pesticides and 

fertilizers. The toxic effect of heavy metals in plants and animals has been 

investigated by many researchers[1–3]. Heavy metal originated phytotoxicity 

often related to production of reactive oxygen species (ROS) in plants and 

potentially toxic that compared with molecular oxygen[4].  

The metal’s molecular damaging action is not clearly known, but 

studies suggested that the oxidative damage is caused by metal toxicity[5]. 

There are several cellular stress responses and damages in cellular 

components like membranes, proteins and DNA. Comet, micronucleus and 

choromosome aberration assays have been used to measure the genotoxic 

effect of heavy metals on plants in many studies[6–8].  

The advances in molecular biology provide the development of 

sensitive and useful techniques for DNA analysis in ecotoxicology. 

Random Amplified Polymorphic DNA (RAPD) is a DNA-based technique 

and used to detect the differences of DNA fingerprints from control and 

exposed DNA to a genotoxic effects. DNA damaging agents such as heavy 

metals and UV radiation in plants induce genomic DNA alterations and 
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RAPD-PCR can be successfully applied to 

determine these alterations[9]. 

The advantage of DNA-based techniques is 

especially related to sensitivity and short response 

time of these techniques. RAPD-PCR is also used 

for species classification, genetic mapping and 

phylogeny studies. Nowadays, it is known that a 

novel biomarker assay for the detection of DNA 

damages and mutations like rearrangements, point 

mutation, insert or deletions of DNA in many 

living things has been carried out[10,11]. RAPD 

fragments are detected by agarose gel 

electrophoresis and changing in band intensity, 

and the gain and loss of bands are demonstrated 

the genotoxic effect of damaging agents.   

Heavy metal contamination as a result of 

natural or anthropogenic activities is a serious 

problem in the world[12]. The accumulation of 

these heavy metals in plants causes many 

physiological and biochemical changes[13]. These 

pollutants cause production of ROS that can cause 

important harm to plant cell structures. To 

overcome the oxidative damage, plants have 

advanced a common network of antioxidant 

enzymes, such as superoxide dismutase (SOD, EC 

1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase 

(POD, EC 1.11.1.7)[14]. 

The objectives of the present study were to 

investigate DNA damage induced by different 

heavy metals in Elodea canadensis and changes in 

antioxidants levels. 

2. Materials and methods  

2.1 Genomic DNA isolation, RAPD 

amplification method and estimate of 

genomic template stability 

DNA extraction was performed by using 

CTAB method[15]. The concentration of extracted 

DNAs was measured at 260 nm and the purity 

was evaluated by the ratio of OD260/OD280 with a 

spectrophotometer (ACTGene Micro-Spectropho- 

tometer). The A260/A280 ratio demonstrates the 

DNA purity, and 1.8–2.0 values suggest “pure 

DNA”. 

Amplification of both nuclear DNA that 

extracted by CTAB method was performed using 

2 μl of DNA template in a 15 μl reaction that 

contains PCR buffer 1.5 μl (10X buffer with 

(NH4)2 SO4, Thermo Fisher), MgCl2 (2.5 mM, 

Thermo Fisher) 1.2 μl, dNTP (10 mM stock 

solution) 0.5 μl, BSA (10 mg/mL) 0.6 μl, primers 

(10μM, Opc) 1.0 μl, Taq Polymerase (5 u/μl, 

Thermo Fisher) 0.25 μl and filled up with sterile 

deionized water to the final volume. 

The temperature profile for the RAPD-PCR 

was initially denaturating at 94 °C for 2.5 min, 

followed by 36 cycles at 94 °C for 45 s 

(denaturation), 35 °C for 45 s (annealing) and 

72 °C for 2 min (extension), with final extension 

at 72 °C for 10 min. PCR products were 

electrophoresed in a Tris-Asedic Acid-EDTA 

(TAE) buffer by 2% agarose gel for 1.5 h at 80V. 

DNAs were stained with ethidium bromide and 

the bands were photographed under UV light. 100 

bp DNA ladder was used as a standard marker.  

Primer screening for RAPD-PCR was 

performed using 10 primers. Five out of 10 

primers gave polymorphic bands. The sequences 

of these oligomers were given in Table 1. 

Polymorphism that observed in RAPD profiles 

contained disappearance of a control band and 

appearance of a new band. The amplification 

reactions were repeated at least three times to get 

reproducible results.  

Genomic template stability (GTS; %) was 

calculated as following:  

GTS = (1 − a/n) × 100  

where “a” was the average number of RAPD 

polymorphic profiles detected in each samples 

treated and “n” the number of total bands found in 

the control. The polymorphisim that observed in 

RAPD banding profiles included the 

disappearance of a normal band and appearances 

of a new band in comparison with the control. The 

average polymorphism was calculated for each 

experimental group exposed to different doses of 

different heavy metals (Cd, Cu and Cr). For 

comparing the sensitivity of each parameter, 

changes occurring in these values were calculated 

as a percentage of its control (set to 100%).  
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2.2 Plant material, growth conditions and 

heavy metal estimation 

Fresh samples of E. canadensis were 

obtained from ponds in Kayseri, Turkey. Plants 

were grown in a growth chamber at 25 ± 1 °C 

during 16/8 light/dark cycle with 350 μmol·m2·s–1 

of irradiance by cold fluorescent lamps. The 

plants were growth in Hoagland nutrient solution 

and the solution was renewed every four days. 

The solution pH was maintained to 5.8 ± 0.1 by 

titration with NaOH or HCl solutions (0.1 M) 

when required. On the 7th day, heavy metal treated 

plants were harvested from containers. The plants 

were rinsed twice with distilled water and 

subsequently, biochemical parameters were 

determined. Dried samples of plant were digested 

with 10 mL of concentrated HNO3, using a CEM 

microwave digestion system. After digestion, the 

volume of each sample was adjusted to 25 mL 

using double deionized water[16]. Determination of 

the cadmium, chromium and copper concentra-

tions in all samples was carried out by inductively 

coupled plasma optical emission spectrometry 

(Varian). The samples were analyzed in triplicate.  

2.3 Estimation of lipid peroxidation (MDA) 

Lipid peroxidation level was estimated 

according to the method of Razinger et al.[17], with 

modifications.  

2.4 Antioxidative enzymes 

2.4.1 Enzyme extraction 

Fresh tissue (0.2 g) was homogenized with 5 

mL of 100 mM potassium phosphate buffer (pH 

7.0) containing 0.1 mM EDTA and 1% (w/v) 

polyvinylpyrrolidone in an ice-cooled mortar. 

Homogenate was centrifuged at 15000 g for 15 

min at 4°C[18]. The supernatant was used for 

enzyme determination. 

2.4.2 Superoxide dismutase (EC 1.15.1.11) 

The SOD activity (EC 1.15.1.11) was 

analyzed by measuring the inhibition of the 

photochemical reduction of nitrobluetetrazolium 

(NBT)[19]. The assay mixture contained 20 mM 

phosphate buffer (pH 7.5), 10 mM methionine, 

0.1mM NBT, 0.1 mM EDTA, 0.005 riboflavin, 50 

µg·mL–1 of enzyme extract and 0.25 mL of 

deionized H2O in a total volume of 3 mL. 

Riboflavin was added at the end, and the tubes 

were shaken and then illuminated for 15 min. The 

absorbance was recorded at 560 nm and the 

absorbance of the non-irradiated reaction mixture 

served as a control. Inhibition of 50% of the 

reaction was defined as one unit of enzyme and 

the enzyme activity was expressed as nU·g–1 FW. 

2.4.3 Catalase (EC 1.11.1.6) 

CAT (EC 1.11.1.6) activity was measured 

spectrophotometrically by following the consump- 

tion of H2O2 at 240 nm, according to Aebi[20], in 

potassium phosphate buffer (150 mM, pH 7) 

containing 15 mM H2O2 and enzyme extract 

(exactly 50 mg of protein) in a final  volume of 1 

mL. Addition of H2O2 started the reaction. 

3. Results 

3.1 Effects of heavy metals on RAPD 

profiles 

Among the 10 decamer oligonucleotide 

primers evaluated, only 5 of them presented 

specific and stable results (Table 1). The RAPD 

fingerprints revealed the occurrence of significant 

differences between untreated and treated plant 

materials, with apparent changes in the number, 

size and the intensity of amplified DNA fragments. 

The primary observation of RAPD banding 

patterns generated by the heavy metals exposed 

plants were the differences in the band intensities, 

appearance of new bands or absence of normal 

bands compared with control plants. RAPD 

banding patterns generated by heavy metal 

exposed plant materials were different from those 

obtained control. Different polymorphic bands 

were determined at each concentration of heavy 

metals for different primers. GTS did not decrease 

gradually. 

Table 1. Random primers that gave polymorphic bands in 

RAPD-PCR 

RAPD primer Sequences of primers (5′→3′) GC% 

Opc 2 GTG AGG CGT 70 

Opc 5 GAT GAC CGC 70 

Opc 8 TGG ACC GGT 70 

Opc 9 CTC ACC GTC 70 

Opc 15 GAC GGA TCA 60 
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The number of disappearing RAPD bands 

was greater at 5 ppb and 25 ppb Cd for Opc 5 and 

Opc 9, respectively. Maximum number of extra 

bands appeared with Cu application at 500 and 

1000 ppb concentrations in total. The decrease in 

band intensity was only apparent for Elodea 

exposed to 500 ppb Cu but in Cd treated plant it 

was observed for different doses. However, the 

increase in band intensity was clearly obvious for 

Cd, Cu and Cr treatments especially for Opc 5 

primer (Table 2, 3, 4).  

Table 2. Changes of total bands in control, and of polymorphic bands and varied bands in E. canadensis exposed to different 

concentrations of Cd 

Primers Cd concentration (ppb) 

 0 2 5 10 15 25 

  a     b     c    d a    b    c    d a    b    c    d a    b    c    d a    b    c     d 

Opc 2 5 0     0     0    2 0    0    3    0 0     0    0    2 1    0    0    0 1    0     0    0 

Opc 5 7 2     0     0    2 0    3    3    0     0     0    1    0 0    0    0    3 4    0     0    0 

Opc 8 3 0     0     0    1 0    2    0    0 0     0    0    1 0    0    0    0 1    1     2    0 

Opc 9 6 0     0     0    0 0    0    0    0 0     0    0    0 0    0    0    0 0    3     0    0 

Opc 15 7 0     0     2    2 0    0    0    2 0     0    0    2 0    0    0    1 1    0     2    1 

Total bands 28 2     0     2    7 0    5    6    2 0     0    1    5 1    0    0    4 7    4     4    1 

a + b  2 5 0 1 11 

a + b + c + d  11 13 6 5 16 

Note: a: indicates appearance of new bands; b: disappearance of normal bands; c: decrease in band intensities; and d: increase in 

band intensities; a + b: denotes polymorphic bands; and a + b + c + d: varied band. 

Table 3. Changes of total bands in control, and of polymorphic bands and varied bands in E. canadensis exposed to different 

concentrations of Cu 

Primers Cu concentration (ppb) 

 0 200 500 1000 1500 2500 

  a     b     c    d a    b    c    d a     b    c     d a     b     c    d a    b    c     d 

Opc 2 5 0     0     0    2 2    0    0    2 2     0    0     2 3     0     0    2 3     0     0     2 

Opc 5 7 1     0     0    6 2    0    1    1     2     0    0     0 3     0     0    0 3     0     0     0 

Opc 8 3 2     0     0    1 4    0    0    0 4     0    0     0 1     0     0    1 1     0     0     1 

Opc 9 6 1     0     0    5 0    0    0    0 0     0    0     0 0     0     0    4    0     0     0     4 

Opc 15 7 0     0     0    2 0    2    0    2 0     0    0     5 0     0     0    4 0     0     0     3 

Total bands 28 4     0    0   16 8    2    1    5 8     0    0     7 7     0     0    11 7     0     0    10 

a + b  4 10 8 7 7 

a + b + c + d  20 16 15 18 17 

Note: a: indicates appearance of new bands; b: disappearance of normal bands; c: decrease in band intensities; and d: increase in 

band intensities; a + b: denotes polymorphic bands; and a + b + c + d: varied band. 

Table 4. Changes of total bands in control, and of polymorphic bands and varied bands in E. canadensis exposed to different 

concentrations of Cr 

Primers Cr concentration (ppb) 

 0 1 3 10 25 50 

  a     b     c    d a    b    c    d a     b    c     d a     b     c    d a    b    c     d 

Opc 2 5 0     0     0    1 0    0    0    3 0     0    0    2 0     0     0    3 1    2     1     0 

Opc 5 7 2     5     0    1 1    0    0    5 1     0    0    2 1     0     0    2 2    4     0     1 

Opc 8 3 2     0     1    0 2    0    0    1 4     0    0    2 2     0     1    2 3    1     1     1 

Opc 9 6 0     0     0    3 0    0    0    3 0     3    0    2 0     4     0    0    0    6     0     0 

Opc 15 7 0     4     0    1 0    4    0    1 0     4    0    1 0     0     1    3 0    4     2     0 

Total bands 28 4     9     1    6 3    4    0    13 5     7    0    9 3     4     2    10 6    17   4     2 

a + b  13 7 12 7 23 

a + b + c + d  20 20 21 19 29 

Note: a: indicates appearance of new bands; b: disappearance of normal bands; c: decrease in band intensities;and d: increase in band 

intensities; a + b: denotes polymorphic bands; and a + b + c + d: varied band. 

Finally, it was defined that maximum 

number of extra bands appeared with Opc 5 at 25 

ppb Cd (four new bands), Opc 8 at 500 and 1000 

ppb Cu (four new bands) and Opc 8 at 10 ppb Cr 

(four new bands). The extra bands that appeared 

were determined to be of maximum 1100 bp 

molecular size (Figure 1). The occurrence of 

polymorphism was due to the loss and/or gain of 

the bands in the treated plant with heavy metals in 

comparison with the control. The highest 
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polymorphism was obtained from Cr application with 82% at 50 ppm concentration. 

 

Figure 1. RAPD profiles of genomic DNA from E. canadensis exposed to varying heavy metal concentrations with different primers. 

(M: DNA marker; 1: Control; 2–16: increasing doses of heavy metal treatments). 

3.2 Heavy metal contents  

The results related to the accumulation of Cd, 

Cr and Cu in E. canadensis are presented in 

Figure 2a, 2b and 2c. The maximum Cd 

accumulation was found to be 0.47 ppm DW at 15 

ppb Cd. On prolonged exposure to higher 

concentrations of Cd (25 ppb), there was a 

significant decline in the Cd accumulation rate. 

According to Figure 2b, the higher Cr 

accumulation was obtained from 25 ppb Cr 

application (0.049 ppm) and the differences in all 

treatments were significant for E. canadensis. 

Similarly, the maximum Cu accumulation was 

found to be 6.8 ppm at 2500 ppb. The analysis of 

one-way ANOVA showed that the differences in 

all the treatments were significant (P  0.05). 

 

 

 

Figure 2. Heavy metal accumulation in E.canadensis. 

3.3 Effect of heavy metals on the level of 

MDA 

The effect of Cd, Cu and Cr on MDA 

concentration is presented in Figure 3a, b and c. 

In the experiments, increasing in MDA 
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concentration in E. canadensis was observed. 

MDA concentration was linearly with increased 

heavy metal levels in the solution. The analysis of 

one way ANOVA showed that the differences of 

all treatments were significant (P  0.05) for plant. 

 

 

 

Figure 3. MDA activities in E.canadensis upon Cd (a), Cr (b) 

and Cu (c) exposures. Values represent mean ± S.E. (n = 3). 

Asterisks indicate significant differences at P < 0.05. 

3.4 Effects of heavy metals on SOD and 

CAT activity 

In this study, the decline in catalase activity 

was observed with the increasing concentration of 

Cd in E. canadensis. The highest concentration of 

Cd (15 ppb) proved to be extremely toxic 

declining CAT activity (Figure 4a). Plants 

exposed to Cd present significant differences (P  

0.05). Similarly, the highest concentration of Cu 

(1500−2500 ppb) and Cr (25 and 50 pbb) proved 

to be toxic declining CAT activity (Figure 4b and 

c). 

 

 

 

Figure 4. CAT activities in E.canadensis upon Cd (a), Cr (b) 

and Cu (c) exposures. Values represent mean ± S.E. (n = 3). 

Asterisks indicate significant differences at P < 0.05. 

Figure 5 a–c indicated that SOD activity 

increased linearly with increasing heavy metal 

levels. The maximum SOD activity was recorded 

at 25 ppb Cd (1.19 ± 0.0085 U·mg–1). Results 

showed that, at the highest concentration of Cd, 

the SOD accumulation increases. Additionally, 

the significant differences were found in SOD 

activity among the treatments. At 1500 ppb Cu 

(2.261 ± 0.0075 U·mg–1), the maximum SOD 
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activity was recorded. At the highest 

concentration of Cu, the SOD accumulation 

increases. Additionally, the significant differences 

were found in SOD activity among the treatments. 

Similarly, SOD activity increased linearly with 

increasing Cr levels in E. canadensis. 

 

 

 

Figure 5. SOD activities in E. canadensis upon Cd (a), Cr (b) 

and Cu (c) exposures. Values represent mean ± S.E. (n = 3). 

Asterisks indicate significant differences at P < 0.05. 

4. Discussion 

Heavy metals induce some cellular stress 

responses and damages of cellular components 

like DNA, proteins and membranes. RAPD-PCR 

is a selective and sensitive technique for DNA 

analysis in ecogenotoxicological studies. DNA 

fingerprints can be used to show the differences 

between samples that exposed and nonexposed to 

genotoxic agents[21]. This technique gives 

evidence about DNA mutation that treated to any 

genotoxic agents like heavy metals. 

Number of bands, product yield and clarity 

of the banding profiles are used for detection of 

polymorphism. Appearance or disappearance of 

bands is probably to be due to the changes in 

primers sites. This is likely caused by rearrange-

ments, point mutations and DNA damages in the 

primer binding sites[22].   

Five primers, Opc 2, Opc 5, Opc 8, Opc 9 

and Opc 15, produced unique bands in E. 

canadensis that treated with different heavy 

metals (Cd, Cu, and Cr) in the present study. 

These bands can be used as a marker for detection 

of genotoxic effect of heavy metals on E. 

canadensis. The low doses of heavy metals, 

especially Cd, were tolerable and polymorphism 

rate was comparatively low. Many researchers 

have used RAPD-PCR to evaluate metal toxicity 

changes in genetic patterns between treated and 

non-treated samples
[21,23,24]

. 

Our results showed that maximum number of 

polymorphic bands obtained from Cr with the 

highest concentration of heavy metal. In Cd 

application, the largest number of new bands was 

obtained with the highest dose of heavy metal 

similarly with Cr application. Cd has been 

reported by many researchers to cause DNA 

damages, such as single and double-strand breaks, 

modified bases, a basic site, DNA-protein cross-

links, oxidized bases etc., in many organ-

isms[3,25−27]. These structural changes after heavy 

metal treatment can significantly affect the PCR 

events and new PCR products can be occurred 

because of changing in priming sites.  

RAPD technique can be successfully used to 

determine the DNA damages in living things. 

Although this technique is a qualitative method, 

RAPD analysis can be used as a sensitive method 

for environmental toxicology and useful bio-

marker system for an early warning. The present 

results suggest that RAPD-PCR in conjunction 

with antioxidant enzyme analysis can prove a 

powerful ecotoxicological tool.    
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In the present study, E. canadensis were 

grown in hydroponic culture in the presence of 

increasing Cd, Cu and Cr concentrations to 

evaluate its possible defense mechanisms. The 

results obtained indicated that at highest levels Cd, 

Cu and Cr were toxic to E. canadensis. The level 

of malondialdehyde (MDA) content has been 

considered as an indicator of oxidative stress that 

shows that plants are under high-level antioxidant 

stress.  

In the experiments, MDA concentration 

increased linearly with increased heavy metal 

levels in the solution. Similar results were 

obtained with duckweed species by Uruç Parlak 

and Demirezen Yılmaz[16]. Gupta et al.[28] stated 

that higher MDA content shows the oxidative 

stress and this maybe one of the potential 

mechanisms by which toxicity due to heavy 

metals is manifested in plant tissues. Plants under 

environmental stresses, such as droughtand heavy 

metals, their production of ROS production will 

increase[29]. 

The increased activity of antioxidative 

enzymes in a plant indicated the formation of 

ROS and the present study indicated the 

generation of oxidative stress in L. gibba since all 

studied enzymes activity increased at high heavy 

metal levels[30]. In other words, E. canadensis 

analyzed in this work contains high Cd, Cr and Cu 

concentrations sufficient to activate ROS 

production and then oxidative stress. 

Superoxide dismutase, the first enzyme in the 

detoxifying process, converts superoxide radicals 

to H2O2 at a very fast rate. The enhanced SOD 

activity observed in the present study is consistent 

with studies in which other plant species were 

treated with heavy metals[31]. The effect of heavy 

metal stress on SOD expression is likely to be 

governed by the tissue and sub cellular sites, at 

which oxidative stress is generated as supported 

by the higher activity of SOD in roots than in 

leaves of metal stressed plants[18].  

Our data showed significant increases in 

CAT activity were observed between the 

treatments. The results obtained indicated that 

CAT activity decreased linearly with increasing 

Cd, Cu and Cr levels. Contrary to our results, a 

decline in the specific activity of catalase with 

increase in Cr concentration (20–80 ppm, 0.5 mM) 

has been reported by Shankar et al.[32]. According 

to Willekens et al.[33], it is likely that excess 

production of ROS by heavy metals can inactivate 

CAT probably by inactivating enzyme-bound 

heme group. These inconsistent results of 

differences in the plant organs were studied, and 

the durations and concentrations of metals were 

utilized.  

5. Conclusion 

Considering these results, we strongly 

suggest that higher heavy metal levels may cause 

oxidative stress in E. canadensis cells and may 

cause membrane damage through production of 

ROS and interferes with chlorophyll metabolism. 

Therefore, the data shown here can be used to 

illustrate how E. canadensis responds to its 

stressful environment. Among the antioxidative 

enzymes, SOD and CAT appear to play key roles 

in the plant’s antioxidative defense mechanism 

under heavy metal toxicity. The ability of E. 

canadensis to both accumulate and tolerate 

moderate heavy metal level used in this study 

could be partly derived from ROS detoxification 

through an efficient antioxidant system.  
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ABSTRACT 

Glauconite and kaolin are used as adsorbent materials for iron removal from synthetic solutions. Different concen-

trations of iron solutions have been prepared (10, 20 and 30 mg/L). Different dose of glauconite and kaolin were added 

(0.1, 0.55 and 1.0 g). Statistical design was used to determine the optimum conditions of iron adsorption on glauconite 

and kaolin. It is shown that glauconite has high adsorption for iron reaching to 95% while kaolin has lower adsorption 

for iron. Physical and chemical characterization of glauconite and kaolin was tested. High surface area of glauconite 

(19.8 m2/g) compared to kaolin (5.4 m2/g) explains its high removal efficiency.  
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1. Introduction 

Glauconite and kaolin clays are extremely fine particles exhibiting 

chemical properties of colloids[1,2]. The high specific surface area, chemical 

and mechanical stability, layered structure, and high cation exchange capac-

ity (CEC) made these clays excellent adsorbent materials[3]. Because of their 

small particle size, the specific surface area (external and internal) of clays 

and clay minerals could be increased to few hundreds m2/g. Natural clays 

like glauconite and kaolin acquire prominence as low-cost adsorbents over 

the last few decades due to their abundance and its capability to undergo 

modification to enhance the surface area and adsorption capacity[4].  

Ground water and some water from the bottom anoxic zones of reser-

voirs often contain iron and manganese ions or their complexes with natural 

organic matter[5,6]. In conventional treatment, the oxidation of iron and man-

ganese was carried out using various oxidants such as oxygen, chlorine, 

ozone,  or potassium permanganate.  The chemistry of oxida - 

tion becomes complicated when background species such as phosphate and 

fulvic acid are involved, so that the oxidation of ferrous ion, that can be 

normally readily oxidized, is retarded[7]. 

It was reported that, heavy metals such as arsenic, cadmium, copper, 

cobalt, chromium, nickel, iron, and zinc, exist in variable contents in drink-

ing water as well as in ground water[8,9]. This makes the removal of these 

toxic contaminants from water sources, efficiently and within reasonable 

costs, an important issue. Many adsorption materials have been investigated 

for the removal of heavy metal ions from water. Sorbents that have been 

studied include natural and artificial materials such as clay minerals[10–15], 

carbon-nanomaterials[16–19], biosorbents[20], and micro/nano-structured metal  

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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oxides[20–28]. 

In this research, adsorption of iron ions on 

glauconite and kaolin minerals was studied. In 

Egypt, ground water of New Valley area contains 

higher contents of iron ions above the acceptable 

limit. The concentrations of iron ions in New Valley 

ground waters are ranged from low to moderate. 

Baharia oasis area in Egypt is rich with glauconite, 

and Klabbsha, Aswan and Sinai areas in Egypt have 

a huge amount of kaolin. So, glauconite and kaolin 

can be used as cost-effective clay minerals for iron 

removal from ground water.  

2. Experimental procedures 

2.1 Materials  

Glauconite was obtained from New-Vally area, 

Egypt. Kaolin was obtained from Aswan area, 

Egypt. Samples were crushed, grounded, sieved to 

–150+200 mesh size, and dried at 105 ℃. Samples 

of natural glauconite and kaolin analysis are given 

in Table 1. A stock solution of ferrous ions (1000 

mg/L Fe
2+

) is prepared by dissolution of ferrous 

sulfate heptahydrae (Sigma-Aldrich chemicals, 

Germany) with distilled water. Then, different con-

centrations ferrous ions were prepared by diluting 

certain volume of stock solution with distilled water. 

All chemicals used were of analytical grade.  

Table 1. Chemical analysis for natural glauconite and kaolin 

Elements Glauconite Kaolin 

SiO2      (%) 39.0  51.6  

Al2O3       (%) 23.50  29.7  

K2O      (%) 3.50  0.48  

Fe2O3       (%) 23.88 2.48  

CaO      (%) 0.04  0.27  

TiO2         (%) ---- 0.14  

P2O5         (%) 0.37  0.54  

MnO      (%) 0.05  0.75  

Cl        (%) 0.20  ---- 

SO3          (%) 1.52  0.09  

L.O.      (%) 7.05  13.54  

2.2 Methods  

Experimental Statistical Design-Expert 9.0.3, 

Stat-Ease, Inc., MN, USA, software was used in 

this paper: 17 runs were carried out by applying the 

experimental Box-Behnken statistical design with 

three levels and three variables as shown in Table 2 

and 3. Each run was done independently while 

glauconite and kaolin dose varied according to the 

design. 

Aliquots of Fe (II) solutions of known concen-

tration were put into the glass bottles (100 mL) 

containing accurately weighted amounts of the ad-

sorbent. After the required adsorption time, iron 

ions concentration was determined by atomic ab-

sorption flame emission spectrophotometer 

(AA-6200 Shimadzu). 

Table 2. Codec factor variables 

Variables  
Levels 

0 +1 –1 

Time (min) 35 60 10 

Concentration (mg/L) 20 30 10 

Dose (g) 0.55 1.0 0.1 

Table 3. Experimental Box-Behnken design with three levels 

and three variables applied in adsorption experiments 

Run No. 
Codec factor levels 

Time Concentration Dose 

1 –1 +1 0 

2 0 –1 –1 

3 +1 0 +1 

4 +1 –1 0 

5 –1 0 –1 

6 –1 –1 0 

7 0 0 0 

8 0 –1 +1 

9 0 0 0 

10 0 +1 +1 

11 0 0 0 

12 0 0 0 

13 0 0 0 

14 –1 0 +1 

15 0 +1 –1 

16 +1 0 –1 

17 +1 +1 0 

2.3 Cation exchange capacity (CEC)
[29]

 

25.0 g of clay sample was added to a 500 mL 

Erlenmeyer flask, and then 125 mL of 1 M 

NH4OAc was added with shaking thoroughly and 

allowed standing 16 hours. After standing, filtrate 

the sample then, wash and rinse with eight separate 

addition of 95% ethanol to remove excess saturat-

ing solution. Extract the adsorbed NH4 by leaching 

the sample with eight separate 25 mL additions of 1 

M KCl. Discard the clay sample and transfer the 

leachate to a 250 mL volumetric. Dilute to volume 

with additional KCl. The concentration of NH4-N in 

the KCl extract was determined by spectrophotom-
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eter (spectro UV-2650, LABOMED, USA). 

2.4 Morphology analysis 

In order to know the reason of highly effective 

removal of iron with glauconite, structure sight 

should be analyzed. Scanning electron microscope 

(SEM) was employed to visualize sample mor-

phology. In the present work, the glauconite sample 

was analyzed by this technique using SEM to study 

the surface morphology of glauconite sample.  

2.5 Statistical analysis 

Box-Behnken design was used for statistical 

experimental design[30] to study the interactions and 

analyze the effects of studied parameters on the iron 

ions adsorption efficiency at glauconite and kaolin. 

According to this design, the optimal condi-

tions were estimated using a second order polyno-

mial function by which correlations between stud-

ied parameters (time, concentration & dose) and 

response (adsorption efficiency, %) were estab-

lished. The general form of this equation is: 

Y = o + 1X1 + 2X2 + 3X3 + 12X1X2 + 13X1X3 + 

23X2X3+11X1
2+22X2

2+33X3
2              (1) 

where Y is the predicted response; X1, X2 and X3 

are the studied variables; I, 2, 3… … are equation 

constants and coefficients. Software package, De-

sign-Expert 9.0.3, Stat-Ease, Inc., MN, USA, was 

used for regression analysis of experimental data 

and to plot response surface contours. 

3. Results and discussion 

3.1 Characterization of glauconite and kao-

lin  

Some chemical and physical properties of 

glauconite and kaolin are presented in Table 1 and 

Table 4. The glauconite sample has a specific sur-

face area of 19.8 m2/g while kaolin of 5.4 m2/g. Al-

so, CEC of glauconite was 28 meq/100 g and kaolin 

was 11 meq/100 g.  

Table 4. Physical properties of glauconite and kaolin 

Parameters  
Value 

Glauconite Kaolin 

Specific surface area (m2/g) 19.8 5.4 

CEC (meq/100 g) 28 11 

Porous volume (cm3/g) 0.264 0.315 

Particle size (µm) 80–100 80–100 

3.2 Statistical analysis of variance Fe (II) 

adsorption 

Adsorption results of iron ions on glauconite 

and kaolin are given in Table 5. The adsorption ef-

ficiency (%) onto glauconite was varied from 

14.8% to 95.3% (Run numbers 5 and 8). More than 

95% Fe (II) removal with contact time 35 minutes, 

iron load 10 mg/L and 1.0 g of glauconite. Actually, 

these results of glauconite are highly promised if it 

is compared with Electro-coagulation method 

which gives removal efficiency of Fe (II) 95–99% 

with high coast (Approx. 6.05 $/m3)[31] while clay 

adsorption of glauconite and kaolin is not expen-

sive because these ores has low price (24–39 $ per 

ton of clay)[32]. In spite of the design conditions of 

iron ions adsorption efficiency (%) onto kaolin var-

ied from 1.1 to 44% (Run numbers. 16 and 8) where 

it’s noticed the weak adsorption compared to glau-

conite, it is still more economic in use than other 

techniques like electro-coagulation method and ad-

sorption with activated carbon[31].  

Table 5. Results of Fe (II) adsorption on the surface of glauco-

nite & kaolin 

Run 

no. 

Time 

(min) 

Concentration 

(mg/L) 

Dose 

(g) 

Adsorption (%) 

Glauconite Kaolin 

1 10 30 0.55 48.7 2.4 

2 35 10 0.10 64.6 19.6 

3 60 20 1.00 95.2 23.7 

4 60 10 0.55 94.0 20.4 

5 10 20 0.10 14.8 9.4 

6 10 10 0.55 62.0 32.7 

7 35 20 0.55 84.5 10.5 

8 35 10 1.00 95.3 44.0 

9 35 20 0.55 84.5 10.3 

10 35 30 1.00 73.0 3.6 

11 35 20 0.55 84.5 10.6 

12 35 20 0.55 84.8 10.5 

13 35 20 0.55 84.5 10.4 

14 10 20 1.00 45.3 14.7 

15 35 30 0.10 28.6 1.1 

16 60 20 0.10 45.8 8.2 

17 60 30 0.55 92.2 2.9 

Statistical results of analysis of variance of Fe 

(II) adsorption on the surface of glauconite & kaolin 

are given in Table 6. The time of adsorption and 

adsorbent dose are the most significant factors 

while the concentration of adsorbate is less signifi-

cant. The obtained correlation coefficient (R2) of the 

models was 0.94, which indicates a good predicta-

bility of the models. It is noticed that, for kaolin, the 
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concentration of adsorption is the most significant 

while the time of adsorption and adsorption dose 

are less significant. The obtained correlation coeffi-

cient (R2) of the models was 0.92, which indicates a 

good predictability of the models. 

Table 6. Analysis of variance of Fe (II) adsorption on the surface of glauconite & kaolin 

Source Sum of Squares Mean Square F-Value 
p-value 

(Prob > F) 

 Glauconite Kaolin Glauconite Kaolin Glauconite Kaolin Glauconite Kaolin 

Model 9632.7 1896.4 1070.3 316.1 31.1 18.7 < 0.0001 < 0.0001 

A (Time) 3059.6 2.0 3059.6 2.0 89.1 0.1 < 0.0001 0.7383 

B (Concentration) 673.5 1423.1 673.5 1423.1 19.6 83.9 0.0031 < 0.0001 

C (Dose) 3005.1 284.4 3005.1 284.4 87.4 16.8 < 0.0001 0.0022 

AB 33.1 40.9 33.1 40.9 0.9 2.4 0.3594 0.1511 

AC 89.8 26.0 89.8 26.1 2.6 1.5 0.1501 0.2437 

BC 46.9 119.9 46.9 119.9 1.4 7.1 0.2809 0.0239 

A
2
 664.9 --- 664.9 --- 19.3 --- 0.0032 --- 

B
2
 27.8 --- 27.8 --- 0.8 --- 0.3981 --- 

C
2
 1931.2 --- 1931.2 --- 56.2 --- 0.0001 --- 

The correlation between adsorption efficiency 

(%) and process factors (time, concentration and 

dose) can be shown as a final equations (2) and (3) 

in terms of the actual factors for glauconite and ka-

olin, respectively.  

Adsorption = +84.22 + 19.56 * A – 9.18 * B + 

19.38 * C + 2.88 * AB + 4.74 * AC + 3.42 * BC – 

12.75 * A2 + 12.57 * B2 – 21.42 * C2          (2) 

Adsorption = + 33.85 – 0.4 * A – 1.11 * B + 29.65 * 

C + 0.01 * AB + 0.23 * AC – 1.22 * BC       (3) 

Where, A is the time of adsorption (min), B is the 

concentration of ferrous ions (mg/L) and C is the 

glauconite or kaolin dose (g per 100 mL solution).  

These equations are highly significant because 

they represent the net results of statistical applica-

tion input data, so by known any adsorption param-

eters of time, concentration and glauconite or kaolin 

dose, by applied directly in equation (2) or (3), 

output results will be adsorption efficiency (%). 

3.3 Interaction of the studied parameters 

3.3.1 Effects of adsorption time and Fe (II) 

ions concentrations on adsorption efficiency 

Effects of adsorption time and Fe (II) ions 

concentrations on adsorption efficiency at doses 

(0.55 g per 100 mL solution) for glauconite and ka-

olin are given in Figure 1.  

 
(A) 

 
(B) 

Figure 1. Effect of adsorption time and Fe (II) concentration on 

adsorption efficiency at dose = 0.55 g of glauconite (A) & kao-

lin (B). 

The adsorption efficiency of Fe (II) onto glau-

conite and kaolin increased by increasing adsorp-

tion time at all the glauconite and kaolin doses 

studied.  

With addition 0.55 g of glauconite dose, the 

adsorption efficiency increased from 60–70% to 

100% with increasing adsorption time from 10 to 60 

minutes at low Fe (II) concentration of 10 mg/L 

(Figure 1A). At high Fe (II) concentration of 30 
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mg/L and also with 0.55 g of glauconite dose, the 

adsorption efficiency increased from 40–50% to 

80–90% with increasing adsorption time from 10 to 

60 minutes (Figure 1A). While, with addition of 

0.55 g of kaolin, the adsorption efficiency increased 

up to 30% with increasing adsorption time from 10 

to 60 minutes and decreasing Fe (II) concentration 

from 30 to 10 mg/L (Figure 1B). 

3.3.2 Effects of adsorption time and glauco-

nite dose on adsorption efficiency 

Effects of adsorption time and dose of glauco-

nite and kaolin on adsorption efficiency at Fe (II) 

ions concentration (10 mg/L) are given in Figure 2. 

The adsorption efficiency of Fe (II) onto glauconite 

increases by increasing adsorption time.   

 
(A) 

(B) 

Figure 2. Effect of adsorption time and glauconite (A) & Kao-

lin (B) dose on adsorption efficiency at 10 mg/L concentration 

of Fe (II). 

The results reveal that with 0.1 g of glauconite 

dose, the adsorption efficiency increases from 

40–50% to 60–70% with increasing adsorption time 

from 10 to 60 minutes at low Fe (II) concentration 

of 10 mg/L (Figure 2A).  

However, at high glauconite dose of 1.0 g and 

at low Fe (II) concentration of 10 mg/L, the adsorp-

tion efficiency increased from 60–70% to about 

100% with increasing adsorption time from 10 to 60 

minutes (Figure 2A). 

Whereas, the effect of interaction of two fac-

tors, the time of adsorption and kaolin dose on ad-

sorption efficiency at Fe (II) ions concentration (10 

mg/L) were shown in Figure 2B. It can be observed 

that beyond the adsorption time of 10 minutes, the 

adsorption efficiency increased slowly from 10 to 

35% with increasing time of adsorption from 10 to 

60 minutes and the dose of kaolin increasing from 

0.1 to 1.0 g (Figure 2B). 

3.3.3 Effects of Fe (II) ions concentrations 

and kaolin doses on adsorption 

Effects of Fe (II) ions concentrations and doses 

of glauconite and kaolin on adsorption efficiency at 

adsorption time (60 minutes) are given in Figure 3.  

(A) 

 
(B) 

Figure 3. Effect of Fe (II) concentration and glauconite (A) & 

kaolin (B) dose on adsorption efficiency at the adsorption time 

of 60 minutes.  

These results reveal that, the adsorption effi-

ciency of Fe (II) onto glauconite slightly decreased 

with increasing ferrous ions concentrations. On the 

other hand, the adsorption efficiency of Fe (II) onto 

glauconite increased by increasing glauconite dose. 

Moreover, at high adsorption time of 60 minutes 

with 0.1 g of glauconite dose, the adsorption effi-

ciency decreased from 50–60% to about 40% with 

increasing ferrous ions concentrations from 10 to 30 
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mg/L (Figure 3A). However, at high glauconite 

dose of 1.0 g and at the same adsorption time of 60 

minutes, the adsorption efficiency decreased from 

about 100% to 95–100% with increasing ferrous 

ions concentration from 10 to 30 mg/L (Figure 3A). 

However, the adsorption efficiency of kaolin 

decreased from 35% to 5% with increasing concen-

tration of Fe (II) ions (Figure 3B).  

All the experimental results of glauconite 

have been plotted at the 3-D cube graph as shown in 

Figure 4. From this cube, the highest adsorption 

efficiency 99.4 % was obtained at high dose of 

glauconite, low concentration of Fe (II) and high 

adsorption time. The lowest removal efficiency of 

about 3.1 % was obtained at the lowest dose of 

glauconite, the lowest time interval and at the high-

est concentration of Fe (II). 

 
Figure 4. 3-D plot for the results of Fe (II) adsorption on glau-

conite. 

 
Figure 5. 3-D plot for the results of Fe (II) adsorption on kao-

lin. 

All experimental data of kaolin have been col-

lected at the 3-D cube as shown in Figure 5. This 

cube shows that the highest adsorption efficiency 

39.7 % can be obtained at high dose of kaolin, low 

concentration of ferrous ions and with no signifi-

cance for adsorption time. At the lowest dose of 

glauconite, the lowest time interval and at the high-

est concentration of ferrous ions the results show 

high desorption on the surface of kaolin. 

3.4 Surface morphology 

SEM images with different levels of magnifi-

cation factor are taken for glauconite samples in 

order to show the major features of the structure 

sight of glauconite surface. Figures 6 shows the 

SEM images for glauconite samples with the mag-

nification factor 10,000 and 25,000, respectively. It 

is obvious that the high surface roughness increases 

the surface area of adsorption. 

 

Figure 6. SEM of glauconite with magnification factor 

(1a x 10000 & 1b x 25000) and kaolin with magnifica-

tion factor (2a x 10000 & 2b x 25000). 

4. Conclusion  

Adsorption of ferrous ions on glauconite and 

kaolin were studied. Statistical experimental design 

of 3 variables and 3 levels is applied. The interac-

tions of all the adsorption parameters (adsorption 

time, ferrous ions concentration and adsorbate dose) 

and their effects on adsorption efficiency were dis-

cussed. All the experimental results have been plot-

ted at the 3-D cube graph. For glauconite, the re-

sults reveal that, the highest adsorption efficiency of 

99.4% is achieved at high dose of glauconite, low 

concentration of Fe (II) and high adsorption time. 

The lowest removal efficiency of about 3.1% can be 

obtained at the lowest dose of glauconite, the lowest 

adsorption time and at the highest concentration of 

Fe (II). For kaolin, the results reveal that, the high-

est adsorption efficiency of 39.7% is achieved at the 
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high dose of kaolin, low concentration of ferrous 

ions and with no significance for adsorption time. 

From economic point of view, using the lowest 

glauconite dose and the highest adsorption time 

with low ferrous ions concentrations gives 50% to 

60% adsorption efficiency. So, multi-stage adsorp-

tion will be cost-effective. While for kaolin, it gives 

low adsorption efficiency and there is no high sig-

nificant effect for iron removal compared to glau-

conite.  
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ABSTRACT 

Pharmaceutically active compounds, emerging extensively in ecosystems as pollutants, have become an important 

environmental and public health issue, since they can contaminate drinking water and pose threat to wildlife and human 

health. Therefore, efforts should be made in order to establish proper methods for their inactivation or elimination in the 

environment. The photocatalytic oxidation of psychoactive drug Duloxetine (DLX) has been investigated. In the case of 

heterogeneous photocatalytic oxidation, the effect of TiO2 P25 concentration (0.1–1 g·L–1), initial concentration of H2O2 

(0.25–0.2 g·L–1) and Fe3+ (0.00175–0.014 g·L–1) and pH of the solution (3–10) on initial reaction rates were evaluated, 

while for homogeneous photocatalytic oxidation the effect of the amount of H2O2 (0.25–0.2 g·L–1) and Fe3+ (0.00175–

0.014 g·L–1) were investigated. Additionally, the conversion of the heteroatoms in the molecule of DLX to inorganic 

ions (NO3
–, NH4

+, SO4
2–) during photocatalytic process has been observed, and phytotoxicity testing, using three plant 

species, was carried out in order to examine the effect of photocatalytic oxidation on the toxicity of DLX. According to 

the results presented in this study, both heterogeneous and homogeneous photocatalytic oxidation is an efficient meth-

odology for DLX degradation. 
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1. Introduction 

Pharmaceutical active compounds (PhACs) are turning into an essential 

ecological and public health issue, because of their expanding use and sub-

sequent release in the aquatic environment and their potential effects on 

wildlife and humans. Drug residues that have been identified recently in ur-

ban surfaces, groundwater and drinking water[1,2], are mostly introduced in 

the sewage system through excretion of unmetabolized compounds after 

medical use or inappropriate disposal[3]. However, effluents of wastewater 

treatment plants (WWTPs) are generally recognized as the major emission 

pathway of pharmaceuticals into the environment[4], due to the fact that con-

ventional WWTPs are designed to remove solids and nutrients and to reduce 

the biological oxygen demand of the effluent[5]. Even though, pharmaceuti-

cals usually do not have toxic impact on aquatic organisms, since they are 

detected at low or very low concentrations (ng to μg per liter), concerns 

have been raised for chronic exposure, since their continuous input to the 

environment exceed their degradation rate, acting, thus, as slightly persistent 

pollutants[6]. 

Psychoactive compounds are a group of drugs used to treat symptoms 

of neurological disorders such as depression, schizophrenia, bipolar disorder, 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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or anxiety disorders. According to Global Burden of 

Disease Study, jointly published by World Health 

Organization (WHO) and other groups, neuropsy-

chiatric disorders have emerged as priority health 

problems worldwide, projected to be the second 

most frequent disease by 2020[7], while Almeida et 

al. showed that lifetime prevalence of such disor-

ders can reach over 25%[8]. Moreover, according to 

WHO, around 10% of fully grown persons suffer 

from such disorders at any point in their lifetime[9]. 

Many previous studies showed that, exposure of 

aquatic organisms to psychoactive compounds may 

affect reproduction[10], endocrine function[11], or 

photosynthesis[12]. Furthermore, recent studies 

showed that psychoactive drugs may alter fish 

and benthic invertebrates behavioral responses[13], 

and also, induce fish gene expression profiles asso-

ciated with human idiopathic autism[14]. 

During the current economic crisis in Greece, 

the consumption of psychoactive substances has 

risen significantly, resulting in an increase in their 

concentration in urban wastewater[15]. The presence 

of psychoactive substances and/or their metabolites 

is confirmed, not only in urban wastewater, but also 

in aquatic plants and animal tissues[16,17], underlin-

ing the possible consequences for human health and 

ecosystems balance. Pollution of European wa-

ters by pharmaceuticals is a ubiquitous phenome-

non[18,19] and is receiving great attention, as stated in 

the EU Directive 2013/39/EU19 on priority sub-

stances in the field of water policy[20]. Notwith-

standing, wastewater management remains an open 

issue for the members of the European Union, since 

legislations is incomplete and in need of update[21]. 

Given the increasing interest about aquatic envi-

ronment contamination by psychoactive compounds, 

legislation has recently begun to acknowledge this 

potential problem in order for environmental regu-

lations to require explicit testing for any PhACs in 

water bodies. 

In order to solve various problems encoun-

tered by conventional methods for the degradation 

of organic species resistant to them, many research-

ers have turned their attention to a particular group 

of oxidation techniques called Advanced Oxidation 

Processes (AOPs). Among AOPs, heterogeneous 

and homogeneous photocatalytic oxidation has been 

studied extensively and it has been demonstrated 

to be an alternative to conventional methods for the 

removal of organic pollutants from water and 

air[22,23]. Meanwhile, photocatalytic oxidation has 

the potential to use solar energy, integrating, in this 

way, mild energy into environment protection. 

The aim of this work was the application of the 

preceding methods at the degradation of psychoac-

tive drug Duloxetine (DLX), a serotonin norepi-

nephrine reuptake inhibitor (SNRI) widely used for 

patients with depression and neuropathic pain. The 

study provides a further insight to oxidation kinetics 

(i.e. determination of factors affecting oxidation 

rate) and estimates mineralization degree towards 

the corresponding oxidation process. In addition, 

the conversion of the heteroatoms in the molecule 

of DLX to inorganic ions (NO3
–, NH4

+, SO4
2–) dur-

ing photocatalytic process has been observed, and 

phytotoxicity testing, using three plant species, was 

carried out in order to examine the effect of photo-

catalytic oxidation on the toxicity of DLX. 

2. Material and methods 

2.1 Reagents 

Duloxetine hydrochloride was the product of 

Sigma-Aldrich and was used as received. NaOH 

and HCl were used to adjust the pH when necessary. 

Commercially available TiO2 catalyst from Evonik, 

Aeroxide TiO2 P25 (TiO2 P25, 70% anatase and 30% 

routile with BET surface area of 55 ± 15 m2·g–1) 

was employed in this study. Iron chloride 

(FeCl3∙6H2O) and hydrogen peroxide (H2O2, 30% 

w/v) were purchased from Alfa Aesar and Panreac 

Química, respectively, and they were used without 

further purification. Double distilled water was used 

throughout the experimental processes. 

2.2 Experimental set-up and procedures 

A thermostated pyrex cell of 0.25 L capacity 

used as the reaction vessel, was fitted centrally with 

UV-A or visible light of identical dimensions and 

geometry, and covered with a black cloth to avoid 

interactions with ambient light. An Osram Dulux® 

S blue UV-A lamp (9W/78, 350−400 nm) and an 

Osram Dulux® S blue lamp (9W/71, 400−550 nm) 

were used as artificial light sources. The photon 

flux emitted from the lamps was determined acti-
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nometrically using the potassium ferrioxalate 

[K3Fe(C2O4)3∙3H2O] method[24]. The radiation in-

tensities obtained for the UV-A and the visible lamp 

were 1.268∙10–4 E·min–1·L–1 and 0.724∙10–4 E·min–

1·L–1, respectively. 

In order to check reproducibility of the results, 

all photocatalytic experiments were performed in 

duplicate and, in some cases, in triplicate, with the 

standard deviation never to exceed 5% for degrada-

tion experiments and 10% for DOC and inorganic 

ions analysis. 

It must be mentioned that DLX concentration 

employed in all experiments was substantially 

higher than the typically one found in environmen-

tal samples, in order to assess treatment efficiency 

within a measurable time scale and accurate deter-

mine residual concentrations with the analytical 

techniques employed in this work. 

2.3 Analytical methods 

Sample absorbance was scanned in the 200–

400 nm wavelength region on a Shimadzu UV-1700 

spectrophotometer and changes in the concentration 

of DLX were monitored via its characteristic ab-

sorption band at 289 nm. A Shimadzu VCSH Total 

Organic Carbon Analyzer was used for following 

mineralization by measuring the dissolved organic 

carbon (DOC), while pH was determined with a 

Mettler Toledo S20 SevenEasy pH meter. Colori-

metric determination with spectrophotometric de-

tection with titanium (IV) oxysulfate-sulfuric acid 

solution according to DIN 38409 H15, a meth-

od based on the formation of a yellow complex 

from the reaction of titanium (IV) oxysulfate with 

H2O2, was used for residual hydrogen determina-

tion. 

A Shimadzu system, comprising of an LC-10 

AD pump, a CTO-10A column oven and a CDD-6A 

conductivity detector (0.25 μL flow-cell), was used 

for inorganic anions determination. Anions separa-

tion was performed on an Alltech Allsep column 

preceded by a guard column of the same material, 

using a mixture of phthalic acid and lithium hy-

droxide at 1.5 mL·min−1 constant flow. Temperature 

of column and conductivity cell was constantly held 

at 35 oC and 38 oC, respectively. Before LC analysis 

mobile phases were degassed with helium stream. 

An ion chromatography (IC) unit LC 20 AD (Shi-

madzu), consisted of an LC-20 pump, a ADsp de-

gasser, a DGU-20A5, a CDD-10 A VP conductivity 

detector and a CTO-20A oven, was used for inor-

ganic cations identification. Cations separation was 

held on an IC YK-421 analytical column, with a 

mobile phase of boric acid, tartaric acid and dipico-

linic acid, through adsorption and desorption pro-

cesses and detected based on their elution time. 

Before their injection in the column, samples were 

filtered through a 0.45 mm membrane filter. 

2.4 Phytotoxicity evaluation 

Phytotoxicity measurements was performed in 

order to determine photocatalytic efficacy to de-

crease DLX toxicity, using the standard Phytotoxkit 

microbiotest, a bioassay based on three species of 

higher plants: the monocotyl Sorgho (Sorghum 

saccharatum), the dicotyl garden cress (Lepidium 

sativum) and the dicotyl mustard (Sinapis alba).  

This article measures both the de-

crease/absence of seed germination and the de-

crease of roots and/or shoots after 3 days of expo-

sure of the seeds to toxicants or contaminated soils. 

For this purpose, reference soil (an OECD analo-

gous artificial soil composed of sand, kaolin, peat 

and pH adjusted with CaCO3) was added in the 

lower compartment of the test plates and hydrated 

with the samples, while control tests were prepared 

using distilled water. The soil surface was flattened 

and covered by paper filter. Tests were carried out 

in three replicates for each sample and for each type 

of plant. The seeds were left in a dark incubator at 

25 oC for 3 days prior to recording and interpreta-

tion of results. Digital pictures of the plates were 

analyzed using Image J v1.49 software (Wayne 

Rasband, national Institutes of Health, USA). The 

test results were evaluated comparing the mean 

number of germinated seeds and the mean 

root/shoot length for the three replicates in the con-

trol and in each examined sample. The percentage 

effect of the tested effluents on seed germination 

inhibition (GI), root growth inhibition (RGI) and 

shoot growth inhibition (SGI) was calculated ap-

plying the following formula. 

%𝑒𝑓𝑓𝑒𝑐𝑡 =
𝐴−𝐵

𝐴
× 100                    (1) 
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where A represents the average number of germi-

nated seeds or the average root length in the control 

water and B represents the same parameters for the 

tested solution. 

3. Results and discussion 

3.1 Heterogeneous photocatalytic oxidation 

of DLX 

3.1.1 Effect of catalyst’s loading 

The degradation of an organic compound 

may be influenced strongly by TiO2 dosage, since 

this parameter is an important factor in slurry pho-

tocatalytic processes. Figure 1 depicted the effect 

of varying the quantity of TiO2 P25 on the observed 

initial reaction rate ro of DLX degradation and min-

eralization degree. The proper catalyst amounts 

were added to 0.01 g·L–1 DLX solutions in natural 

pH (~5.5) and then irradiated with UV-A light. The 

pH value falls about 1.5 unit after the photocatalytic 

process. Preliminary experiments with DLX solu-

tion containing TiO2 in the dark or illuminated DLX 

solution without the presence of catalyst showed 

that both illumination and catalyst are essential for 

the degradation of the drug (data not shown). 

The values of the initial degradation rate and 

mineralization degree in relation to catalyst dosage 

are depicted in Figure 1. The initial reaction rates 

were calculated by a linear fit of C-t data obtained 

during the first minutes of illumination, in order to 

minimize variations resulting in the competitive 

effects of the intermediate products and pH changes. 

As it can be seen, the increase of TiO2 loading from 

0.1 to 0.75 g·L–1 led to an increase in the initial re-

action rate. Moreover, DOC was 95.9% reduced 

after 120 min of illumination, when heterogeneous 

photocatalytic oxidation was conducted in the 

presence of 1 g·L–1 TiO2 P25. The observed trend 

can be attributed to the evidence that a catalyst dose 

increase can provide larger surface area for DLX 

oxidation and, additionally, may increase the active 

sites amount that can also provide an enhancement 

to the photocatalytic efficiency[25]. Nonetheless, 

above a certain value a slightly decrease in the reac-

tion rate is observed, a behavior similar to our pre-

vious studies[26,27], which may be due to a possible 

aggregation of the catalyst (particle-particle interac-

tions) which result in a loss of surface area availa-

ble for light-harvesting[28]. Furthermore, there 

may be an increase in the opacity of the solution 

leading to a decrease of the light penetration caus-

ing the lesser activation of the catalyst resulting in 

marginal change or even reduced degradation due 

to the negative contributions of aggregation or re-

duced energy[25,29]. 

 
Figure 1. Dependence of the initial reaction rate for constant 

DLX concentration, ro, (■) on the concentration of the TiO2 

P25 and DLX mineralization degree (●) at 120 min of photo-

catalytic process (initial conditions: 0.01 g·L–1 DLX, pH ≈ 5.5, 

T = 25 oC, UV-A illumination). 

Considering the above, in order to ensure total 

absorption of efficient photons and avoid excess 

catalyst, the optimum catalyst dosage must be de-

termined[30]. As shown in Figure 1, the optimum 

value is approximately 0.75 g·L–1. Observing that 

with lower catalyst concentration a good efficiency 

was obtained and considering the necessity of a 

good balance between process efficiency and ex-

perimental costs, in the following experimental runs, 

the catalyst dosage was chosen to be 0.25 g·L–1. 

3.1.2 Effect of electron scavengers 

The acceleration of the photocatalytic oxida-

tion by the addition of oxidizing species (e.g. H2O2) 

with the potential to capture the photogenerated 

electrons is an extensively studied procedure[31]; 

due to various individual phenomena that are taking 

place, such as increment of trapped e–, avoiding, 

thus, the e–/h+ recombination, enhanced HO• and 

secondary oxidizing species generation, intermedi-

ate compounds oxidation rate increment and reduc-

tion of potential problems caused by low O2 con-
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centration decrease[32]. It is established that, H2O2 

gets a photogenerated electron from the conduc-

tion band, promoting, therefore, the charge separa-

tion, while, it can also produce HO• via superoxide. 

However, too high peroxide dosage can promote a 

negative effect on organic pollutants oxidation, 

since H2O2 is also a semiconductor valence band 

holes and HO• scavenger. Therefore, as observed in 

previous studies, the effect of oxidant additives, 

such as hydrogen peroxide, can be conflicting de-

pending on the amount and the particular experi-

mental conditions[33]. 

 
Figure 2. Effect of H2O2 (A) and ferric ions (B) concentration 

on the initial reaction rate of DLX degradation (■) and DLX 

mineralization degree (●) at 120 min and 90 min, respectively, 

of photocatalytic process (initial conditions: 0.01 g·L–1 DLX, 

0.25 g·L–1 TiO2 P25, pH ≈ 5.5, T = 25 oC, UV-A illumination). 

In order to investigate H2O2 role, photocata-

lytic experimental runs for the oxidation of 0.01 

g·L–1 DLX in the presence of 0.25 g·L–1 TiO2 P25, 

were performed with different H2O2 dosage and at 

the natural pH value of drug solutions. Figure 2A 

depicted the effect of H2O2 addition on 

TiO2-mediated photocatalytic mineralization of 

DLX. In all H2O2-induced experiments presented in 

Figure 2A, over 80% of DLX was eliminated 

within 20 minutes of reaction. An increase in the 

concentration of H2O2 from 0.025 to 0.075 g·L–1 led 

to a small increase in the oxidation rate from 0.31 to 

0.53 g·L–1·min–1, while higher H2O2 dosage resulted 

to a slightly ro reduction down to 0.38 g·L–1·min–1, 

a behavior that has been also obtained in similar 

studies. Furthermore, mineralization experimental 

runs showed that DLX dissolved organic carbon 

was almost 95% reduced after 120 min of illumina-

tion for all H2O2 concentrations studied. 

Metal ions addition has also been proven to 

increase photocatalytic effectiveness, since they are 

able to trap, separate and transfer the photogenerat-

ed electrons and holes in semiconductors[34]. In an 

attempt to enhance the efficiency of the 

TiO2-induced photocatalytic process, iron in the 

form of Fe3+ was introduced in the reaction vessel 

prior the beginning of the reaction. The facilita-

tion by Fe3+ at DLX degradation and mineralization 

is shown in Figure 2B. The observed enhancing 

effect could be attributed to interactions between 

iron species and TiO2
[35], the efficient electron-hole 

pair separation, since the addition of suitable scav-

engers can suppress the photocatalytic process effi-

ciency limitation occurred by the recombination of 

photogenerated electrons and holes. Ferric ions act 

as a photo-generated e– or h+ trap, inhibiting, thus, 

their recombination and enhancing their lifetimes[25]. 

Furthermore, Fe3+ reduction to Fe2+ by a pho-

to-generated e– in TiO2 particles can also conduce to 

the suppression of electron-hole recombination[36]. 

3.1.3 Effect of solution’s pH 

The pH of the solution seems to have a signif-

icant role in the heterogeneous photocatalytic pro-

cess efficiency[37,38], since surface charge state and 

flat band potential, among other catalyst’s proper-

ties, appear to have a high pH dependence. Addi-

tionally, the degradation rate may be enhanced or 

inhibited by catalyst’s surface and organic molecule 

electrostatic attraction or repulsion[39]. Moreover, 

the size of TiO2 particles, the catalyst’s interaction 

with solvent molecules and the type of radicals or 

intermediates formed during photocatalytic process, 

may be pH-affected. All aforementioned factors can 
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affect organic molecules adsorption onto catalyst 

and, consequently, influence the observed degrada-

tion rates[40]. 

 
Figure 3. Effect of pH on the initial reaction rate of DLX deg-

radation (■) and DLX mineralization degree (●) at 120 min of 

photocatalytic process (initial conditions: 0.01 g·L–1 DLX, 0.25 

g·L–1 TiO2 P25, pH ≈ 5.5, T = 25 oC, UV-A illumination). 

Solution’s initial pH impact on photocatalytic 

oxidation was studied by performing the experi-

ments with 0.25 g·L–1 TiO2 P25 in 0.01 g·L–1 DLX 

solution, under UV-A illumination and adjusting the 

solution pH from acidic values to alkaline ones; the 

results on degradation rate of DLX and its DOC 

reduction after 120 min of illumination are demon-

strated in Figure 3. Usually, at pH values below its 

pKa, an organic compound exists as neutral species 

or in a cationic form, whereas above this value, gets 

a negative charge. For that reason and considering 

that at this area the catalyst’s surface is positively 

charged, it is not likely to achieve great electrostatic 

attractions between the surface of the catalyst and 

the organic molecules. With pH increment, sub-

stance’s negative charging is getting stronger and, 

therefore, the electrostatic interactions are getting 

more remarkable, causing, this way, an enhance-

ment in the photocatalytic efficiency[41]. In this case, 

as it can be seen from Figure 3, when the pH value 

decreases from 7 to 3 an increase of the DLX deg-

radation rate is observed. Although opposite to the 

expected, this phenomena can be explained by the 

fact that DLX has be found in previous studies to be 

unstable in acidic media[42,43].  

3.2 Homogeneous photocatalytic oxidation of 

DLX 

Fenton reagent is a drawing attention oxidative 

system, since hydrogen peroxide is wieldy and en-

vironmental safe and iron is a very abundant and 

non-toxic material[44]. Considering its high ability to 

generate HO• in a very simple way, as a result of 

H2O2 decomposition by Fe2+ in acidic medium, 

Fenton method has been widely applied for organic 

compounds oxidation[45]. The advantages of pho-

to-Fenton process are the safe and environmental-

ly-benign nature of reagents and relatively simple 

operating principles as well as short reaction time 

and the absence of mass transfer limitations[46]. In 

addition, with the use of light (UV-A or visible, ar-

tificial or natural) the process can be catalytic, since 

the photo-reduction of Fe3+ to Fe2+ produces addi-

tional hydroxyl radicals and leads to the catalyst 

regeneration (Equation (3))[45]. 

Fe2+ + H2O2 → Fe3+ + OH– + HO•            (2) 

Fe3+ + H2O + hv → Fe2+ + H+ + HO•          (3) 

One of the main parameters that influence the 

Fenton and photo-Fenton processes is the iron 

amount. In the majority of cases, the photocatalytic 

effect is enhanced when the iron concentration is 

increased, since more hydroxyl radicals’ production 

is obtained[47–49].  

As the iron concentration increases, the regen-

eration of Fe2+ from Fe3+ results in the rapid pro-

duction of additional HO•[47]. However, with too 

high ferric amount in the solution, dark zones 

can be generated in the photoreactor, since the in-

cident ray is attenuated too strongly along the opti-

cal pathlength, reducing, for that reason, the process 

effectiveness. Moreover, although more radicals 

can be produced (Equation (3)), they can be scav-

enged by reacting with other ferrous ions, which 

lead to the reduction of their amount[50]. 

As it can be seen in Figure 4Α, the increment 

of ferric ions from 0.00175 to 0.014 g·L–1 led to an 

increase on the photo-Fenton induced mineraliza-

tion percentage of DLX, from 78.7 to 94.8% when 

the solution was illuminated for 120 min with UV-A 

light and from 70.8 to 94% under visible illumina-

tion. In all homogeneous photocatalytic experi-

mental runs the pH was low enough (pH = 3.2–3.3), 

since iron precipitates at higher pH. 

Iron concentration has proven to be a signifi-
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cant parameter, not only because it can affect the 

capital costs, but also the operating costs, since 

shorter reaction times are required[51]. In the pres-

ence of high iron amount, the issue of the 

iron-separation step at the end of the photocatalytic 

process appears. Consequently, it is considered 

critical to choose the proper iron concentration in 

order to achieve as short reaction time as possible, 

and at the same time not to exceed the limits de-

fined by the direct discharge to biological municipal 

WWTPs regulations (different amounts are permit-

ted in the EU, USA, Switzerland, etc.)[52]. 

It should be mentioned that DLX organic load 

reduction was found to be always faster in the early 

stages of the reaction than in the later ones, maybe 

due to the fact that iron ions catalyses H2O2 to pro-

duce HO• quickly, in the first stages of the photo-

catalytic oxidation[52]. 

 
Figure 4. Influence of ferric ions (Α) and H2O2 (B) concentra-

tion on the degree of mineralization of DLX under UV-A (■) 

and visible (●) irradiation after 120 min (initial conditions: (A) 

0.01 g·L–1 DLX, 0.1 g·L–1 H2O2, pH ≈ 3.3, T = 25 oC; (B) 0.01 

g·L–1 DLX, 0.005 g·L–1 Fe3+, pH ≈ 3.3, T = 25 oC. 

The influence of H2O2 concentration was in-

vestigated by several previous studies[47,54], with the 

main findings to be that neither too low H2O2 

amount nor too high may be applied, since in the 

first case a Fenton reaction rate reduction is oc-

curred, while, in the second H2O2 competes suc-

cessfully for HO• and becomes decomposed into 

molecular oxygen and water, while oxidizing the 

pollutant. However, in general, there is a 

ther broad concentration interval between both ex-

tremes, where none of those two phenomena oc-

curs[49]. 

As shown in Figure 4B, the use of extra H2O2 

dosage did not result to any remarkable improve-

ment in both UV-A and visible-irradiated process 

efficiency of DLX photo-Fenton mineralization. 

Even though, with the oxidant decomposition to be 

enhanced, a higher amount of HO• is expected, its 

increment can provide an adverse effect by slowing 

down the oxidation process, since the competition 

interactions are enhanced in the case of H2O2 ex-

cess[55]; mainly the recombination of the produced 

HO•, as well as their recombination with H2O2, con-

tributing to the HO• scavenging capacity (Equations 

(4)–(6))[47,54]. 

HO• + HO• → H2O2                             (4) 

H2O2 + HO• → H2O + HO2
•                   (5) 

HO2
• + HO• → H2O + O2                      (6) 

3.3 Inorganic Ions 

Temporal profiles of sulfur (released as sulfate 

ions) and inorganic nitrogen (i.e. nitrates, nitrites 

and ammonium ions) released during heterogeneous 

and homogeneous photocatalytic mineralization of 

DLX are shown in Figure 5. Profiles do not show 

actual concentrations but they correspond to the 

percentage of the theoretical amount of sulfur or 

nitrogen initially present in the molecule. 

The heteroatoms contained in the organic 

compounds are readily converted to inorganic ions 

that remain in the liquid phase. In some cases, pho-

tooxidation of nitrogen is relatively slow and the 

mineralization of organic pollutants containing ni-

trogen seems to be complex, since nitrate, nitrite, 

ammonium ions and free nitrogen are formed[56]. As 

it can be seen in Figure 5A, in the first 30 min of 
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heterogeneous photocatalytic oxidation only 25% of 

organic nitrogen has converted into inorganic, while 

total conversion occurred after 120 min of process. 

In the case of homogeneous photocatalytic miner-

alization, a complete conversion has not 

achieved, but almost 70% of organic nitrogen was 

converted after 120 min (Figure 5B). 

On the other hand, high percentage of organic 

sulfur is converted to inorganic, for both processes, 

while with photo-Fenton-induced oxidation almost 

total amount of sulfur is converted to inorganic 

within the first 30 min of reaction. The decrease of 

S– amount, in the case of homogeneous photocata-

lytic oxidation, may be due to the fact that iron 

forms a mixture of FeSO4
+ and Fe(SO4)2

– complex-

es in the presence of sulfur[57]. 

 
Figure 5. Release of inorganic anions during heterogeneous (A) 

and homogeneous (B) photocatalytic mineralization of DLX 

(initial conditions: (A) 0.01 g·L–1 DLX, 0.25 g·L–1 TiO2 P25, 

0.1 g·L–1 H2O2, pH ≈ 5.5, T = 25 oC, UV-A illumination; (B) 

0.01 g·L–1 DLX, 0.007 g·L–1 Fe3+, 0.1 g·L–1 H2O2, pH ≈ 3.3, T 

= 25 oC, UV-A illumination). 

3.4 Phytotoxicity evaluation 

For the investigation of the effect of the TiO2 

photocatalytic process on DLX phytototoxicity, 

samples of the initial drug solution (raw DLA) and 

at the end of the process (treated DLX) were se-

lected. It should be noted that there were not any 

inhibition effects by the H2O2, since residual hy-

drogen peroxide was measured during photocata-

lytic oxidation and found to be totally eliminated 

after the reaction. The effects of DLX samples on 

the plants are depicted in Figure 6 and they are ex-

pressed as root growth inhibition (RGI), shoot 

growth inhibition (SGI) and seed germination inhi-

bition (GI). 

 

Figure 6. Inhibition effect (%) of DLX before and after treat-

ment with heterogeneous (initial conditions: 0.01 g·L–1 DLX, 

0.25 g·L–1 TiO2 P25, 0.1 g·L–1 H2O2, pH ≈ 5.5, T = 25 oC) and 

homogeneous (initial conditions: 0.01 g·L–1 DLX, 0.007 g·L–1 

Fe3+, 0.1 g·L–1 H2O2, pH ≈ 3.3, T = 25 oC) photocatalytic oxi-

dation on Sinapis alba (A), Lepidium sativum (B), Sorghum 

saccharatum (C), under 120 min of UV-A illumination. 

As it can be seen from Figure 6A, both TiO2 

and photo-Fenton-induced photocatalytic processes 

improved the phyto-compatibility of DLX, since 

exposure to the treated solutions affected the soot 

length of Sinapis alba. The raw DLX solution ex-
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erted higher toxicity to the above species as 

it brought on 17.3% shoot growth inhibition. Fur-

thermore, the seed germination of Lepidium sa-

tivum was affected, reaching 14.8% after incubation 

with raw DLX and total toxicity elimination 

with both treated solutions (Figure 6B). 

On the contrary, root and shoot growth germi-

nation of Lepidium sativum was negatively affected 

to photo-Fenton-treated solution exposure, since 

raw DLX exerted no toxicity to the above parame-

ters, while the treated solution brought a toxic effect 

of 8.6 and 1.5%, respectively. This observation in-

dicates the need for further photocatalytic pro-

cessing of DLX, since, apparently, the metabolites 

that are formed during drug’s degradation are more 

toxic than the parent compound. The same conclu-

sion is derived from Figure 6C, where it can be 

seen that the toxic effect at seed germination of 

Sorghum saccharatum increased from 3.3%, that 

was after the exposure to raw DLW, to 6.7 and 

13.3% after incubation with treated DLX (hetero-

geneous and homoegeneous photocatalytic oxida-

tion, respectively). 

4. Conclusions 

In the present work the photocatalytic oxida-

tive degradation of DLX, a psychoactive drug de-

tected in urban wastewater, has been demonstrated. 

With the use of TiO2 P25 as photocatalyst un-

der UV-A illumination, quantitative mineralization 

of the organic molecule occur after 2 hours, while 

as the catalyst dosage increased the initial reaction 

rate of the drug degradation increased.  

In all experimental runs that H2O2 was added 

in the drug solution over 80% of DLX was elimi-

nated within 20 minutes of reaction. An increase in 

the concentration of H2O2 led to a small increase in 

the reaction rate of oxidation, while a higher con-

centration of H2O2 resulted to a slightly reaction 

rate reduction. Moreover, mineralization experi-

ments showed that DOC of DLX was almost 95% 

reduced after 120 min of illumination for all H2O2 

concentrations studied.  

No remarkable enhancement was obtained by 

the attempt to enhance the efficiency of the 

TiO2-induced heterogeneous photocatalytic pro-

cess by introducing Fe3+ in the reaction solution. 

The study of the effect of drug solution’s pH 

showed that the higher degradation rate occurred at 

pH 3. 

In the case of homogeneous photocatalytic 

oxidation, the increment of ferric ions led to an in-

crease of DLX mineralization percentage in both 

UV-A and visible-irradiated process efficiency. On 

the other hand, the use of extra H2O2 dosage did not 

result to any remarkable improvement in DLX 

photo-Fenton-induced mineralization. 

Inorganic ions formation analysis showed that 

total organic nitrogen was converted into inorganic 

after 120 min of heterogeneous photocatalytic oxi-

dation, while in the case of homogeneous process, 

almost 70% of organic nitrogen was converted after 

the same illumination time. On the other hand, high 

percentage of organic sulfur was converted to inor-

ganic, for both processes, while with pho-

to-Fenton-induced oxidation almost total amount of 

sulfur is converted to inorganic within the first 30 

min of reaction. 

Phytotoxicity evaluation showed that both 

TiO2 and photo-Fenton-induced photocatalytic pro-

cesses improved the phyto-compatibility of DLX, 

since exposure to the treated DLX solutions affect-

ed the soot length of Sinapis alba. Moreover, the 

seed germination of Lepidium sativum was affected, 

achieving total toxicity elimination with both treat-

ed solutions. On the other hand, root and shoot 

growth germination was negatively affected to 

photo-Fenton-treated solution exposure, since raw 

DLX exerted no toxicity to the above parameters, 

while the treated solution brought a toxic effect of 

8.6 and 1.5%, respectively. Additionally, the toxic 

effect at seed germination of Sorghum saccharatum 

increased after incubation with treated DLX. Ac-

cording to the above, the need for further photo-

catalytic processing of DLX is required, since, ap-

parently, the metabolites that are formed during 

drug’s degradation are more toxic than the parent 

compound. 
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ABSTRACT
This study investigated elimination of Cu+2 and Pb2

+2 from prepared stock solutions using MgO, nanostractured 
MgO sorbents. The maximum cumulative values for copper and lead were 410, 200, 494.9, and 214.6 mg·g–1, for 
Nanostractured MgO, MgO, respectively. Freundlich and Langmuir models describe the sorption equilibrium isotherms. 
Freundlich model gives the best interpretation for experiment data for these ions.

The most adequate model describing the kinetic with the experimental data using MgO, Nanostractured MgO was 
a first-order kinetic model. Nanostractured MgO probably has an efficient way to remove metal ions due to its high 
capability to adsorb these ions. 
Keywords: Heavy Metals; Nanoparticles; Peanut Peels

1. Introduction
Uncontrolled release of metal particles turns into a noteworthy 

issue. These metal ions tend to accumulate either by bioconcentration, 
bioaccumulation, or biomagnifications through soil, and water, constant 
exposure of human to these metals leads to a significant risk[1–3]. Heavy 
metals in wastewater can have detrimental effects on all forms of life 
when discharged directly into the environment[4].

As a result, the way to correctly and effectively remove unwanted 
metals from eco structures is still essential but nonetheless challenging 
assignment for environmental safety engineers. In recent times, sever-
al strategies had been suggested for elimination of heavy metal from 
wastewaters, inclusive of however no longer limited to membrane fil-
tration, precipitation, and other known techniques[5–8].

Amongst heavy metals, Pb+2, Cu+2, are most of the fundamental 
pollutants for environment, which might be leaked to soil and eco sys-
tems via fertilizers, insecticides, biosolids, metallic mining and milling 
procedures, consumed commercial wastes, and airborne resources[9].

The high surface area provided by nanoparticles in addition to the 
amount of pores present, and diversity of surface active groups, making 
nanoparticles have large capacity with selective metal in elimination of 
these ions[10,11]. 

(NMOs) show high ability to selective adsorb with high potential, 
as a result of that, adequate elimination of poisonous ions might be ex-
pected to fulfill more and more strict policies[12]. Size of NMOs in the 
range of nano scale causing negative stability.
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Eventually, NMOs are liable to aggregation 
and tendency to take different interactions under 
the effect of some forces such as Van der Waals[13], 
causing decreasing in potential of NMOs and se-
lectivity or even vanished. In addition, aggregation 
of NMOs in any type of flow causes pressure drop 
consequently unstablity. To enhance efficiency had 
been then spread through supports of high porosity 
to get composite absorbing materials[14]. Activated 
carbon, natural materials, artificial polymeric hosts 
are widely used for porous supports.

Those sorbents were tested in batch manner for 
elimination of Pb+2, and Cu+2 existing in prepared 
solutions. Experimental facts received during batch 
equilibrium runs were analysed using Langmuir and 
Freundlich isotherm models. Kinetic investigations 
were done by two kinetic models, pseudo-first-or-
der, and pseudo-second order. Alternatively, the out-
comes of numerous parameters along with solution 
pH, contact time, and adsorption isotherm, at the 
sorbents have been studied.

2. Material and methods
2.1 Chemicals

Solutions of metal ions were prepared from 
their (Merck, Germany). Stracture, nanostructured 
MgO were purchased (purity, 99.5%) from Nabond 
(China). Varian Spectra AA 220 atomic absorption 
spectrophotometer was used to conduct analysis.

2.2 Peanut peels preparation
Peanut Peels was rinsed in distilled deionized 

water then heated at 100 °C for one day in order 
to get low moisture content. They have been then 
grinding by home mill and sieved. To leach out 
active functional groups from Peanut Peels with 
diameters less than 100 mesh (passed through 100 
standard sieves) rinsed in 0.1 N HNO3 in the ratio 
of 1 tog to 10 mL for 20 h at 80 °C then, centrifuged 
with adjusting its pH to 5. After that use a 0.45 µm 
filter membrane (Sartorius Company) to filtered 
solution, cooled and stored at 4 °C prior to use. 

2.3 Adsorption analysis
Adsorption capacity and Kinetic experiments 

were carried out in conical flasks 100 mL with 0.05 
g (2 g/L) of MgO, and nanostructured MgO with 50 

mL of 50 mg/L metal ion solutions without chang-
ing pH value. The mixtures were shaken (1000 rpm) 
at 25 °C. Separation of solid from liquid were done 
using centrifugal working at (2000 rpm) After that 
the used samples have been filtered by 0.42 µm fil-
ter membrane (Sartorius, Germany). Atomic absorp-
tion spectroscopy was used to analyze concentration 
of metal ions. It was documented that the ratio of 
removal metal ions has been calculated as:

where Co and Ce denotes to primary and final con-
centrations of metals in the liquid phase. Each ex-
periment was repeated twice and the mean value 
was taken as a final result used. 

2.4 pH effect
By adding 0.1 N NaOH or 0.1 N HNO3 to the 

solution, pH was adjusted in a range from 2 to 7, 
and all other variables are fixed.

2.5 Contact time
Batch mode experiments were done for flasks 

with different times of 10, 20, 40, 60, 90, 120, 180, 
and 1440 min, with no change of other variables.

In order to investigate the ....... kinetic model 
has been used here in this study.

2.6 Kinetics study
In order to investigate the mechanism and rate 

of the metal adsorption process, kinetic models has 
been in this study, linearization of first order equa-
tions[15], pseudo-first order[11–18] and pseudo-second 
order[16,19].

The first-order model is:

where qt is the cumulative amount of the metal ions 
adsorbed at time t, q0 is the maximum of the metal 
ions adsorbed, and a (mg·g–1 min–1) and b (mg·g–1) –1 
are constants. An important term in these equations 
is the constant b, which indicates the metal adsorp-
tion rate.

The model of pseudo-first-order kinetic is given 
as:
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where qe denotes to the amounts of the ions ad-
sorbed on the adsorbent in mg·g–1 at equilibrium 
and qt denote the same manner at any time, t, while 
K1 is first-order equation constant .

The pseudo-second-order kinetic model of is 
given as:

where K2 is the rate constant in g·mg–1·min–1.

2.7 Adsorbent dosage
Experiments were conducted in a batch mode 

by mixing different adsorbents weight of 0.05, 0.1, 
1, 2, 3, and 4 g·L–1, with no change of other vari-
ables.

2.8 Adsorption isotherms
To conduct adsorption isotherm, experiments 

were carried out with 0.05 g nano structured materi-
als with different initial concentrations of Cu+2, and 
Pb+2 in solutions at (0, 10, 20, 30, 60, 100, and 200, 
mg·L–1) at 25 °C. 

Freundlich equation is used to describe the het-
erogeneity of the surface of the absorbent material 
and it is represented by:

The adsorption capacity (mg·g–1) represent 
by kF which is also known as Freundlich constant, 
while adsorption intensity represent by a constant n 
(dimensionless). If n within the domain n ≤ 1, that’s 
indicates unfavorably adsorption , and if 1 < n < 10 
that will gives favorable adsorption. If we assumed 
that the adsorbent medium is a structurally homoge-
neous, the Langmuir equation is based, as:

Weight of adsorbed over weight of adsorbent 
equilibrium is qe (mg·g–1), while Ce is solution con-
centration at equilibrium (mg·L–1), q0 (qmax) is the 
maximum adsorption when monolayer coverage 
(mg·g–1) is assumed, and b (KL) is a constant cor-
relates adsorption energy that quantitatively reflects 
affinity bonding sites (L·mg–1).

3. Results and discussion

3.1 Initial pH effect
Figure 1 shows the effect of the acidic scale 

pH on the adsorption process. Acidic conditions are 
associated with the lowering of adsorption of metal. 
The reason for that is attributed to the protonation 
of functional groups. In general, chemical adsorp-
tion occurs easily on the surface of oxides. Were 
hydroxyl groups is finally covered the surface layer, 
but, in the case of MgO, the chemical adsorption of 
OH extends to the inside of the solid. These hydrox-
yls (functional groups) can receive and release pro-
tons to the water, accordingly, surface charge will 
be positive or negative, as shown in the following 
equations[20]:

Acidity of particle surface is strong while sol-
vent is basic. Therefore the surface will carry a neg-
ative charge by giving its proton to solvent. On the 
contrary, basicity of the particle surface is strong, 
acidic solvent, due to particles received proton from 
solvent[20]. 

MgO has high pH of zero point charge (pHzpc), 
high basic nature, and acidic stock solution (pH be-
tween 4.5–6.0 before equilibrium), therefore, Equa-
tion (8) is the dominant mechanism. 

Thus, OH– can precipitate some heavy metals in 
hydroxide forms while increasing pH up to 10–10.4 
(equilibrium pH after 1440 min) can increase neg-
ative pH-dependent charge in MgO and increase 
electrostatic sorption. 

At low pH, nanostractured MgO binding sites 
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Figure 1. Effect of pH on sorption of metal ions, reaction vol-

ume = 50 mL, adsorbent weight = 0.1 g, C0 = 10 mg/L.
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were dominated by H ions leading to protonate 
functional groups. Active sites decreased with in-
creasing the protonated metal-binding adsorbent 
groups. Competing effect of H ions decreased as pH 
increased, giving an increasing of heavy metal ion 
adsorption onto the adsorbent[21] .

However, in both of these adsorbents the ad-
sorption suddenly increased at pH > 6 in some cas-
es. This rapid increase may be attributed to metal 
complexes formation or precipitation[22]. 

The amount of removal was always high (re-
moval of tow metals >90%). Therefore, the native 
pH of all solutions (pH = 5) was considered to be 
the optimum value for all adsorbents and metals.

3.2 Effects of dosage of adsorbent
Figure 2 shows the effect of nanoparticle dose. 

Adsorption of heavy metals was studied after a 24 h 
contact time with an initial heavy metal concentra-
tion of 100 mg L–1. Dosage increase starting at 0.5 
to 3 gL–1 resulting an increase in the removal capac-
ity of Cu2+ and Pb2+.

 However, this was not always the case, over-

lapping active sites at higher dosages could decreas-
es heavy metal adsorption. Decreased effective sur-
face area results from conglomeration of exchange 
particles[19]. Maximum removal efficiency of Cu+2 
and Pb+2, is 90 %, and 95%, respectively.

3.3 Contact time effect
Removal of heavy metal increased with time 

at native pH, Figure 3 indicates that adsorption 
reached a maximum value after 40 to 80 min. After 
that period there is no change in the efficiency of the 
removal process. Table 1 shows rate equations and 
related constants.

3.4 Kinetic and isotherme
Table 2 and Table 3 give the Langmuir and 

Freundlich parameters which indicates that Lang-
muir give best fitting with experimental data. Fig-
ures 4, 5 show the Lagergren first order and Hoes 
second order models, it can be seen that Lagergren 
model give best fitting .

4. Conclusion
Here, in the current study the results showed 

Figure 2. Effect of sorbent dose on biosorption of metal ions, 

reaction volume = 50 mL, pH = 5.5, C0 = 50 mg/L.

C0 = 100 mg/L

Ions 

MgO Nanostractured MgO

a (mg·g–1·min–1) b (mg·g–1)–1 R2 a b R2

Cu2 -.0.0041 1.492 0.979 -0.27 3.53 0.981

Pb2 -0.0048 1.282 0.978 -0.28 6.25 0.995

Table 1. First-order kinetics model constants (at concentration of 50 mg/L)

Figure 3. Effect of contact time on sorption of metal ions, reac-

tion volume = 100 mL, adsorbent weight = 0.1 g.
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that the process of adsorption affected by several 
factors, such as pH, contact time, and concentration, 
the most important results suggest that the process 
of adsorption depends heavily on the scale of acidi-
ty and showed the study of kinetics that adsorption 
follows the interaction of the second order equation 
and the best model simulates the results is Lang-
muir model. Nanoparticles can be used after being 
restricted with a certain medium to conduct adsorp-
tion of heavy metals from water.
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ABSTRACT
Atrazine is a broad spectrum herbicide of triazine family. It is a chlorine-containing molecule and it can persist 

in environment. Chemical and biochemical techniques are the main techniques used to decompose the chemicals. In 
pre-sent study, the dechlorination of atrazine (Atr) via reaction with Sn(II) ion under aqueous media at neutral pH 
condi-tions was studied. The observed dechlorinated metabolite was 4-Ethylamino-6-isopropylamino-[1,3,5]triazin-
2-ol. Identification of dechlorinated product of Atr was performed by using spectroscopic (FTIR) and mass (ESI-MS) 
spectrometric analysis. The kinetics of the dechlorination of Atr was measured by using pseudo-first order kinetics. The 
observed reaction constants was, kobs = 6.11x10-2 (at 430 mg/L of Atr), and kobs = 6.14 x10-2 (at 215 mg/L of Atr). The 
calculated half-life (t1/2) period was, t1/2 = 0.204 d (at 430 mg/L of Atr), and t1/2 = 0.205 d (at 215 mg/L of Atr).
Keywords: Atrazine; Dechlorination; Decomposition; IR Analysis; Mass Analysis

1. Introduction
2-chloro-N4-N6-isopropyl-1,3,5-trizine-4,6-diamine or atrazine 

(Atr) is a broad spectrum herbicide[1–8]. It inhibits photosynthesis and 
interferes with other enzymatic processes of weeds. It is the member 
of triazine family, and it is still used in about 90 countries all over the 
world[5–12]. Annual use of atrazine was estimated to be 80,000 tons 
worldwide. As a chlorinated molecule, Atr is the big concern for en-
vironmental studies. Atr has low volatility, low solubility in water (33 
mg/L) and low half life of 244 d through hydrolysis[17]. Transport of 
pesticides in environment depends upon their electrical potentials, ad-
sorption and complex-formation abilities[13–22]. Atr previously has been 
the theme of dechlorination by using of zero valent metal ions and the-
oretical metal complex studies[16–24].

In literature, extensive analysis on dechlorination of chlorinated 
compounds through zero valent metals has been reported[21-28]. All the 
studies have demonstrated that dechlorination process enhanced at low 
pH values from 2 to 5, where, zero-valent metal ions get oxidized[24–29]. 
In the literature, there are detailed studies about the dechlorination of 
various organic compounds and atrazine have been reported[5–15]. In re-
cent studies, the reported degradation products of atrazine were 2-ethyl-
amino-4-isopropylamino-1,3,5-triazine, hydroxyatrazine (2-ethylami-
no-4-isopropylamino-6-hydroxy-s-triazine) and 2,4-bis(ethylamine)-
6-methyl-s-triazine[11–28]. None of the above mentioned degradation 
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product was identified prominently in current study. 
In current study, dechlorination of Atr was achieved 
by using least toxic Sn(II) metal ion. As per our best 
information, no study on current topic is reported in 
literature. Current study is more important because 
of its environmental acceptability, as it was per-
formed in aqueous media and at neutral pH condi-
tions.

2. Experimental
All the chemicals used were of analytical re-

agent grade. The dechlorination/decomposition 
reactions were performed as per the procedure 
described below. The FTIR spectrums of dechlori-
nated product and Atr were taken in potassium bro-
mide (KBr) discs. All spectrums were recorded on 
a Shimadzu-8400s FTIR spectrophotometer. Mass 
(ESI-MS) analyses of all the samples (dechlorinated 
product and Atr) were performed on mass spectro-
photometer (Wa-ters, Q-TOF Micromass).

Aqueous solution (100 mL) of metal salts (1 
mM; 225 mg/L) was added to ethanolic solution 
(100 mL) of atrazine (2 mM; 430 mg/L). The pH of 
reaction mixture was adjusted at 7±0.5 using NaOH 
solution. Similarly 1:1 reaction was performed by 
adding the aqueous solution (100 mL) of metal salts 
(1 mM; 225 mg/L) being added to ethanolic solu-
tion (100 mL) of atrazine (1 mM; 215 mg/L). The 
resulting solution was stirred for 10 h at 150 rpm on 
a magnetic stirrer at temperature of 25 ± 0.5 oC. 

At regular time intervals (0 h, 1 h, 2 h, 3 h, 4 h, 
6 h, 8 h and 10 h) 20 mL of reaction mixture was 
taken off and organic material was extracted by us-
ing ethyl-acetate as extracting solvent. Excess eth-
yl-acetate was evaporated on vacuumed Rotavapor. 
To analyze the changes w.r.t. parent molecule (Atr), 
FTIR and mass analyses of well dried extracted or-
ganic material were performed.

The rate of dechlorination of atrazine by Sn(II) 
was analyzed according to pseudo-first order kinet-
ics. Equations (1)–(3) correspond to the equations 
of the concentration variation with time was plotted 
on the basis of the linear regression results obtained 
by plotting Time (in h) Vs Log Ct (in mg/L).
d[C]/dt = −kobs[C]                                                  (1)
log[C]/[C]0 = kobst                                                  (2)
t1/2= (1/ kobs) xlog 2                                                (3) 

Where, [C] is the atrazine concentration at time 
t (mg/L); [C]0 the initial atrazine concentration (mg/
L); kobs is the pseudo-first order constant (h−1).

3. Result and discussion
In current study, the mode/mechanism of de-

chlorinated is explained through following reactions 
from equations (4)-(6) and under Scheme-1. In 
equation (6), one mole of each, 4-Ethylamino-6-iso-
propylamino-[1,3,5]triazin-2-ol, NaCl and Sn(OH)2 
was produced via the interactions of one mole of 
each, Atr and NaSn(OH)3. Equations (4)-(6) have 
revealed that under neutral to basic pH conditions, 
dechlorination reaction rate of Atr is independent of 
concentration of Atr, but linearly dependent of con-
centration of SnCl2

[14,22].

SnCl2(aq) + 2 NaOH (aq) → SnO·H2O (s) + 2 NaCl(
aq)                                                                          (4)
SnO·H2O (s) + NaOH (aq) → NaSn(OH)3 (aq)     (5)
NaSn(OH)3  (aq) + Atr → 4-Ethylamino-6-isopro-
pylamino-[1,3,5]triazin-2-ol + NaCl (aq) + Sn(OH)2 
(aq)                                                                        (6)

The reaction kinetics of dechlorination of was 
measured by using pseudo-first order kinetic as 
mentioned in literature[12−17]. The concentration of 
SnCl2 was kept constant and concentration of Atr 
was varied. Mass analysis revealed that at molar 
ratios 1:2 or 1:1 of Sn(II) to Atr, approximately 70-
75% decomposition was achieved after 10 h reac-
tion.

The observed reaction constants was, kobs = 6.11 
× 10−2 with R2 = 0.99 (at 430 mg/ L of Atr), and 
kobs = 6.14 x10−2 with R2 = 0.99 (at 215 mg/ L of 
Atr) (Figure 1 and Figure 2). The calculated half-
life (t1/2) period was, t1/2 = 0.204 d (at 430 mg/ L of 
Atr), and t1/2 = 0.205 d (at 215 mg/ L of Atr). The 
observed reaction rates were similar at both ratios 
(Figure 2 and Figure 3). These values were consid-
erably smaller than the value reported in the litera-

Scheme 1. Schematic representation of dechlorination of atra-

zine in the presence of Sn under aqueous medium at pH 7.
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ture[12,17]. Dombek et al. have performed dechlorina-
tion via using zero valent metallic iron under acidic 
conditions (pH values of 2.0, 3.0, and 3.8), the ob-
served half-lives of atrazine were 0.06 d at pH value 
of 2.0, 5.12 d at pH value of 3.0, and 10.36 d at pH 
value of 3.8[12]. Similarly, Kim et al. have performed 
dechlorination via using zero valent metallic iron 
under neutral pH conditions, the observed half-lives 
of atrazine were 8.91 d at 10 mg/L, 9.32 d at 30 mg/
L, and 10.00 d at 50 mg/L[17]. 

Mass (ESI-MS) and FTIR analyses were used 
to identify the dechlorination of atrazine (Figure 3). 
In current study, the parent ion of degradation prod-
uct has a mass/charge ratio of 198, corresponding to 
4-Ethylamino-6-isopropylamino-[1,3,5]triazin-2-ol 
(Figure 3). It is possible only due to replacement 
of Cl with OH (215 − 35 + 18 or 215 − 17 = 198) 
(Figure 1). The lack of isotopic ratio as like mass/
charge ratio of 216, no isotopic ratio was observed 
at 198, confirming the absence of chlorine with 
molecule [28−32]. 

The comparative IR spectrums of Atr and its 
dechlorinated products have shown the sharp ap-
pearance in the stretching band of the ν(OH) at 
3450 cm−1, and sharp disappearance of C-Cl band 
660 cm−1[37–39]. FTIR and mass analysis have re-
vealed that the dechlorinated product of atrazine 
was 4-Ethylamino-6-isopropylamino-[1,3,5]triaz-
in-2-ol having m/z 198 with 100% intensity (Figure 

Figure 1. Dechlorination of Atr w.r.t. initial concentrations (Ct 

at 430 and 215 mg/L) with time.

Figure 2. Pseudo-first order kinetics of dechlorination of Atr 

w.r.t. initial concentrations (Log Ct at 430 and 215 mg/L).

Figure 3. Mass (ESI-MS) and FTIR analysis of  dechlorinated product of Atr after 10 h at 430 mg/L of Atr.
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3). The observed dechlorinated product of atrazine 
was quite differ than the reported metabolites[33–42]. 

4. Conclusion
In summary, large number of aquatic, soil, agri-

cultural and geological material/organisms survive 
under neutral to basic conditions. In current study 
the objective of dechlorination of toxic Atr at neu-
tral conditions was achieved successfully. Dechlo-
rination followed pseudo-first order kinetics with 
reaction constant kobs = 6.12 ± 2 × 10−2, and half-
life period, t1/2 = 0.204 ± 0.001 d. In future, we will 
use agricultural and geological material to check the 
dechlorination kinetics of Atr at neutral pH with the 
addition of variable concentrations of SnCl2.
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ABSTRACT
Carbon materials are continuing in progress to accomplish the requirements of energy conversion and energy 

storage technologies because of their plenty in nature, high surface area, outstanding electrical properties, and readily 
obtained from varieties of chemical and natural sources. Recently, carbon-based electrocatalysts have been developed in 
the quest to replacement of noble metal based catalysts for low cost energy conversion technologies, such as fuel cell, 
water splitting, and metal-air batteries. Herein, we will present our short overview on recently developed carbon-based 
electrocatalysts for energy conversion reactions such as oxygen reduction, oxygen evolution, and hydrogen evolution 
reactions, along with challenges and perspectives in the emerging field of metal-free electrocatalysts.
Keywords: Carbon Nanomaterials; Graphene; Metal-Free Electrocatalyst; Hydrogen Evolution Reaction

1. Background
Energy requirement is one of the most important issues of our time, 

because of the continue depletion of fossil fuels and associated increas-
ing air pollution. Hydrogen is considered totally non-polluting fuel 
but unlike fossil fuels it does not typically occurs by itself in nature, 
despite being a most abundant element on the earth, therefore, it must 
be generated from chemical source, that contain hydrogen molecules. 
It is observed that the world produces more than 50 billion kilograms 
of hydrogen each year and more than 95 percent generated from fossil 
fuels through steam reformation of natural gas. This process inherent 
additional costs to manufacturers, consumers, and it is environmentally 
unsafe. To avoid future devastation caused by energy collapse, the need 
for renewable energy has engrossed tremendously. In order to make 
effective use of renewable energy, it is imperative to develop high-per-
formance, low-cost, and environmentally friendly energy conversion 
systems. In this regard, water is an ultimate option because it is sustain-
able and readily available. Catalytic water splitting to produce hydro-
gen is an advanced electrochemical technique but water splitting needs 
expensive novel metal based catalysts (e.g., Pt) to accelerate the rate of 
hydrogen production and to lower the energy loss in the process. 

Electrocatalysis is the heart of the electrochemical energy conver-
sion. Renewable energy technologies, such as fuel cells, water splitting, 
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and metal-air batteries, are the promising means 
of the increasing global need of energy, offering 
clean and sustainable energy resources. But the key 
to success is the development of non-noble metal, 
robust, cost effective, and earth-abundant material 
based electrocatalysts that catalyze the reactions 
which take place in renewable energy systems 
such as oxygen reduction reaction (ORR), oxygen 
evolution reaction (OER), and hydrogen evolution 
reaction (HER) with high efficiency and stability. 
Benchmark Pt, Ir, Pd-based and RuO2-based cata-
lysts are generally needed to promote the HER for 
the generation hydrogen fuel from the electrochem-
ical water splitting, the ORR in fuel cells for energy 
conversion and the OER in metal-air batteries for 
energy storage[1]. Nevertheless, their widespread 
adoption is constricted due to the high cost, low sta-
bility, scarcity, and environmental unfriendly nature. 
In the search of earth abundant and benign catalysts 
materials, impressive advances have been made to-
wards the development of nonprecious metal based 
electrocatalysts and their recent results prospect the 
increase of the performance by taking advantage of 
the synergy of carbon nanomaterials and non-pre-
cious metals with the aim of completely or partially 
replacing the precious metal based catalysts (Pt-
based). Basically, the performance of electrocatalyst 
directly depends to the materials properties. There-
fore, materials technologies play a vital role in the 
development of electrochemical energy conversion 
and energy storage systems.

2. The recent development 
of nonprecious metal-based 
electrocatalysts

The various transition metals, in particular Fe, 
Co, and Ni, and their compounds such as transi-
tion-metalsulfides, selenides, nitrides, carbides, 
phosphides, and borides as well as their alloys 
have been shown to be promising catalysts for the 
hydrogen evolution reaction[2]. Recently, some co-
ordination compounds, such as a Ni bisdiphosphine 
based mimic of hydrogenase enzymes[3], CuII eth-
ylenediamine (Cu-EA), polyoxometalate (POM) 
based metal-organic frameworks[4], have also been 
developed as potential for hydrogen evolution. 
Substantial research effort has been devoted to the 

development of OER catalysts based on relatively 
inexpensive transition metals and their compounds, 
including transition-metal oxides, multimetal ox-
ides, metal oxide based hybrids, substituted cobal-
tites (MxCo3-xO4), hydro(oxy)oxides, phosphates, 
diselenide, metal oxide/diselenide hybrids, and 
chalcogenides[5–33], because OER is the half (2H2O 
→ O2 + 4H+ + 4ē) conjunction reaction of HER (2H+ 
+ 2ē → H2). In general, the overall water splitting 
process can be represented as follows, with molec-
ular hydrogen and oxygen generated individually at 
the cathode and anode, respectively.
2H2O + Energy → 2H2 + O2

In addition, ordered Ni5P4 nanoarchitectures 
with a “sheetlike” morphology on a Ni foil were 
synthesized and found to be bifunctional catalysts 
for both the HER and the OER[34]. However, the 
transition-metal-based catalysts are prone to gradual 
oxidation, undesirable changes in the morphology/
crystalline structure, and uncontrolled agglomer-
ation/dissolution when exposed to air or aerated 
electrolytes[35]. For example, the HER activity of 
MoS2 in alkaline electrolytes often deteriorates in 
just a few cycles[36]. Most of the nonprecious-metal 
catalysts have a poor electronic conductivity, and 
hence a limited electrocatalysis performance. To 
overcome this limitation, conductive support of 
carbon nanomaterials such as graphene and carbon 
nanotubes have been used to improve the activi-
ties of these catalysts[37–39]. Examples include Ni/
rGO, Ni/Fe hydroxide nanoplates on CNTs, FeNi 
hydroxide/rGO, NiO/rGO, Co3O4/rGO, Co-CoO/
N-rGO and Ni-NiO/N-rGO composites, metal car-
bides M3C/graphene nanoribbons (M: Fe, Co, Ni), 
Fe@C, MoS2-graphene/carbon nanofiber, MoS2/
N doped graphene, WS2/CNTs, and Co@N-doped 
carbon catalysts[40–46]. Accordingly, a wide range of 
oxide based catalysts have emerged as the materials 
of choice for catalyzing energy conversion reactions 
ORR, OER, and HER, since, their low stability and 
complex preparation process renders widespread 
adoption.

3. The recent development 
of carbon-based metal-free 
electrocatalysts

Among the various non-precious metal-based 
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electrocatalysts have been investigated, carbon ma-
terials are of great interest owing to their abundance, 
stability even in harsh acidic and basic medium, and 
relative environmental-friendliness. However, car-
bon nanomaterials are also not free from disadvan-
tages, for example carbon nanomaterials itself do 
not show catalytic activities unless they are incorpo-
rated with guest noble or transition metals as above 
has been discussed. In the pioneer work of Dai 
and co-worker discovered that vertically-aligned 
nitrogendoped carbon nanotube arrays can act as 
a catalyst for ORR without using metals, and this 
metal-free catalyst shows almost three-times higher 
electrocatalytic activity, much smaller crossover 
effect, and better long-term operational stability 
than those of commercially available platinum/C 
electrodes[47]. Since, the discovery of graphene by 
Novoselov and Geim in 2004, the research on this 
flattish material has received enormous attention. 
This flat sheet is a one-tom-thick layer of sp2-bond-
ed, 2D honeycomb lattice of carbon with a fully 
conjugated structure of alternating C-C and C=C 
bonds. Its unique physicochemical properties make 
this material a promising candidate for a large va-
riety of applications. However, the use of graphene 
for most of the electronic applications often requires 
the precise functionalization of individual graphene 
sheets into various device elements at the molec-
ular level. Therefore, surface functionalization of 
graphene sheets is essential, and researchers have 
devised various covalent and noncovalent chemis-
tries for making graphene materials with the bulk 
and surface properties needed for many potential 
applications including energy conversion and stor-
age. Thus, graphene-based catalysts can hold great 
promise to replace precious-metal catalysts for 
clean energy technologies. However, graphene also 
like other carbon nanomaterials does not show cat-
alytic activities, doped graphene with heteroatoms 
play a crucial role to tune their electronic structure 
and chemical properties which develop the catalytic 
active sites in graphene network, hence, demon-
strate catalytic performance. Doping of graphene 
nanomaterials with heteroatoms, such as N, B, O, 
P, S, Cl, I, Se, and Br, has been performed to be a 
feasible way to tune their electronic structures and 
chemical and electrochemical properties[48–53]. As 

the size and electronegativity of the heteroatoms are 
different from the carbon atoms, the introduction of 
heteroatoms could cause electronic modulation to 
change the charge distribution and electronic prop-
erties of carbon skeletons, which in turn affects their 
interaction with hydrogen or oxygen intermediates 
and ultimately their electrocatalytic activities for the 
OER, HER and ORR[54–56]. 

It is also recently, verified that the carbon 
nanostructure (3D) with tunable defects and porous 
structure like micro, meso, and macro possess ex-
traordinary mass transport capability to facilitate 
metal-free electrocatalysis in energy conversion 
and energy storage applications[57–59]. Metal-free, 
nitrogen and phosphorus co-doped 3D graphitic 
carbon networks have recently been developed by 
using a scalable, one-step process involving the py-
rolysis of a polyaniline aerogel synthesized in the 
presence of phytic acid, which were demonstrated 
to show remarkably high bifunctional electrocata-
lytic activities for ORR and OER simultaneously, 
and in primary and rechargeable Zn-air batteries 
as an air cathode as depicted in Figure 1[60]. Fur-
ther, the same group generate tri-doped graphene 
materials with nitrogen, phosphorus, and fluorine 
doping agents, followed by the thermal pyrolysis of 
polyaniline pre-coated graphene oxide in presence 
of ammonium hexafluorophosphate, and used as an 
efficient tri-functional electrocatalyst for OER and 
HER for electrochemical water splitting, powered 
by a Zn-air battery based on an air electrode with 

Graph shows the trifunctional activities (ORR, OER, and HER) 

of the porous carbon, adopted from Ref[36].
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the same electrocatalyst for ORR, to generate oxy-
gen and hydrogen gases[61].

On the other hand, the construction of an ideal 
electrocatalyst which works for ORR, OER, and 
HER simultaneously is also a crucial. Usually, the 
activities of catalysts vary with pH values[62]. This 
makes the development of integrated energy system 
difficult. A rationally-designed N, S co-doped gra-
phitic sheets with stereoscopic holes, trifunctional 
metal-free electrocatalysts was developed for over-
all water-splitting. In this case, the multifunctional 
electrocatalytic activities for simultaneous ORR, 
OER and HER were ascribed to a synergistic effect 
of the N, S heteroatom co-doping and its unique 

stereoscopic holes structure, which provided a large 
surface area and efficient pathways for electron and 
electrolyte transports[63]. Therefore, these low-cost, 
metal-free, tri-functional electrocatalysts based on 
either tri-doped or co-doped carbon electrocatalysts 
hold great promise for a wide range of applications, 
particularly in integrated energy systems. Despite 
the progress that has been made in carbon based 
electrocatalysts in water splitting technologies in 
recent years, however, these techniques are still in 
nascent stage and facing several challenges to com-
mercial utilization, including high capital costs re-
lated to expensive preparation process of materials 
and a high material consumption insufficient endur-

Figure 1. a) Schematic illustration for the basic configuration of a primary Zn-air battery, in which a carbon paper pre-coated with 

NPMC is used as an air cathode and is coupled with a Zn anode, and a glassy fiber membrane soaked with aqueous KOH electrolyte 

as separator. The enlarged part illustrates the porous air electrode loaded with electrocatalyst, which is permeable to air and oxygen; b) 

Polarization and power density curves of primary Zn-air batteries using Pt/C, NPMC-900, NPMC-1000, NPMC-1100 as ORR cata-

lyst (mass loading of 0.5 mg·cm–2) and 6 M KOH electrolyte (scan rate, 5 mV·s–1); c) Specific capacities of the Zn-air batteries using 

NPMC-1000 as ORR catalyst are normalized to the mass of the consumed Zn; d) Discharge curves of the primary Zn-air batteries 

using Pt/C and NPMC-1000 as ORR catalyst and KOH electrolyte at various current densities (5 and 20 mA·cm–2). The observed 

sudden drop in voltage at 0 h was caused by a sudden increase in current density after resting the battery at the open-circuit potential 

without current loading for the testing; e) Long-time durability of the primary Zn-air battery using NPMC-1000 catalyst at a current 

density of 2 mA·cm–2. The battery is mechanically rechargeable. The Zn and electrolyte were mechanically replaced at the point 

where the color of the curve changes (the numbers represent the first, second, third and fourth charge cycles). Colored symbols above 

the curve are taken from the open-circuit potential by opening the battery for each mechanical recharge; f) Optical images of an LED 

(2.2 V) before and after being driven by two Zn-air batteries in series. Reproduced with permission from Ref[60]. Copyright (2015) by 

Nature Publishing Group.
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ance of its main components, complex system de-
sign and time-consuming production technologies. 
However, there are still big rooms in metal-free 
electrocatalysts for further improvement in terms of 
combined experimental and theoretical approaches 
to understand the location and structure of active 
sites and their work functions. We hope this mini 
review will offer valuable insight to gain further 
knowledge in this area. 
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