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ABSTRACT
Carbon materials are continuing in progress to accomplish the requirements of energy conversion and energy 

storage technologies because of their plenty in nature, high surface area, outstanding electrical properties, and readily 
obtained from varieties of chemical and natural sources. Recently, carbon-based electrocatalysts have been developed in 
the quest to replacement of noble metal based catalysts for low cost energy conversion technologies, such as fuel cell, 
water splitting, and metal-air batteries. Herein, we will present our short overview on recently developed carbon-based 
electrocatalysts for energy conversion reactions such as oxygen reduction, oxygen evolution, and hydrogen evolution 
reactions, along with challenges and perspectives in the emerging field of metal-free electrocatalysts.
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1. Background
Energy requirement is one of the most important issues of our time, 

because of the continue depletion of fossil fuels and associated increas-
ing air pollution. Hydrogen is considered totally non-polluting fuel 
but unlike fossil fuels it does not typically occurs by itself in nature, 
despite being a most abundant element on the earth, therefore, it must 
be generated from chemical source, that contain hydrogen molecules. 
It is observed that the world produces more than 50 billion kilograms 
of hydrogen each year and more than 95 percent generated from fossil 
fuels through steam reformation of natural gas. This process inherent 
additional costs to manufacturers, consumers, and it is environmentally 
unsafe. To avoid future devastation caused by energy collapse, the need 
for renewable energy has engrossed tremendously. In order to make 
effective use of renewable energy, it is imperative to develop high-per-
formance, low-cost, and environmentally friendly energy conversion 
systems. In this regard, water is an ultimate option because it is sustain-
able and readily available. Catalytic water splitting to produce hydro-
gen is an advanced electrochemical technique but water splitting needs 
expensive novel metal based catalysts (e.g., Pt) to accelerate the rate of 
hydrogen production and to lower the energy loss in the process. 

Electrocatalysis is the heart of the electrochemical energy conver-
sion. Renewable energy technologies, such as fuel cells, water splitting, 
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and metal-air batteries, are the promising means 
of the increasing global need of energy, offering 
clean and sustainable energy resources. But the key 
to success is the development of non-noble metal, 
robust, cost effective, and earth-abundant material 
based electrocatalysts that catalyze the reactions 
which take place in renewable energy systems 
such as oxygen reduction reaction (ORR), oxygen 
evolution reaction (OER), and hydrogen evolution 
reaction (HER) with high efficiency and stability. 
Benchmark Pt, Ir, Pd-based and RuO2-based cata-
lysts are generally needed to promote the HER for 
the generation hydrogen fuel from the electrochem-
ical water splitting, the ORR in fuel cells for energy 
conversion and the OER in metal-air batteries for 
energy storage[1]. Nevertheless, their widespread 
adoption is constricted due to the high cost, low sta-
bility, scarcity, and environmental unfriendly nature. 
In the search of earth abundant and benign catalysts 
materials, impressive advances have been made to-
wards the development of nonprecious metal based 
electrocatalysts and their recent results prospect the 
increase of the performance by taking advantage of 
the synergy of carbon nanomaterials and non-pre-
cious metals with the aim of completely or partially 
replacing the precious metal based catalysts (Pt-
based). Basically, the performance of electrocatalyst 
directly depends to the materials properties. There-
fore, materials technologies play a vital role in the 
development of electrochemical energy conversion 
and energy storage systems.

2. The recent development 
of nonprecious metal-based 
electrocatalysts

The various transition metals, in particular Fe, 
Co, and Ni, and their compounds such as transi-
tion-metalsulfides, selenides, nitrides, carbides, 
phosphides, and borides as well as their alloys 
have been shown to be promising catalysts for the 
hydrogen evolution reaction[2]. Recently, some co-
ordination compounds, such as a Ni bisdiphosphine 
based mimic of hydrogenase enzymes[3], CuII eth-
ylenediamine (Cu-EA), polyoxometalate (POM) 
based metal-organic frameworks[4], have also been 
developed as potential for hydrogen evolution. 
Substantial research effort has been devoted to the 

development of OER catalysts based on relatively 
inexpensive transition metals and their compounds, 
including transition-metal oxides, multimetal ox-
ides, metal oxide based hybrids, substituted cobal-
tites (MxCo3-xO4), hydro(oxy)oxides, phosphates, 
diselenide, metal oxide/diselenide hybrids, and 
chalcogenides[5–33], because OER is the half (2H2O 
→ O2 + 4H+ + 4ē) conjunction reaction of HER (2H+ 
+ 2ē → H2). In general, the overall water splitting 
process can be represented as follows, with molec-
ular hydrogen and oxygen generated individually at 
the cathode and anode, respectively.
2H2O + Energy → 2H2 + O2

In addition, ordered Ni5P4 nanoarchitectures 
with a “sheetlike” morphology on a Ni foil were 
synthesized and found to be bifunctional catalysts 
for both the HER and the OER[34]. However, the 
transition-metal-based catalysts are prone to gradual 
oxidation, undesirable changes in the morphology/
crystalline structure, and uncontrolled agglomer-
ation/dissolution when exposed to air or aerated 
electrolytes[35]. For example, the HER activity of 
MoS2 in alkaline electrolytes often deteriorates in 
just a few cycles[36]. Most of the nonprecious-metal 
catalysts have a poor electronic conductivity, and 
hence a limited electrocatalysis performance. To 
overcome this limitation, conductive support of 
carbon nanomaterials such as graphene and carbon 
nanotubes have been used to improve the activi-
ties of these catalysts[37–39]. Examples include Ni/
rGO, Ni/Fe hydroxide nanoplates on CNTs, FeNi 
hydroxide/rGO, NiO/rGO, Co3O4/rGO, Co-CoO/
N-rGO and Ni-NiO/N-rGO composites, metal car-
bides M3C/graphene nanoribbons (M: Fe, Co, Ni), 
Fe@C, MoS2-graphene/carbon nanofiber, MoS2/
N doped graphene, WS2/CNTs, and Co@N-doped 
carbon catalysts[40–46]. Accordingly, a wide range of 
oxide based catalysts have emerged as the materials 
of choice for catalyzing energy conversion reactions 
ORR, OER, and HER, since, their low stability and 
complex preparation process renders widespread 
adoption.

3. The recent development 
of carbon-based metal-free 
electrocatalysts

Among the various non-precious metal-based 
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electrocatalysts have been investigated, carbon ma-
terials are of great interest owing to their abundance, 
stability even in harsh acidic and basic medium, and 
relative environmental-friendliness. However, car-
bon nanomaterials are also not free from disadvan-
tages, for example carbon nanomaterials itself do 
not show catalytic activities unless they are incorpo-
rated with guest noble or transition metals as above 
has been discussed. In the pioneer work of Dai 
and co-worker discovered that vertically-aligned 
nitrogendoped carbon nanotube arrays can act as 
a catalyst for ORR without using metals, and this 
metal-free catalyst shows almost three-times higher 
electrocatalytic activity, much smaller crossover 
effect, and better long-term operational stability 
than those of commercially available platinum/C 
electrodes[47]. Since, the discovery of graphene by 
Novoselov and Geim in 2004, the research on this 
flattish material has received enormous attention. 
This flat sheet is a one-tom-thick layer of sp2-bond-
ed, 2D honeycomb lattice of carbon with a fully 
conjugated structure of alternating C-C and C=C 
bonds. Its unique physicochemical properties make 
this material a promising candidate for a large va-
riety of applications. However, the use of graphene 
for most of the electronic applications often requires 
the precise functionalization of individual graphene 
sheets into various device elements at the molec-
ular level. Therefore, surface functionalization of 
graphene sheets is essential, and researchers have 
devised various covalent and noncovalent chemis-
tries for making graphene materials with the bulk 
and surface properties needed for many potential 
applications including energy conversion and stor-
age. Thus, graphene-based catalysts can hold great 
promise to replace precious-metal catalysts for 
clean energy technologies. However, graphene also 
like other carbon nanomaterials does not show cat-
alytic activities, doped graphene with heteroatoms 
play a crucial role to tune their electronic structure 
and chemical properties which develop the catalytic 
active sites in graphene network, hence, demon-
strate catalytic performance. Doping of graphene 
nanomaterials with heteroatoms, such as N, B, O, 
P, S, Cl, I, Se, and Br, has been performed to be a 
feasible way to tune their electronic structures and 
chemical and electrochemical properties[48–53]. As 

the size and electronegativity of the heteroatoms are 
different from the carbon atoms, the introduction of 
heteroatoms could cause electronic modulation to 
change the charge distribution and electronic prop-
erties of carbon skeletons, which in turn affects their 
interaction with hydrogen or oxygen intermediates 
and ultimately their electrocatalytic activities for the 
OER, HER and ORR[54–56]. 

It is also recently, verified that the carbon 
nanostructure (3D) with tunable defects and porous 
structure like micro, meso, and macro possess ex-
traordinary mass transport capability to facilitate 
metal-free electrocatalysis in energy conversion 
and energy storage applications[57–59]. Metal-free, 
nitrogen and phosphorus co-doped 3D graphitic 
carbon networks have recently been developed by 
using a scalable, one-step process involving the py-
rolysis of a polyaniline aerogel synthesized in the 
presence of phytic acid, which were demonstrated 
to show remarkably high bifunctional electrocata-
lytic activities for ORR and OER simultaneously, 
and in primary and rechargeable Zn-air batteries 
as an air cathode as depicted in Figure 1[60]. Fur-
ther, the same group generate tri-doped graphene 
materials with nitrogen, phosphorus, and fluorine 
doping agents, followed by the thermal pyrolysis of 
polyaniline pre-coated graphene oxide in presence 
of ammonium hexafluorophosphate, and used as an 
efficient tri-functional electrocatalyst for OER and 
HER for electrochemical water splitting, powered 
by a Zn-air battery based on an air electrode with 

Graph shows the trifunctional activities (ORR, OER, and HER) 

of the porous carbon, adopted from Ref[36].
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the same electrocatalyst for ORR, to generate oxy-
gen and hydrogen gases[61].

On the other hand, the construction of an ideal 
electrocatalyst which works for ORR, OER, and 
HER simultaneously is also a crucial. Usually, the 
activities of catalysts vary with pH values[62]. This 
makes the development of integrated energy system 
difficult. A rationally-designed N, S co-doped gra-
phitic sheets with stereoscopic holes, trifunctional 
metal-free electrocatalysts was developed for over-
all water-splitting. In this case, the multifunctional 
electrocatalytic activities for simultaneous ORR, 
OER and HER were ascribed to a synergistic effect 
of the N, S heteroatom co-doping and its unique 

stereoscopic holes structure, which provided a large 
surface area and efficient pathways for electron and 
electrolyte transports[63]. Therefore, these low-cost, 
metal-free, tri-functional electrocatalysts based on 
either tri-doped or co-doped carbon electrocatalysts 
hold great promise for a wide range of applications, 
particularly in integrated energy systems. Despite 
the progress that has been made in carbon based 
electrocatalysts in water splitting technologies in 
recent years, however, these techniques are still in 
nascent stage and facing several challenges to com-
mercial utilization, including high capital costs re-
lated to expensive preparation process of materials 
and a high material consumption insufficient endur-

Figure 1. a) Schematic illustration for the basic configuration of a primary Zn-air battery, in which a carbon paper pre-coated with 

NPMC is used as an air cathode and is coupled with a Zn anode, and a glassy fiber membrane soaked with aqueous KOH electrolyte 

as separator. The enlarged part illustrates the porous air electrode loaded with electrocatalyst, which is permeable to air and oxygen; b) 

Polarization and power density curves of primary Zn-air batteries using Pt/C, NPMC-900, NPMC-1000, NPMC-1100 as ORR cata-

lyst (mass loading of 0.5 mg·cm–2) and 6 M KOH electrolyte (scan rate, 5 mV·s–1); c) Specific capacities of the Zn-air batteries using 

NPMC-1000 as ORR catalyst are normalized to the mass of the consumed Zn; d) Discharge curves of the primary Zn-air batteries 

using Pt/C and NPMC-1000 as ORR catalyst and KOH electrolyte at various current densities (5 and 20 mA·cm–2). The observed 

sudden drop in voltage at 0 h was caused by a sudden increase in current density after resting the battery at the open-circuit potential 

without current loading for the testing; e) Long-time durability of the primary Zn-air battery using NPMC-1000 catalyst at a current 

density of 2 mA·cm–2. The battery is mechanically rechargeable. The Zn and electrolyte were mechanically replaced at the point 

where the color of the curve changes (the numbers represent the first, second, third and fourth charge cycles). Colored symbols above 

the curve are taken from the open-circuit potential by opening the battery for each mechanical recharge; f) Optical images of an LED 

(2.2 V) before and after being driven by two Zn-air batteries in series. Reproduced with permission from Ref[60]. Copyright (2015) by 

Nature Publishing Group.
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ance of its main components, complex system de-
sign and time-consuming production technologies. 
However, there are still big rooms in metal-free 
electrocatalysts for further improvement in terms of 
combined experimental and theoretical approaches 
to understand the location and structure of active 
sites and their work functions. We hope this mini 
review will offer valuable insight to gain further 
knowledge in this area. 
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