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ABSTRACT 

Aldehyde, 1,2-diketones, and acid were prepared by copper-catalyzed oxidation of phenyl propyne, using t-

BuOOH as the oxidant, heterogeneously. Aldehyde is formed as a major product under neutral conditions. Under mild 

conditions, catalysis was carried out using catalytic amounts of [Cu(L)Br] with N-methyl benzimidazolyl Schiff base 

ligand and stoichiometric amounts of oxidant in CH3CN. The several properties of the catalyst were characterized by 

using UV-Vis, FT-IR, PXRD, CV, and Electron paramagnetic resonance techniques. Comparative SEM measurement 

of catalyst before and after the catalysis shows that the morphology and size of rods affect the catalytic efficiency. The 

percentage yields of products were determined by GC-MS. 

Keywords: Copper complex; N-methyl benzimidazolyl Schiff base; phenylproyne; heterogeneous catalysis 

1. Introduction 

Now a days diketones, aldehyde, alcohol, and acid have various 

application in pharmaceutical chemistry, flavouring industry, 

cosmetics industry, fragrances and flavors, organic transformation 

etc.[1–10]. Due to wide application in diverse field it is important to 

prepare. Previous studies suggest the formation of 1,2-diketone from 

the oxidation of alkynes is the most common and useful 

phenomenon[11–16]. The 1,2-diketones have numerous biological 

activities[15,16] due to their structural moieties[17,18] and they also act as 

precursors for various ligands like diols[19], NHC[20] and diamines[21]. 

These compounds are largely used for the production of expanded 

compounds[22] and also utilized as photoinitiators in the curing of 

polymer networks[23]. Wacker process, epoxidation and allylic 

oxidation results in the formation of aldehyde, ketone, and 

corresponding acid that are important precursors and used for the 

preparation of valuable intermediates that are extensively used in 

agriculture, medicine, and fine chemical industry[24–28]. Various 

copper(II) complex is used for selective oxidation of olefins 

homogeneous[29–31]  and heterogeneously[32–34] using TBHP and H2O2 

as oxidants. The copper based catalyst for the oxidation of alkynes 

has not been much explored to date[35–39]. Oxidation of alkynes using 

the Cu-catalyzed mechanism is highly efficient[40]. In recent years, 

researchers focus to develop simple, effective, and eco-friendly 
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catalysts[41] for the oxidation process along with growing interest in promoting heterogeneous catalysts[42]. 

Here, we describe a method to synthesize diketones, aldehyde and acid from phenylpropyne using t-BuOOH 

as an oxidant, and using Cu(II) complex of N-methyl benzimidazolyl Schiff base ligands, heterogeneously. 

So we design a catalyst that is used to prepare aldehyde, ketones and acid in a selective manner, 

heterogeneously. We also focus on changing the catalytic properties during catalysis by using SEM. We also 

analyzed the morphology and identification of the lattice of reused catalyst using SEM and PXRD techniques 

2. Experimental section 

2.1. Materials and method 

Glycine-98%(Merck), N-Methyl-o-Phenylenediamine-98% (Thomas Baker), K2CO3-99% (Thomas 

Baker), 1-phenylpropyne-99% (Merck), 2-Hydroxy-1-Naphaldehyde-98% (Alfa-Aesar), CuBr2-99% (Sigma 

Aldrich) and 70% (t-BuOOH) (Lancaster). (N-Me-GB.2HCl) was prepared[43]. 

2.2. Synthesis of ligand 

The Schiff base ligand [C20H17N3O] was synthesized and single crystal structure of this ligand was 

obtained in MeCN: MeOH (3:2) as reported earlier is having a CCDC no. 932006[43]. After neutralizing the 

solution of N-methyl 2-aminomethyl benzimidazolyl dihydrochloride by K2CO3, solution in methanol of 2-

hydroxy-1-naphthaldehyde is slowly added with constant stirring at RT. Yellow solid is separated out after 

15 mins of constant stirring. This solid was filtered, dried over P2O5 and recrystallized from CH3CN Scheme 
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Scheme 1. Synthesis of Schiff base ligand. 

2.3. Synthesis of copper complex [Cu(L)Br] 

The Ligand (0.317 mmol) are soluble in methanol (10 mL), then add CuBr2 (0.317 mmol), dissolved in 

minimum amount of methanol at RT. During addition with constant stirring, a green solid product is formed 

immediately. The product was filtered and air dried in vacuo over P2O5. The compound analyzed initially by 

weighing and taking the melting point C20H16BrCuN3O. Yield: 84%; m.p.: 192 ℃. 

UV-Vis λmax/nm(log ε) in DMF: 273(4.3), 280(4.3), 317(4.1), 395(3.9), 640(2.1). 

Anal. Found (Calc.) for C20H16N3OCuBr: C 51.2(52.4), H 3.3(3.4), N 9.0(9.1). 

Selected IR (KBr, cm−1) ν(-C=N-C=C-) 1419, ν(NH)(H-bonded) 3164, ν(C=N) 1619, νbenzene strech 742. 

2.4. Instrumentations 

IR spectra were recorded in the range of 400–4000cm−1on a Perkin-Elmer FT-IR-2000 spectrometer 

using KBr discs. Elemental analysis obtained on VARIO EL III from University science instrumentation 

center, University of Delhi, India. UV-Vis spectra recorded in a Shimadzu UV-Vis-1601 spectrometer in 

DMF. The morphological changes of the complex were studied using SEM with gold coating (Model FEI 

Quanta 200F with oxford–EDS system IE 250 X Max 80) in SMITA research lab IIT Delhi, India. GC-MS 

spectra recorded at AIRF, JNU, New Delhi (GCMS-QP2010 (plus) Schimadzu). The PXRD patterns were 

recorded over the range of 2θ = 5°‒35° using High resolution D8 Discover Bruker diffractometer, equipped 
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with point detector (scintillation counter), employing monochromatized Cu Kα1 radiation with a scan rate of 

1.0 second/step and step size 0.02° at 298 K. 

3. Results and discussion 

3.1. Le-Bail fitting pattern of copper complex 

Powder XRD for the Cu(II) complex studied are used for the identification of phase, crystallinity and 

unit cell dimensions. To determine the nature of bonding or geometry we can do the Le-Bail fitting of 

observed Powder-XRD pattern of this copper(II) complex are observed by using the crystal parameters of 

comparable copper(II) complex with CCDC no. is 932004 [Unpublished work[44]. 

The Le-Bail fitting pattern suggests a Triclinic P-1 symmetry in which the Schiff base ligand is coordinated 

in a tridentate manner (N,N,O) via the imine N, azomethine (–C=NH–) and a deprotonated oxygen of 2-
napthanol. The fourth coordination is occupied by exogenous anion (Br-) ion, forming distorted square plane. 

The bond length of copper with exogenous anion (Br-) is elongated than the remaining three bonds with 

NNO contributing to the distortion in the square planer geometry[45,46]. Table 1 shows the value of lattice 

constants obtained after the Le-Bail fitting. Figure 1 shows the Le-Bail Fitting of the [Cu(L)Br] catalyst. 

Table 1. Le-Bail Fitting parameter of the [Cu(L)Br] complex. 

Crystal Space group A B c α β Γ 

Triclinic P-1 9.1807 8.2059 10.1717 74.8574 75.2713 64.5944 

 
Figure 1. Le-Bail Fitting of the [Cu(L)Br] catalyst. 

3.2. Electronic spectroscopy and IR studies 

The electronic spectral data of the copper complex is given in experimental section. The UV spectra of 

the ligand show three absorption band in the range of 271–306 nm[43] In complex the band at 273 nm and 280 

nm correspond to π-π* transition characterizing the benzimidazole group while the band at 317 nm is assign 

to the n-π* transition fuses with an additional broad band due to the LMCT from the napthanol oxygen to a 

vacant d-orbital of copper ion[47]. Due to d9 configuration of copper(II) a broad but a much less intense d-d 

band is observed at 640 nm[43] (Figure 2). 
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Figure 2. UV-Visible spectra of [Cu(L)Br] catalyst. 

The IR spectra of the copper complex has characteristic IR band at 1619 cm−1 due to ν (C=N) indicating 

a coordination of azomethine nitrogen and imine nitrogen to the copper[48–53]. The band between 1419 cm−1 

and 742 cm−1 is assigned to ν(C=N–C=N) stretching of the benzimidazole group[54]. During complexation, the 

band moves towards the lower wave number by 20–30 cm−1. The characteristic stretching frequency for the 

coordination anion is also observed. 

3.3. Cyclic voltametric studies 

Cyclic voltammograms of the [Cu(L)Br] were studies in a mixture of MeCN: DMSO (3:2) solution with 

tetrabutylammonium perchlorate (TBAP) as supporting electrolyte at room temperature. The three electrode 

assembly: (i) glassy carbon as working electrode; (ii) Pt wire as auxiliary electrode; (iii) Ag/AgNO3 as reference 

electrode. The [Cu(L)Br] shows a quasi-reversible peak for the couple: Cu(II) ↔ Cu(I)[41] (Figure 3). 

 
Figure 3. Cyclic Voltammogram Spectra of [Cu(L)Br] catalyst. 

3.4. EPR studies 

X-Band EPR spectrum of the catalyst was recorded in DMF at 77 K as shown in Figure 4. The spin 

Hamiltonian parameter for the copper complex is calculated from the spectra. The copper nucleus with nuclear 

spin I = 3/2 for the unpaired electron and produces a hyperfine splitting (2nI+1) into four components. However 

the present complex, spectra show less than four lines and a broadening of g⊥ line, indicating a distortion of the 

planer geometry[43]. They do not show a four line hyperfine pattern and their EPR spectra have been analyzed as 

given by Kneubühl[55]. The corresponding g1 = 2.05 and g2 = 2.17 values shows that the complex is axial 
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electronic structure[56]. g⊥ > gǁ indicates an electron lies in dx
2
-y

2 orbital. g > 2 axial structure its means the 

anion is attached to Cu2+ in axial site[56]. The peak at 3000 G belong to originates from delocalized electrons 

in the 1Se state[57]. 

 
Figure 4. EPR Spectra of [Cu(L)Br] catalyst. 

3.5. Catalytic activity studies 

The Cu(II) catalyst was used heterogeneously for the oxidation of phenyl propyne to its corresponding 

carbonyl compound, aldehyde and acid with t-BuOOH as an alternative source of oxygen. In a typical 

reaction, catalyst (0.0218 mmol), phenyl propyne (0.1092 mmol) and oxidant (0.1092 mmol, 70%) in ratio of 

[1:5:5] were mixed in 15 mL CH3CN and stirred at 35 ℃–40 ℃ for 10 hrs. The growth of the reaction was 

monitored by using TLC. The development of DNP derivative in TLC confirms the formation of 

corresponding carbonyl compound during reaction. After completion, reaction mixture was centrifuged to 

isolate the copper(II) catalyst. To checked the dissolution of copper catalyst during catalysis, UV-Vis spectra 

of the filtrate was taken, no band in the visible range of 500–900 nm was observed ruling out the possibility 

of any dissolution of the copper(II) catalyst[43]. The clear filtrate was diluted and subjected to GC-MS to 

analyze the products obtained using naphthalene as an internal standard. To study the effect of pH, we have 

doen this catalysis in acidic and basic condition by using Acidic buffer (sodium acetate + acetic acid) and 

basic buffer (ammonia and ammonium chloride). The results shows that the maximum percentage 

conversion was obtained at pH = 10 that is 69% (Table 2). Blank experiments were similarly processed out 

in absence of catalyst that’s shows only 3% conversion while in presence of CuBr2 salt 11% conversion of 

product take place keeping other similar conditions of reaction is same. Oxidation of alkynes leads to 

Cu(II)/Cu(I) as the reduction mechanism. The coordination of Cu(II) with C–C triple bond leads the C–H 

activation and removal of hydrogen and formation of Cu-carbon bond, subsequently electron transmission 

breaks the Cu-carbon bonds and oxidation take place. In basic medium C–H activation and deprotonation 

will occurs at faster rate as compared in acidic and neutral condition, so the percentage conversion is greater 

in basic condition[34] Scheme 2. 

O

O

CHO

Hetrogeneous

catalyst
Cu(L)Br  

Scheme 2. Oxidation of phenyl propyne to a corresponding diketonic and acetylenic aldehyde. 
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Table 2. Percentage conversion of products using complex [Cu(L)Br] at different condition with (t-BuOOH) as oxidant. 

pH Products % Conversion Total conversion (%) 

10.0 Ph–CΞC–CHO 37 69% 

Ph–COOH 17 

Ph–CO–CO–CH3 15 

7.0 Ph–CΞC–CHO 23 47% 

Ph–COOH 13 

Ph–CO–CO–CH3 11 

5.5 Ph–CΞC–CHO 25 52% 

Ph–COOH 15 

Ph–CO–CO–CH3 12 

The overall percentage conversion to oxidized products produced by employing tu-BOOH in neutral 

conditions is 47%, whereas Cu(I)NCS complex of 1-(((1-methyl-1H-benzo[d]imidazol-2-

yl)methylimino)methyl)naphthalen-2-ol Schiff base offers 33% conversion in identical conditions. Under 

basic conditions, the total percentage conversion to oxidized products obtained by using tu-BOOH is 69%, 

while Cu(II)NO3 complex of 1-(((1-methyl-1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol 

Schiff base provides 81% conversion under similar conditions. Under acidic conditions, the total percentage 

conversion from Cu(L)Br is 52%, while Cu(II)NO3 complex of 1-(((1-methyl-1H-benzo[d]imidazol-2-

yl)methylimino)methyl)naphthalen-2-ol Schiff base provides 69% conversion under similar conditions[37]. 

3.6. SEM Analysis  

The effect of morphology on catalytic oxidation of phenylpropyne analyzed using SEM measurement. 

Initially, the catalyst was found to hold rod-type morphology and the greatest catalytic performance with 

69% conversion of phenylpropyne to corresponding diketones, aldehyde and acid was obtained at pH = 10. 

Most of the rods are flat and the length of rods lies in the ranges of 1.01–1.30 μm (Figure 5A). Moreover, to 

analyze morphological changes of catalyst during catalysis, sample has been prepared through gold coated 

and analyzed using SEM measurement. After used in the catalytic cycle, 70% of the rods are found to 

conjoin together, possibly due to augmentation to cluster formation (Figure 5B). Subsequently, the reuse of 

catalyst in catalysis shows 47% conversion under the same condition only. SEM studies showed 

agglomeration upon reused catalyst decreases the catalytic activity due to changes in the catalyst’s surface 

and it affects the catalytic activity. Therefore, it corroborates that the morphology and exposed crystal face of 

the catalyst play an important role in an alkynes oxidation reaction and the rod shows superior catalytic 

activity[58–61]. 

 
Figure 5. Variation in the morphology of the Cu(L)Br catalyst during catalysis: (A) pure catalyst; (B) after reaction with 
phenylpropyne. 
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4. Conclusion 

In summary, we have established a protocol for the production of diketones, aldehydes, and acid from 

alkynes using copper complex with N-Methyl substituted benzimidazolyl Schiff base ligand having NNO 

binding sites, heterogeneously. Under mild conditions, relatively safe oxidant, one-pot synthesis, and wide 

substrate scope render this method a leading substitute to previous approaches. We can reuse this 

heterogeneous catalyst for the oxidation of alkynes. We found this heterogeneous catalyst efficiently 

oxidizes internal carbon-carbon triple bonds through the formation of an “oxirene” which undergoes 

rearrangement and forms diketones and C–H bond activation leads to the creation of aldehyde and 

corresponding acid. Our result suggests that the synthesized catalyst reacts more rapidly with aromatic 

alkynes rather than the aliphatic. The percentage conversion shows that the catalytic activity depends upon 

the morphology of the catalyst and chemical changes. Therefore, it confirms that the importance of the 

catalyst's morphology and size of rods for the oxidation of aromatic alkynes in the heterogeneous catalysis 

process. 
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