ORIGINAL RESEARCH ARTICLE

Study on catalytic properties of graphene/molybdenum sulfide under near-infrared light irradiation

Huan Zhang^{1,2}, Shouqing Liu^{1,2*}

¹ School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China. E-mail: Shouqing_liu@163.com

² Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou, Jiangsu 215009, China.

ABSTRACT

Graphene/MoS₂ hybrid material was prepared by the hydrothermal method. The hybrid material was characterized by X-ray diffraction spectrum, Raman spectra, transmission electron microscope and UV-vis-NIRS. It was used as a near-infrared photocatalyst to catalyze and degrade Rhodamine B (RhB). The results showed that when the concentration of the RhB solution was 50.0 mg·L⁻¹, the pH value of the solution was 7, the volume of the solution was 50.0 mL, the amount of G/MoS₂ catalyst was 0.05 g and near-infrared radiation was carried out for 3 h, the degradation rate of RhB in the 50 mL solution reached 96.5%. When MoS₂ was used as the photocatalyst, the degradation rate of RhB was only 75.5%. After 5 times of recycling, the catalytic efficiency of the hybrid photocatalyst was still more than 90%, indicating that the catalyst is very stable.

Keywords: G/MoS2; Hybrid Catalyst; Near-Infrared Light; Photocatalysis

ARTICLE INFO

Received: 24 October 2021 Accepted: 29 December 2021 Available online: 12 January 2022

COPYRIGHT

Copyright © 2022 Huan Zhang, *et al.* doi: 10.24294/ace.v5i1.1402 EnPress Publisher LLC. This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). https://creativecommons.org/licenses/by-nc/4 .0/

1. Introduction

The use of solar energy to solve environmental energy originated in 1972 when Fujishima used TiO₂ optoelectrode to electrolyze water for hydrogen production^[1]. Then Carey reported that TiO₂ photocatalytic oxidation was used to eliminate the toxicity of polychlorinated diphenol in 1976^[2]. Since then, the degradation of environmental pollutants by solar energy has rapidly become a research hotspot. However, TiO₂ can only use ultraviolet accounting for about 4% of solar energy to dope TiO₂^[3-5] and develop new catalysts such as Fe₂O₃, WO₃ and $Bi_2WO_6^{[6,7]}$. Although the utilization of visible light is partially solved, infrared accounting for nearly 50% of solar energy needs to be developed and utilized. While visible light photocatalysis continues to be concerned, in recent years, people have begun to promote the research frontier of photocatalysis to the utilization of near-infrared light. It has been reported that hydrogen was prepared by photocatalysis with In_2TiO_5 as catalyst and near-infrared light as driving force^[8]; g-C₃N₄ was sensitized with phthalocyanine and hydrogen was prepared by near-infrared light radiation^[9]; Tang, et al. used NaYF₄:Yb and Tm as up-conversion materials to convert near-infrared light into ultraviolet that can be absorbed and utilized by TiO2, and degraded methylene blue through TiO₂ photocatalysis^[10]; Li, et al. formed a composite nanostructure with carbon quantum dots and Cu₂O, which can degrade organic dyes by near-infrared photocatalysis^[11].

In recent years, two-dimensional materials have attracted extensive attention because of their good optical and electrical properties^[12]. MoS₂ is similar to graphene and has a two-dimensional planar structure^[13]. The hydrogen production property of MoS₂ (a semiconductor photocatalyst) under visible light radiation has been studied^[14–21]. In the application of near infrared, literature only reported the research of MoS₂ for photothermal drug releasing in the treatment of cancer^[22]. As a semiconductor material, MoS₂ has an indirect band gap of 1.29 $eV^{[23]}$. The theoretical absorption sideband can extend to 961 nm and can absorb near infrared, which provides a scientific foundation for near-infrared photocatalysis.

On the other hand, graphene (G) is a hot spot in the study of carbon materials in recent years. It is a two-dimensional monatomic layer material, and its basic structural unit is a six-membered ring^[24,25]. Each carbon atom in G-structure provides a p orbital electron to form an delocalized π bond, and the P electron can move freely, making G have good conductivity^[26]. The combination of G and MoS₂ is expected to prepare the G/MoS₂ hybrid photocatalyst with catalytic activity for near infrared, and to make full use of solar energy.

This paper adopted the hydrothermal method to prepare the G/MoS_2 photocatalyst and used RhB as a simulated pollutant to study the law of near-infrared photocatalytic degradation of RhB.

2. Experiment

2.1 Preparation of a G/MoS₂ nanocomposite semiconductor material

2.1.1 Preparation of MoS₂

Add 1.21 g NaMoO₄·2H₂O (0.005 mol) and 1.56 g (NH₂)₂CS (0.020 mol) into a 100 mL beaker; stir until they are completely dissolved, and then transfer them to a polytetrafluoroethylene hydrothermal reactor. Add deionized water to 80% of the total volume of the reactor, seal the reactor, heat it to 200 °C and react for 24 hours. Then cool the sample at room temperature and wash it with deionized water to remove the soluble substances. The black solid powder was obtained and dried in an oven at 40 °C for 6 h to obtain the MoS₂ semiconductor material.

2.1.2 Synthesis of graphite oxide (GO)

Accurately weigh 2.0 g of graphite and 1.0 g of NaNO₃ into a 200 mL beaker and add 50 mL of concentrated H₂SO₄, then add 6.0 g of KMnO₄, and react for 2 h at a temperature lower than 20 °C. Then raise the temperature to 35 °C for 35 min; add a certain amount of deionized water to the reaction system, stir continuously for 20 min, then reduce the residual potassium permanganate with 60 mL of 5% H₂O₂ until the solution turns bright yellow. Filter it while it is hot, wash with 5% HCl and deionized water until there is no SO₄^{2–}, and fully dry in a 60 °C vacuum drying oven to obtain GO sample for standby.

2.1.3 Preparation of G/MoS₂

In the process of synthesizing MoS_2 , G/MoS_2 nano hybrid materials with different G contents were obtained by adding GO with mass fractions of 1%, 3%, 5%, 7% and 9% respectively into the mixed solution of NaMoO₄·2H₂O and (NH₂)₂CS and carrying hydrothermal reaction at 200 °C for 24 h.

2.1.4 Preparation of the RhB solution

Weigh 0.1 g of RhB and fix the volume to 100 mL to obtain the RhB solution with a concentration of 1 mg·mL⁻¹.

2.1.5 Characterization analysis

The samples were characterized by an X-ray diffractometer (XRD, D/max 2500 pC), a transmission electron microscope (TEM, Tecnai G220), a fourier transform infrared spectrometer (Spectrum BX, PerkinElmer Ltd, USA), an ultravio-let/visible/near infrared spectrophotometer (UV–Vis, U–4100) and a Raman spectrometer (LabRAMHR800, France).

2.2 Photocatalytic reaction

Use a 100 mL round-bottom beaker as a photoreactor and wrap the four walls of the beaker with tin foil paper to prevent ultraviolet and visible light from entering the reaction system. A cut-off filter with $\lambda > 780$ nm is covered on the beaker mouth to ensure that only near-infrared light radiation enters the photoreactor. Place a 300 W UV-Vis lamp above the reactor, add a certain amount of catalysts to the RhB solution of a certain concentration, magnetically stir, sample every 20 minutes during the reaction, centrifuge, and determine the absorbance of RhB at 554 nm with an UV-Vis spectrophotometer to calculate the degradation rate of RhB.

Degradation rate of RhB = $(1 - C_i/C_0) \times 100\% = (1 - A_i/A_0) \times 100\%$

In the formula, C_0 is the initial concentration of RhB; A_0 is the absorbance of the initial solution, C_i is the concentration of remaining RhB, and A_i is the absorbance of remaining RhB.

3. Results and discussion

3.1 X-ray powder diffraction characterization

Figure 1 shows the XRD powder diffraction spectra of samples of MoS₂, GO, G and G/MoS₂. The diffraction peaks at $2\theta = 14.2^{\circ}$, 33.5° , 39.5° and 59.0° correspond to (002), (100), (103) and (110) crystal plane indexes of MoS₂ respectively. The diffraction peaks of MoS₂ and G/MoS₂ are consistent with the standard spectrum (JCPDS37-1492). Therefore, it can be determined that the obtained sample is MoS₂ (space group: $P_3^{-6}/\text{mmc})^{[27]}$.

Curve (b) in **Figure 1** is the diffraction spectrum of GO. The characteristic diffraction peak of GO appears at 8.5°, indicating that a large number of oxygen-containing functional groups are introduced into the graphite interlayer^[28,29]. Curve (c) is the diffraction pattern of graphene after hydrothermal reduction. Compared with curve (b), it can be seen that the original diffraction peak at 8.5° disappears and a diffraction peak appears at $2\theta = 24.4^{\circ}$. The peak shape is dispersed and wide, indicating that after hydrothermal treatment, the functional groups on the GO surface are gradually reduced to obtain the assembly structure formed by single or few G-layers. The integrity of the crystal structure decreases and the degree of disorder increases^[28,30].

Curve (d) is the G/MoS₂ diffraction spectrum. Compared with MoS₂, the crystal plane index of MoS₂ appears at the same position, and the characteristic diffraction peak of G appears at 25.4°. The displacement of the peak position may be caused by the introduction of MoS₂.

Figure 1. X-ray powder diffraction spectra of samples.

3.2 Raman spectra characterization

MoS₂ unit cells are stacked according to hexagonal symmetry and belong to D_{6h}^{4} space group (P_{3}^{6}/mmc) . According to the symmetry, MoS₂ has four Raman active vibration modes: E_{2g}^{2} , E_{1g} , E_{2g}^{1} , $A_{1g}^{[31]}$. It can be seen from **Figure 2(a)** that the Raman peaks at 385 cm⁻¹ and 408 cm⁻¹ belong to E_{2g}^{1} and A_{1g} vibration respectively, which further indicates that the prepared sample is MoS₂.

Figure 2(b) and Figure 2(c) represent the Raman spectra of GO and GO treated by hydrothermal reduction respectively. GO and reduced-GO materials have two important characteristic bands near wave numbers of 1335 cm^{-1} and 1600 cm^{-1} , namely D-band and G-band. G-band is the E_{2g} vibration mode of GO, which corresponds to the sp^2 hybridization of carbon atoms. D-peak is generated by the stretching vibration of sp³ hybrid C-C single bond, which is a measure of defects and disorder of G. The intensity ratio (I_D/I_G) of the two is often used to characterize the disorder degree of the structure. By calculating, the I_D/I_G of GO is 1.27 and that of G is 1.88, showing that G after hydrothermal treatment becomes a single-layer or few layers of G-sheets; the average size of sp^2 plane domain decreases and the disorder degree increases^[32].

Figure 2(d) is the Raman spectrum of G/MoS₂. The characteristic E_{2g}^{1} and A_{1g} vibration modes of MoS₂ appear. At the same time, the Raman peaks of G of 1600 cm⁻¹ and 1335 cm⁻¹ also appear, which further indicates the successful recombination of G and MoS₂.

3.3 Transmission electron microscope

Figure 3(A) shows the TEM diagram of G. It can be seen from Figure 3 that G is in a sheet structure, which also shows that G is synthesized by this method. Figure 3(B) is the TEM diagram of MoS_2 with a layer spacing of 0.629 nm, which is the surface spacing of (002), indicating that the material is a MoS_2 semiconductor. Figure 3(C) is the TEM diagram of the G/MoS₂ hybrid material. As can be seen from Figure 3, the sub-grain of (002) surface is clearly visible, surrounded by G-carbon material, which shows that G and MoS_2 form a hybrid material with s close structure.

(A) TEM diagram of G;

(B) TEM diagram of MoS_2 ; (C) TEM diagram of G/MoS_2 Figure 3. TEM diagrams of samples.

3.4 UV-vis-infrared reflectance characteriza-tion

Figure 4. UV-vis-near-infrared reflectance spectra of samples.

Figure 4 shows the reflectance spectra of MoS_2 , G/MoS_2 and G samples. It can be seen from Figure 4 that the two samples not only have a strong absorption peak near 300 nm, but also have an obvious absorption peak between 500–850 nm, so the samples have good absorption performance in the ultraviolet and visible regions. Because MoS_2 supports G, the absorption band of composite

 G/MoS_2 has red-shift and has good absorption in the near-infrared region. Therefore, G greatly improves the utilization of solar energy by the catalyst.

4. The degradation experiment of RhB

4.1 Photocatalytic degradation of RhB

Figure 5 shows the curve of G/MoS_2 photocatalytic degradation of RhB under near-infrared light radiation. Curve (a) shows that the degradation rate of RhB reaches 96.5% at 3 h. The comparative experiment shows that when there is no hybrid catalyst, even if the RhB solution with the same concentration is directly irradiated by infrared light, the degradation rate of RhB under the same conditions is only 4.3%, as shown in curve (d). Therefore, comparing curve (a) with curve (d), it can be seen that the hybrid material G/MoS_2 plays an important role in the degradation of RhB by near-infrared light. 0.05 g G/MoS_2 catalyst was placed in the same concentration of RhB solution, and 30.3% RhB was adsorbed on the catalyst surface after 3 h without light, as shown in curve (c). Under the same conditions, when using one group MoS_2 as the catalyst, the degradation rate of RhB is only 75.5%, as shown in curve (b), while the degradation rate of RhB using hybrid catalysts composed of G/MoS_2 is significantly higher than that using MoS_2 . Therefore, G enhances the photocatalysis of MoS_2 .

Degradation conditions: solution volume v = 50 mL, RhB initial concentration C = 50 mg·L⁻¹, pH = 7.0. a: 0.05 g G/MoS₂ + infrared light; b: 0.05 g MoS₂ + infrared light; c: 0.05 g G/MoS₂; d: infrared radiation.

Figure 5. Near-infrared photocatalytic degradation of RhB.

4.2 Effect of the initial RhB concentration

The G/MoS₂ catalyst was used to degrade RhB with different initial concentrations, and the degradation curve was obtained under the same other conditions, as shown in **Figure 6**. The results show that $\ln(C_0/C_l)$ has a linear relationship with the reaction time *t*, as shown in **Figure 7**. Therefore, the RhB degradation reaction follows the first-order reaction kinetics. Based on this, the apparent kinetic rate constant K_{app} can be obtained, whose average value is 0.304 h⁻¹.

 $\ln(C_0/C_t) = Kappt + b$

Figure 7. Linear relationship between $\ln(C_0/C_t)$ and t.

Figure 8. Recycling experiments of G/MoS₂.

4.3 Stability and reuse of catalyst

The stability of the hybrid catalyst was evaluated by multiple cycle experiments. **Figure 8** is the degradation rate curve of the G/MoS_2 catalyst for 5 consecutive times of near-infrared photocatalytic degradation of RHB under near-infrared light radiation. Each experiment lasted for 3 h. After each degradation, the catalyst was obtained by centrifugation and deionized water washing, and then recycled. After five cycles of degradation of RhB, the degradation rate of RhB was still more than 90.6%. This shows that the G/MoS_2 catalyst is relatively stable and can be reused.

5. Conclusion

The G/MoS₂ hybrid material was prepared by the hydrothermal method. The hybrid material has photocatalytic properties to near-infrared light. Using this hybrid material as photocatalyst, RhB can be effectively degraded under near-infrared light irradiation. The G/MoS₂ hybrid catalyst was continuously recycled for 5 times, and the degradation rate of RhB was still more than 90%, indicating that the hybrid catalyst is very stable. The results of this study show that near-infrared light has important application value in the field of environmental protection.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21576175).

References

- Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238(5358): 37–38.
- Carey JH, Lawrence J, Tosine HM. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology 1976; 16(6): 697–701.
- Hoffmann MR, Martin S, Choi W, *et al.* Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995; 95(1): 69–96.
- Rimeh D, Patrick D, Didier R. Modified TiO₂ for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research 2013; 52(10): 3581–3599.
- Banerjee S, Pillai SC, Falaras P, *et al.* New insights into the mechanism of visible light photocatalysis. Journal of Physical Chemistry Letters 2014; 5(15): 2543–2554.
- Maneesha M, Doo-man C. α-Fe₂O₃ as a photocatalytic material: A review. Applied Catalysis A: General 2015; 498(5): 126–141.
- He R, Cao S, Zhou P, *et al.* Recent advances in visible light Bi-based photocatalysts. Chinese Journal of Catalysis 2014; 35(7): 989–1007.
- Wei D, Yao L, Yang S, *et al.* Band gap Engineering of In₂TiO₅ for H₂ production under nearinfrared light. ACS Applied Mater Interfaces 2015; 7(37): 20761–20768.

- Zhang X, Yu L, Zhuang C, *et al.* Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H₂ production under near-infrared light. ACS Catalysis 2013; 4(1): 162–170.
- Tang Y, Di W, Zhai X, *et al.* NIR-responsive photocatalytic activity and mechanism of NaYF₄:Yb, Tm@TiO₂ core-shell nanoparticles. ACS Catalysis 2013; 3(3): 405–412.
- Li H, Liu R, Liu Y, *et al.* Carbon quantum dots/Cu₂O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry 2012; 22(34): 17470–17475.
- Zhang Y, Liang Y, Zhou J. Recent progress of graphene doping. Acta Chimica Sinica 2014; 72(3): 367–377.
- Shen C, Zhang J, Shi D, *et al.* Photoluminescence enhancement in monolayer molybdenum disulfide by annealing in air. Acta Chimica Sinica 2015; 73(9): 954–958.
- Shi J, Ma D, Zhang Y, *et al.* Controllable growth of MoS₂ on Au foils and its application in hydrogen evolution. Acta Chimica Sinica 2015; 73(9): 877– 885.
- Chang K, Mei Z, Wang T, *et al.* MoS₂/graphene cocatalyst for efficient photocatalytic H₂ evolution under visible light irradiation. ACS Nano 2014; 8(7): 7078–7087.
- Zong X, Wu G, Yan H, *et al.* Photocatalytic H₂ evolution on MoS₂/CdS catalysts under visible light irradiation. Journal of Physical Chemistry C 2010; 114(4): 1963–1968.
- Zong X, Yan H, Wu G, *et al.* Enhancement of photocatalytic H₂ evolution on CdS by loading MoS₂ as cocatalyst under visible light irradiation. Journal of the Amercan Chemical Society 2008; 130(23): 7176–7177.
- Yang L, Zhong D, Zhang J, *et al.* Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution. ACS Nano 2014; 8(7): 6979– 6985.
- Li Y, Wang H, Peng S. Tunable photodeposition of MoS₂ onto a composite of reduced graphene oxide

and CdS for synergic photocatalytic hydrogen generation. The Journal of Physical Chemistry C 2014; 118(34): 19842–19848.

- Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS₂ and graphene as cocatalysts for enhanced photocatalytic H₂ production activity of TiO₂ nanoparticles. Journal of the American Chemical Society 2012; 134(15): 6575–6578.
- Min S, Lu G. Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS₂ cocatalyst confined on graphene sheets—The role of graphene. Journal of Physical Chemistry C 2012; 116(48): 25415–25424.
- Yin W, Yan L, Yu J, *et al.* High-throughput synthesis of single-layer MoS₂ nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014; 8(7): 6922–6933.
- Mak KF, Lee CG, Hone J, *et al.* Atomically thin MoS₂: A new direct-gap semiconductor. Physical Review Letters 2010; 105(13): 474–479.
- 24. Noorden VR. Moving towards a graphene world. Nature 2006; 442(7100): 228–229.
- 25. Stolyarova E, Rim KT, Ryu SM, et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Acade-

my of Sciences of the United States of America 2007; 104(22): 9209–9212.

- Novoselov KS, Geim AK, Morozov SV, *et al.* Two-dimensional gas of massless diracfermions in grapheme. Nature 2005; 438(7065): 197–200.
- Tian Y, He Y, Shang J, *et al.* Hydrothermal synthesis and characterization of laminar MoS₂. Acta Chimica Sinica 2004; 62(18): 1807–1810.
- Xu Y, Sheng K, Li C, *et al.* Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010; 4(7): 4324–4330.
- Shen J, Li T, Long Y, *et al.* One-step solid state preparation of reduced graphene oxide. Carbon 2012; 50(6): 2134–2140.
- Zhou Y, Bao Q, Tang LAL, *et al.* Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials 2009; 21(13): 2950–2956.
- Wu H, Yang R, Song B, *et al.* Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano 2011; 5(2): 1276–1281.
- Stankovich S, Dikin DA, Piner RD, *et al.* Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007; 45(7): 1558–1565.