ORIGINAL RESEARCH ARTICLE

Multi-response optimization in cutting mild steels

Yusuf Şahin*, Demiral Akbar

Department of Mechanical Engineering, Faculty of Engineering, Ostim Technical University, 06374 Ankara, Turkey * Corresponding author: Yusuf Şahin, yusuf.sahin@ostimteknik.edu.tr

ABSTRACT

Machine tools are very important metal cutting process that used widely in manufacture/construction and energy sector. Material removal rate in any metal cutting process is very important because it significantly affects the production rate, generated energy/forces, tool life. Improper choice of the machine tools, cutting tools or parameters will lead to be produced early wear, more energy and deterioration of surface qualities of machined mechanical components. The cutting process should be controlled during cutting or shaping process. In this study, therefore, multi-response optimization is carried out on AISI 1040 hardened mild steels when machined with ceramic cutting tools using response surface methodology under different cutting conditions. It can be noted that there are two responses. One is the surface roughness (SR) while the second is the material removal rate (MRR). The experimental results exhibits that all three factors reveal significant influence on generating metal cutting speed, 0.15 mm/rev. feed rate and 0.5 mm depth of cut conditions in terms of multi response performance index (MRPI). Analysis of variance and Pareto chart indicate that besides basic factors, $A \times C$, $A \times B$, $B \times C$ interactions have also an influence on MRPI (combination of MRR with SR). It is concluded that the correlation coefficient is found about 99.06%. Therefore, MRPI approach is capable of providing good modelling results for the combination of SR and MRR.

Keywords: mild steel; cutting speed; feed rate; surface roughness; metal removal rate; muti-response optimization

ARTICLE INFO

Received: 15 August 2023 Accepted: 18 September 2023 Available online: 21 December 2023

COPYRIGHT

Copyright © 2023 by author(s). Applied Chemical Engineering is published by EnPress Publisher, LLC. This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). https://creativecommons.org/licenses/bync/4.0/

1. Introduction

The metal cutting process is a material removal process by means of usage of different cutting tools such as carbide, coated carbides, ceramics, coated ceramics and boron nitride. These tools are used because of their hot hardness/wear resistance^[1]. In any metal cutting process, material removal rate (MRR) has played importance role because of significantly affecting the rate of production, consumption of energy, forces and tool's service life^[2]. Surface roughness (SR) is also very vital parameter due to determine the quality of any components. The quality of products is one of costumers' requirements. SR affects the fatigue and fracture strength, friction/wear properties of mechanical parts surfaces^[2]. Tool life is actively cutting service time for indicating a performance satisfactorily. Thus, to reduce the cost and improve productivity, more longer tool life should be provided^[3]. Improper choice of these selection parameters affects the surface quality, lead to abrasive wear and process efficiency^[4]. Therefore, optimum cutting parameters should be determined. In this case, a better way is to apply some methodology like Taguchi, factorial, response surface and artificial neural network approach to limit the experiment runs, hence, leading to save times, materials and tools^[5–8] in spite of the fact that there are considerable differences among those methodologies. RSM is the most generally accepted optimization method that is employed in many engineering areas like chemical and manufacturing processes to fit an empirical and measured output. Taguchi method basically sorted out for single response optimization in terms of mean response/SNR^[9]. Whereas, in practice we have more than one dependent variables. The observed data can be gathered from each response through Taguchi. In this study, we will discuss multi-response method which can be easily employed. Multi-response problems are converted into single response problem in this weight method (W). This term is called "multi response performance index (MRPI)". Some multi-response optimization problems were applied^[10–12].

Many research studies have been investigated on optimum surface roughness when machined hard materials. Markopoulos et al.^[13] searched the milling of hardened AISI O1 steel alloy and evaluated the surface roughness using main factors. Surface quality/energy usage on 1045 steel^[14], the milling process optimization of high-strength steel^[15], statistical evaluation on milling of Inconel 718^[16] were conducted on surface roughness. Electro-discharge machining of super-alloy (Inconel-800)^[17] applied with multi-criteria decisionmaking methods. Moreover, optimization/assessment of life cycle in turning of Ti-6Al-4V under N2 atmosphere, machinability of AISI 4140 by minimum quantity lubrication method, and optimization of cutting En-31 steel with Taguchi method were performed^[18,19]. Apart from the hard-to-cut materials, effects of MOL and factors, on optimum roughness/tool wear/force in milling of Al alloys and SiCp composite^[20-25]. Milling optimization, cutting condition, tool geometry effect, surface roughness on carbon steel by ceramic tool, cutting parameters on force/roughness and comparison of two tool's shapes were searched using Al alloy, alloved steel, carbon steel of AISI 1045 and AISI 4140 steel^[26-31]. In addition, multi-objective optimization of drilling parameters for K500 alloy, metal matrix composites, Al6061 alloy were studied using ANN, grey relation, and grey relation plus Data Envelopment Analysis Ranking (DEAR) technique^[32-35] while surface characteristics of Ti-6Al-4V by RSM approaches and cutting ability of ceramic based composites in terms of energy consumption were investigated by optimizing the process^[36,37].

The purpose of this current work has been, therefore, to develop the multi-response performance index based on material removal rate/surface roughness to predict AISI 1040 steel at various machining conditions in order to controlling the existing processes. The response surface methodology (L18) has been adopted for design of the experiment, quadratic and interaction effects has been developed with 95% confidence level.

2. Materials and methods

CNC lathe machine is used for these cutting tests because it allows you in wide ranges of variations from 50 rpm to 3500 rpm. A mixed ceramic based cutting tools with matrix of Al₂O₃ (70%) plus TiC (30%), designated by KY1615 grade is selected. The ceramic tools are supplied by Kennametal Inc which are commercially available inserts.

Materials used in the research is a mild steel (AISI 1040). Its carbon content ranged from 1.5% to 4.0%. Due to its lower tensile strength and its lower cost, it is widely used for plenty of applications such as gear wheel, crane wheel, flywheel and crankshaft. Application of heat treatment is also modified the structure of the steel. Thus, hardness of this steel is reached to about 56–60 HRC. Cylindrical bar's diameter is 99 mm and its length is 220 mm under dry conditions.

2.1. Experimental planning

To study SR/MRR of mild steel, response surface methodology (RSM) is selected. This design allows us for an efficient estimating the first-, second-order coefficient. Main control factors and levels are indicated in **Table 1** (level 1 = L1, level 3 = L3, level 5 = L5).

Second order MQR can be described as,

$$Y = \beta_o + \sum_{i=1}^k \beta_i + \sum_{i=1}^k \beta_{ii} x_{ii} + \sum_{i=1}^{k=1} \sum_{j=2}^k \beta_{ij} x_i x_j + \varepsilon$$
(1)

where, *Y* is desired response, β_o is constant, β_i and β_j are regression coefficients, x_i is input parameters and x_i , x_j is the interaction between input parameters and ε is error. Regression coefficients (quadratic, interactions) are calculated.

Symbol	Control factors	Levels					
		L1	L2	L3	L4	L5	
V	Cutting speed (m/min)	123	144	170	196	225	
f	Feed rate (mm/rev.)	0.10	0.127	0.15	0.172	0.192	
d	Depth of cut (mm)	0.361	0.425	0.50	0.575	0.66	

 Table 1. Control parameters and un-coded levels.

2.2. Surface roughness/metal removal rate

Surface roughness. MAHR portable is chosen in measuring the surface roughness (SR), which is an arithmetic mean deviation of surface profile.

Theoretical surface roughness, SR can be estimated as the following formula.

$$SR(\mu m) = \frac{f^2}{8 \times r_c} \times 1000$$
⁽²⁾

where SR (μ m) is measured surface roughness of machined components, f (mm/rev.) is feed rate per revolution and r_c (mm) is insert corner radius.

Metal removal rate. Material removal rate (MRR) is calculated using Equation (3) for each run.

$$MRR\left(\frac{mm^3}{\min}\right) = V \times f \times d \times 1000$$
(3)

where MRR is volume removed per unit time (mm³/min), d is depth of cut (mm), f is feed rate (mm/min), V is cutting speed (m/min).

2.3. Multi-response method

There are two responses, one is surface roughness (SR) while other is material removal rate (MRR). MRR is larger, the better-quality characteristic but SR is smaller, the better-quality characteristic. Multi-response problems are converted into single response problem.

Sum of weighted response (W) will be single response,

$$W = W_1 \times R_1 + W_2 \times R_2 \tag{4}$$

W is called "multi response performance index (MRPI)". Weights are determined in the following way. For example, for MRR, individual response is divided by total response (MRR). For SR, reverse normalization procedure is used. It can be noted that,

$$W_{SR} = \frac{\left(\frac{1}{SR}\right)}{\sum \frac{1}{SR}} \text{ and } W_{MRR} = \frac{MMR}{\sum MMR}$$
 (5)

$$(MRPI)i = W_1 \times Y_{11} + W_2 \times Y_{12} + \dots + W_j \times Y_i$$
(6)

(MRPI)i = MRPI of the *i*-th trial, $W_j =$ weight of the *j*-th response/dependant variable, $Y_{ij} =$ observed data of *i*-th trial under *j*-th response.

3. Results and discussion

Experimental factors, design and results are analyzed with MINITAB 17 software, shown in **Table 2**. Pareto chart is a basic quality tool to analyze data. **Figure 1** shows the Pareto chart with standardized influence on outputs. Length of bars in this chart indicates the degree of each factor effect. Increase of A, B, C factors has statistically significant on MRPI because of exhibiting a 2.31 value. Standardized effect shows an unitless measure. 2.31 value is considered as a reference, if each factor is lower than this value, this factor assumes not effective. Pareto chart indicated that increases in basic factors used are effective. Further, A × C, A × B, B × C interaction factors have statistically significant influence. This might be due to directly related to the main control factors invloved in Equation (3) because it was linearly proportional to V × f × d. Therefore, contributions mostly come from the metal removal rates. Among the each factor, speed is bigger effect than the other due to weight factor. Cutting speeds are found to be considerable in the previous works^[27–29], but *V* indicates the minimum effect^[30] and mostly *f* is significantly effective for wiper ceramic tool in cutting steel^[3,31,32].

Figure 2 exhibits the normal probability plot for MRPI of machining tested specimens. It exhibits cumulative distribution of standardized residuals around ± 3 . Residual is scattered randomly around line of experimental trials. On the other hand, there is not any trend offering relationship between residuals/MRPI.

	Control parameters		Outputs		
Trials	V (m/min)	f (mm/rev.)	<i>d</i> (mm)	Surface roughness, SR (µm)	Material removal rate, MRR (mm ³ /min)
1	144	0.1275	0.425	0.864	7803
2	196	0.1275	0.425	0.845	10620.75
3	144	0.1725	0.425	1.189	10557
4	196	0.1725	0.425	1.206	14369.25
5	144	0.1275	0.575	0.764	10557
6	196	0.1275	0.575	0.789	14369.25
7	144	0.1725	0.575	1.224	14283
8	196	0.1725	0.575	1.262	19440.75
9	123	0.15	0.5	0.965	9225
10	225	0.15	0.5	1.112	16875
11	170	0.108	0.5	0.624	9180
12	170	0.198	0.5	1.273	16830
13	170	0.15	0.361	0.889	9205.5
14	170	0.15	0.661	0.854	16855.5
15	170	0.15	0.5	0.859	12750
16	170	0.15	0.5	0.872	12750
17	170	0.15	0.5	0.864	12750
18	170	0.15	0.5	0.862	12750

Table 2. Experimental factor, design and results of data.

Figure 1. Pareto chart for its interactions/quadratic effects.

Figure 2. Normal probability plot for MRPI when machining the mild steel specimens.

3.1. Comparison of measured and theoretical results

The experiment results obtained under the cutting tests are given in **Table 2**. This table indicated that experimental design, control parameters, their five levels used in the model and results of output such as SR and MRR. It can be noted that there are two responses, which are the surface roughness (SR) and the material removal rate (MRR).

MRPIs calculated in terms of the weight approach for all trials are shown in **Table 3**. This data also reveals the normalization of data, estimation of MRPI, experimental and predicted values, and their percentage errors in cutting mild steels by the mixed ceramic tools. Percentage error (PE) is calculated from experimental data minus theoretical data, divided by theoretical data, finally multiplied by 100. In other words, PE = [(approximate value – exact value)/exact value] × 100. PE reaches to 5.94% in some conditions like 4, 7, 11 trials. Whereas, mean error is estimated about 2.81%, which is lower than 5%. Therefore, it is considered an acceptable level.

Figure 3 shows the experimental and prediction results using second order regression model from the present data. Since distributions of data are quite close each other, correlation coefficient is found quite high (99.06%). It is shown that there is quite less difference between the experimental and theoretical prediction values when machined with ceramic tools. As a result, this model may be used efficiently in predicting combinations of the metal cutting tests of any types of steels or other hard materials. **Table 4** also indicates the level totals of MRPI. All three factors were indicated significant effect on MRPI. Among them, feed rate is

dominant, whereas, optimum level is at level 3 in all cutting parameters. Namely, A3, B3 and C3 are the optimized levels.

Normalization		Multi-response performans index		KY1615 cutt		
1/SR	WSR	$\mathbf{MRPI} = \mathbf{WMR} \times \mathbf{Y1} + \mathbf{WSR} \times \mathbf{Y2}$	MRPI	MRPI	Predicted MRPI	PE, %
1.1574074	0.059523	263.384287	0.051427	263.435714	260.55326	1.106280
1.1834319	0.060861	487.9519082	0.051427	488.003336	472.82462	3.210219
0.841042	0.043253	482.1117225	0.051427	482.16315	469.67445	2.659011
0.8291873	0.042643	893.1714859	0.051427	893.222913	945.87413	5.566409
1.3089005	0.067314	482.1117225	0.051427	482.163150	470.09012	2.568236
1.2674271	0.065181	893.1714859	0.051427	893.222913	946.28980	5.607890
0.8169934	0.042016	882.481319	0.051427	882.532746	938.28965	5.942398
0.7923930	0.040751	1634.905592	0.051427	1634.9570	1678.4176	2.589382
1.0362694	0.053293	368.1284633	0.051427	368.179891	370.90780	0.735469
0.8992805	0.046248	1231.839742	0.051427	1231.8911	1171.7770	5.130169
1.6025641	0.082416	364.5457259	0.051427	364.597153	370.52404	1.59959
0.7855459	0.040398	1225.27869	0.051427	1225.33011	1162.0169	5.448554
1.1248593	0.057849	366.5737928	0.051427	366.625220	373.046432	1.721290
1.1709601	0.060220	1228.994468	0.051427	1229.04589	1165.2384	5.475913
1.1641443	0.059869	703.2132058	0.051427	703.264633	705.72611	0.348786
1.1467889	0.058976	703.2132058	0.051427	703.264633	705.726114	0.348786
1.1574074	0.059523	703.2132058	0.051427	703.264633	705.72611	0.348786
1.1600928	0.059661	703.2132058	0.051427	703.264633	705.72611	0.348786
						2.819776

Table 3. Normalization of data, estimation of MRP, experimental/predicted values, and errors in cutting mild steels.

Figure 3. Experimental and predicted results of machining by KY1615 cutting tools for MRPI index.

Parameters L1 L2 L3 L4L5 Cutting speed, A 368.1799 2110.2947 5998.6569 3909.4061 1231.8911 Feed rate, B 368.1798 2126.825 6008.800 3892.876 1225.33 Depth of cut, C 366.6252 2126.825 6003.0568 3892.876 1229.0458

Table 4. Level totals of MRPI.

3.2. Regression model

Regression model was used to study MRPI with cutting mild steels.

Regression equation is given by,

 $MRPI = 705.7 + 238.1 \times A + 235.3 \times B + 235.5 \times C + 23.2 \times A \times A + 21.4 \times B \times B + 22.4 \times C \times C + 66.0 \times A \times B + 66.0 \times A \times C + 64.8 \times B \times C$ (7)

where MRPI = multi response performance index, A = speed (m/min), B = feed rate (mm/rev.), C = depth of cut (mm). Coefficients of A, B and C are all positive. Higher coefficient will be higher influence to response, but no significant difference was obtained between factor C and factor B, respectively. MRPI is estimated through Equation (6) and given in **Figure 3**. Coefficient determination is found to be 99.06% while adjusted R^2 is 97.99%. This shows the that there is a good correlation between input parameteres such as factor A, B, factor C and output of MRPI that also represent the association of SR and MRR based on the weight method. However, it reveals that MRR contribution is more than that of SR contribution. For SR, feed rate mostly is effective parameter among the other, which is followed by tool tip's radius (see Equation (2))^[3]. As for the case of MRR, cutting speed, feed rate and depth of cut are all effective because they all involves during the machining process (see Equation (3)).

3.3. Analysis of variance (ANOVA)

ANOVA is chosen to determine control factors affecting on MRPI, results are indicated in **Table 5**. This analysis is carried out at 95% confidence level. Probability (*P*) values were about 0.0, 0.0, 0.0 for A, B, C, respectively. This analysis is confirmed with Pareto results, as shown in **Figure 1**. Further, interaction factors of $A \times B$, $A \times C$ and $B \times C$ significantly influenced the MRPI since the *P*-values were 0.008, 0.008, 0.009 lower than 0.05 on the response. Therefore, these basic factors are significantly affected the coming out results.

Source	DF	Adj SS	Adj MS	<i>F</i> -value	<i>P</i> -value
Model	9	2404.570	267.174	93.22	0
Linear	3	2287.975	762.658	266.11	0
А	1	774.228	774.228	270.14	0
В	1	756.205	756.205	263.85	0
С	1	757.542	757.542	264.32	0
Square	3	13.376	4.459	1.56	0.274
$\mathbf{A} \times \mathbf{A}$	1	6808	6808	2.38	0.162
$\mathbf{B} \times \mathbf{B}$	1	5796	5796	2.02	0.193
$\mathbf{C} \times \mathbf{C}$	1	6359	6359	2.22	0.175
2-way interaction	3	103.219	34.406	12	0.002
$\mathbf{A} \times \mathbf{B}$	1	34.829	34.829	12.15	0.008
$\mathbf{A} \times \mathbf{C}$	1	34.829	34.829	12.15	0.008
$\mathbf{B} \times \mathbf{C}$	1	33.561	33.561	11.71	0.009
Error	8	22.928	2.861	-	-
Total	17	2427.498	-	-	-

Table 5. ANOVA for MRPI when machined the steels by mixed ceramics.

4. Conclusions

The prediction modelling of material removal rate/surface roughness was studied with RSM in machining mild steels through mixed ceramic tools. Multi regression equation and multi-response performance index (MRPI) was developed and determined the optimal levels.

1) It is observed that all involved control factors indicated effective factors on MRPI, but speed generated more cutting energy than other factors. In addition to this, $A \times C$, $A \times B$, $B \times C$ interactions had also statistically significant influence on the combination of material removal rate with surface finish.

2) Maximum/minimum MRPI produced were about 1634.957/263.435, which are corresponding to 19440.75 mm³/min and 7803 mm³/min for 8th run and 1st run of the experiment. These results were obtained under cutting parameters of 196 m/min cutting speed, 0.1725 mm/rev. feed rate, 0.575 mm depth of cut, and of 144 m/min cutting speed, 0.1275 mm/rev. feed rate and 0.425 mm depth of cut, respectively.

3) Optimal levels were found in terms of MRPI that were A3, B3, C3. It meant that the hardened mild steel tested at a cutting speed of 170 m/min, feed rate of 0.15 mm/rev. and depth of cut of 0.5 mm cutting conditions for multi-response characteristics index.

4) It was concluded that the percentage errors estimated from the data obtained were about 2.81% for regression model and, correlation coefficient was around 99.06%. This is because the main three factors of A, B, C were found to be effective in addition to interactions effects like $A \times C$, $A \times B$, $B \times C$ on the response. It does not show any relation between SR and MRR since it represented the weightage approach, but MRR contribution was significantly large compared to SR output on the multi-response.

5) This experimental and theoretical based of the study indicated that MRPI method was capable of quite good modelling for the evaluation of surface roughness/material removal rate based on the determining the weight method.

Author contributions

Conceptualization, YŞ and DA; methodology, YŞ; software, DA; validation, YŞ; formal analysis, YŞ; investigation, YŞ; resources, YŞ; data curation, DA; writing—original draft preparation, YŞ; writing—review and editing, DA; visualization, YŞ; supervision, DA; project administration, YŞ; funding acquisition, YŞ. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

One of the authors extends his thank to Magd Abdel Wahab due to encourages in carrying out this research work.

Conflict of interest

The authors declare no conflict of interest.

Abbreviations

Al ₂ O ₃	Aluminum oxide based ceramic cutting tool
BB	Box-Behnken method
CBN	Cubic boron nitride based cutting tool
CC650	Conventional mixed ceramic cutting tool
CC650WG	Wiper mixed ceramic cutting tool
CNC	Turning machine controlled by numerically

CVD Chemical vapor deposition coating method

d Depth of	f cut (mm)
1	

f	Feed rate	(mm/rev.)
1	1 cou futo	(111111101.)

MQR Quadratic model

Quadratic 2nd order regression model

- PE Percentage error (%)
- PVD Physical vapor deposition coating method
- R² Coefficient of determination
- RSM
 Response surface methodology

 SR
 Average surface roughness (μm)

 V
 Cutting speed (m/min)

References

- Sahin Y. Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels. Journal of Materials Processing Technology 2009; 209(7): 3478–3489. doi: 10.1016/j.jmatprotec.2008.08.016
- 2. Abhang LB, Hameedullah M. Multi performance optimization in machining of EN-31 steel alloy using Taguchiutility concept. Journal of Manufacturing Technology Research 2011; 3(3): 265–281.
- 3. Şahin Y. Talas Removal Principles (Turkish). Seçkin Yayın; 2003.
- 4. Santos MC, Machado AR, Sales WF, et al. Machining of aluminum alloys: A review. The International Journal of Advanced Manufacturing Technology 2016; 86(9–12): 3067–3080. doi: 10.1007/s00170-016-8431-9
- 5. Şahin Y. Prediction of surface roughness when machining mild steel using statistical methods. Advances in Materials and Processing Technologies 2023; 2013: 1–17. doi: 10.1080/2374068x.2023.2198822
- 6. Ibrahim MA, Yahya MN, Şahin Y. Predicting the mass loss of polytetraflouroethylene-filled composites using artificial intelligence techniques. Bayero Journal of Engineering and Technology (BJET) 2021; 16(3): 80–93.
- 7. Şahin Y, Deniz A, Şahin F. Investigation of abrasive wear performances of different polyamides by response surface methodology. Tribology in Industry 2019; 41(3): 321–329. doi: 10.24874/ti.2019.41.03.02
- 8. Krishnaiah K, Shahabudeen P. Applied Design of Experiments and Taguchi Methods. PHI Learning Private Limited; 2012.
- Tseng TL, Konada U, Kwon Y. A novel approach to predict surface roughness in machining operations using fuzzy set theory. Journal of Computational Design and Engineering 2016; 3(1): 1–13. doi: 10.1016/j.jcde.2015.04.002
- Jeyapaul R, Shahabudeen P, Krishnaiah K. Quality management research by considering multi-response problems in Taguchi method—A review. The International Journal of Advanced Manufacturing Technology 2004; 26(11– 12): 1331–1337. doi: 10.1007/s00170-004-2102-y
- Liao HC, Chen YK. Optimizing multi-response problem in the Taguchi method by DEA-based ranking method. International Journal of Quality and Reliability Management 2002; 19(7): 825–837. doi: 10.1108/02656710210434766
- 12. Panneerselvem R. Research Methodology. Prentice-Hall of India; 2004.
- Markopoulos AP, Karkalos NE, Mia M, et al. Sustainability assessment, investigations, and modelling of slot milling characteristics in eco-benign machining of hardened steel. Metals 2020; 10(12): 1650–1657. doi: 10.3390/met10121650
- 14. Pimenov DY, Abbas AT, Gupta MK, et al. Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel. The International Journal of Advanced Manufacturing Technology 2020; 107(7–8): 3511–3525. doi: 10.1007/s00170-020-05236-7
- 15. Abbas AT, Pimenov DY, Erdakov IN, et al. Optimization of cutting conditions using artificial neural networks and the Edgeworth-Pareto method for CNC face-milling operations on high-strength grade-H steel. The International Journal of Advanced Manufacturing Technology 2019; 105(5–6): 2151–2165. doi: 10.1007/s00170-019-04327-4
- Muhammad A, Kumar Gupta M, Mikołajczyk T. Effect of tool coating and cutting parameters on surface roughness and burr formation during Micro-milling of Inconel 718. Metals 2021; 11(1): 167. doi: 10.3390/met11010167
- 17. Sen B, Hussain SAI, Gupta AD, et al. Application of type-2 fuzzy AHP-ARAS for selecting optimal WEDM parameters. Metals 2021; 11(1): 42. doi: 10.3390/met11010042
- Mia M, Gupta MK, Lozano JA, et al. Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. Journal of Cleaner Production 2019; 210: 121–133. doi: 10.1016/j.jclepro.2018.10.334

- Gürbüz H, Emre Gönülaçar Y. Optimization and evaluation of dry and minimum quantity lubricating methods on machinability of AISI 4140 using Taguchi design and ANOVA. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2021; 235(7): 1211–1227. doi: 10.1177/0954406220939609
- Tosun N, Huseyinoglu M. Effect of MQL on surface roughness in milling of AA7075-T6. Materials and Manufacturing Processes 2010; 25(8): 793–798. doi: 10.1080/10426910903496821
- Pillai JU, Sanghrajka I, Shunmugavel M, et al. Optimization of multiple response characteristics on end milling of aluminum alloy using Taguchi-Grey relational approach. Measurement 2018; 124: 291–298. doi: 10.1016/j.measurement.2018.04.052
- 22. Arokiadass R, Palaniradja K, Alagumoorthi N. Predictive modeling of surface roughness in end milling of Al/SiCp metal matrix composite. Archives of Applied Science Research 2011; 3(2): 228–236.
- Abas M, Sayd L, Akhtar R, et al. Optimization of machining parameters of aluminum alloy 6026-T9 under MQLassisted turning process. Journal of Materials Research and Technology 2020; 9(5): 10916–10940. doi: 10.1016/j.jmrt.2020.07.071
- 24. Bhushan RK, Kumar S, Das S. Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. The International Journal of Advanced Manufacturing Technology 2010; 50(5–8): 459–469. doi: 10.1007/s00170-010-2529-2
- 25. Pereira RBD, Leite RR, Alvim AC, et al. Multivariate robust modeling and optimization of cutting forces of the helical milling process of the aluminum alloy Al 7075. The International Journal of Advanced Manufacturing Technology 2017; 95(5–8): 2691–2715. doi: 10.1007/s00170-017-1398-3
- Davim PJ. A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments. Journal of Materials Processing Technology 2001; 116(2–3): 305–308. doi: 10.1016/S0924-0136(01)01063-9
- 27. Shnfir M, Olufayo OA, Jomaa W, Songmene V. Machinability study of hardened 1045 steel when milling with ceramic cutting inserts. Materials 2019; 12(23): 3974. doi: 10.3390/ma12233974
- 28. Ashish George J, Lokesha K. Optimization and effect of tool rake and approach angle on surface roughness and cutting tool vibration. SN Applied Sciences 2019; 1(9): 1133. doi: 10.1007/s42452-019-1175-z
- 29. Motorcu AR. Surface roughness evaluation when machining carbon steel with ceramic cutting tools. Uludağ University Journal of The Faculty of Engineering 2009; 14 (1): 139–145. doi: 10.17482/uujfe.21390
- 30. Rao CJ, Rao DN, Srihari P. Influence of cutting parameters on cutting force and surface finish in turning operation. Procedia Engineering 2013; 64: 1405–1415. doi: 10.1016/j.proeng.2013.09.222
- Elbah M, Yallese MA, Aouici H, et al. Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement 2013; 46(9): 3041–3056. doi: 10.1016/j.measurement.2013.06.018
- Sanjay C, Alsamhan A, Abidi MH. Multi response optimization of machining parameters for an annealed Monel K 500 alloy in drilling using machine learning techniques and ANN. Journal of Intelligent & Fuzzy Systems 2022; 42(6): 5605–5625. doi: 10.3233/JIFS-212087
- Sahoo SK, Sahoo BN, Panigrahi SK. Investigation into machining performance of microstructurally engineered insitu particle reinforced magnesium matrix composite. Journal of Magnesium and Alloys 2023; 11(3): 916–935. doi: 10.1016/j.jma.2022.10.015
- Juliyana JS, Prakash JU, Čep R, Karthik K. Multi-objective optimization of machining parameters for drilling LM5/ZrO₂ composites using grey relational analysis. Materials 2023; 16(10): 3615–3621. doi: 10.3390/ma16103615
- 35. Iqbal MU, Santhakumar J, Sharma G, Singh R. Multi objective optimization of drilling process parameters on aluminum 6061 alloy using GRA and DEAR technique. AIP Conference Proceedings 2022; 2460(11): 020010. doi: 10.1063/5.0095655
- Doreswamy D, Sai Shreyas D, Bhat SK, Rao RN. Optimization of material removal rate and surface characterization of wire electric discharge machined Ti-6Al-4V alloy by response surface method. Manufacturing Review 2022; 9: 15–21. doi: 10.1051/mfreview/2022016
- Usca ÜA, Şap S, Uzun M, Kuntoğlu M, Salur E, Karabiber A, Pimenov DY, Giasin K, Wojciechowski S. Estimation, optimization and analysis based investigation of the energy consumption in machinability of ceramicbased metal matrix composite materials. Journal of Materials Research and Technology 2022; 17: 2987–2998. doi: 10.1016/j.jmrt.2022.02.055