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ABSTRACT 

Machine tools are very important metal cutting process that used widely in manufacture/construction and energy 

sector. Material removal rate in any metal cutting process is very important because it significantly affects the production 

rate, generated energy/forces, tool life. Improper choice of the machine tools, cutting tools or parameters will lead to be 

produced early wear, more energy and deterioration of surface qualities of machined mechanical components. The cutting 

process should be controlled during cutting or shaping process. In this study, therefore, multi-response optimization is 

carried out on AISI 1040 hardened mild steels when machined with ceramic cutting tools using response surface 

methodology under different cutting conditions. It can be noted that there are two responses. One is the surface roughness 

(SR) while the second is the material removal rate (MRR). The experimental results exhibits that all three factors reveal 

significant influence on generating metal cutting energy. Optimal levels are found out in A3, B3 and C3 level. Namely; 

cutting tests are carried out at 170 m/min cutting speed, 0.15 mm/rev. feed rate and 0.5 mm depth of cut conditions in 

terms of multi response performance index (MRPI). Analysis of variance and Pareto chart indicate that besides basic 

factors, A × C, A × B, B × C interactions have also an influence on MRPI (combination of MRR with SR). It is concluded 

that the correlation coefficient is found about 99.06%. Therefore, MRPI approach is capable of providing good modelling 

results for the combination of SR and MRR. 
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1. Introduction 

The metal cutting process is a material removal process by 

means of usage of different cutting tools such as carbide, coated 

carbides, ceramics, coated ceramics and boron nitride. These tools are 

used because of their hot hardness/wear resistance[1]. In any metal 

cutting process, material removal rate (MRR) has played importance 

role because of significantly affecting the rate of production, 

consumption of energy, forces and tool’s service life[2]. Surface 

roughness (SR) is also very vital parameter due to determine the 

quality of any components. The quality of products is one of 

costumers’ requirements. SR affects the fatigue and fracture strength, 

friction/wear properties of mechanical parts surfaces[2]. Tool life is 

actively cutting service time for indicating a performance 

satisfactorily. Thus, to reduce the cost and improve productivity, more 

longer tool life should be provided[3]. Improper choice of these 

selection parameters affects the surface quality, lead to abrasive wear 

and process efficiency[4]. Therefore, optimum cutting parameters 

should be determined. In this case, a better way is to apply some 

methodology like Taguchi, factorial, response surface and artificial 

neural network approach to limit the experiment runs, hence, leading 
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to save times, materials and tools[5–8] in spite of the fact that there are considerable differences among those 

methodologies. RSM is the most generally accepted optimization method that is employed in many 

engineering areas like chemical and manufacturing processes to fit an empirical and measured output. Taguchi 

method basically sorted out for single response optimization in terms of mean response/SNR[9]. Whereas, in 

practice we have more than one dependent variables. The observed data can be gathered from each response 

through Taguchi. In this study, we will discuss multi-response method which can be easily employed. Multi-

response problems are converted into single response problem in this weight method (W). This term is called 

“multi response performance index (MRPI)”. Some multi-response optimization problems were applied[10–12]. 

Many research studies have been investigated on optimum surface roughness when machined hard 

materials. Markopoulos et al.[13] searched the milling of hardened AISI O1 steel alloy and evaluated the surface 

roughness using main factors. Surface quality/energy usage on 1045 steel[14], the milling process optimization 

of high-strength steel[15], statistical evaluation on milling of Inconel 718[16] were conducted on surface 

roughness. Electro-discharge machining of super-alloy (Inconel-800)[17] applied with multi-criteria decision-

making methods. Moreover, optimization/assessment of life cycle in turning of Ti-6Al-4V under N2 

atmosphere, machinability of AISI 4140 by minimum quantity lubrication method, and optimization of cutting 

En-31 steel with Taguchi method were performed[18,19]. Apart from the hard-to-cut materials, effects of MQL 

and factors, on optimum roughness/tool wear/force in milling of Al alloys and SiCp composite[20–25]. Milling 

optimization, cutting condition, tool geometry effect, surface roughness on carbon steel by ceramic tool, 

cutting parameters on force/roughness and comparison of two tool’s shapes were searched using Al alloy, 

alloyed steel, carbon steel of AISI 1045 and AISI 4140 steel[26–31]. In addition, multi-objective optimization of 

drilling parameters for K500 alloy, metal matrix composites, Al6061 alloy were studied using ANN, grey 

relation, and grey relation plus Data Envelopment Analysis Ranking (DEAR) technique[32–35] while surface 

characteristics of Ti-6Al-4V by RSM approaches and cutting ability of ceramic based composites in terms of 

energy consumption were investigated by optimizing the process[36,37]. 

The purpose of this current work has been, therefore, to develop the multi-response performance index 

based on material removal rate/surface roughness to predict AISI 1040 steel at various machining conditions 

in order to controlling the existing processes. The response surface methodology (L18) has been adopted for 

design of the experiment, quadratic and interaction effects has been developed with 95% confidence level. 

2. Materials and methods 

CNC lathe machine is used for these cutting tests because it allows you in wide ranges of variations from 

50 rpm to 3500 rpm. A mixed ceramic based cutting tools with matrix of Al2O3 (70%) plus TiC (30%), 

designated by KY1615 grade is selected. The ceramic tools are supplied by Kennametal Inc which are 

commercially available inserts. 

Materials used in the research is a mild steel (AISI 1040). Its carbon content ranged from 1.5% to 4.0%. 

Due to its lower tensile strength and its lower cost, it is widely used for plenty of applications such as gear 

wheel, crane wheel, flywheel and crankshaft. Application of heat treatment is also modified the structure of 

the steel. Thus, hardness of this steel is reached to about 56–60 HRC. Cylindrical bar’s diameter is 99 mm and 

its length is 220 mm under dry conditions. 

2.1. Experimental planning 

To study SR/MRR of mild steel, response surface methodology (RSM) is selected. This design allows us 

for an efficient estimating the first-, second-order coefficient. Main control factors and levels are indicated in 

Table 1 (level 1 = L1, level 3 = L3, level 5 = L5). 

Second order MQR can be described as, 
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 (1) 

where, Y is desired response, βo is constant, βi and βj are regression coefficients, xi is input parameters and xi, 

xj is the interaction between input parameters and ε is error. Regression coefficients (quadratic, interactions) 

are calculated. 

Table 1. Control parameters and un-coded levels. 

Symbol Control factors Levels 

L1 L2 L3 L4 L5 

V Cutting speed (m/min) 123 144 170 196 225 

f Feed rate (mm/rev.) 0.10 0.127 0.15 0.172 0.192 

d Depth of cut (mm) 0.361 0.425 0.50 0.575 0.66 

2.2. Surface roughness/metal removal rate 

Surface roughness. MAHR portable is chosen in measuring the surface roughness (SR), which is an 

arithmetic mean deviation of surface profile. 

Theoretical surface roughness, SR can be estimated as the following formula. 

SR(μm) =
𝑓2

8 × 𝑟𝑐
× 1000 (2) 

where SR (µm) is measured surface roughness of machined components, f (mm/rev.) is feed rate per revolution 

and rc (mm) is insert corner radius. 

Metal removal rate. Material removal rate (MRR) is calculated using Equation (3) for each run. 

MRR (
mm3

min
) = 𝑉 × 𝑓 × 𝑑 × 1000 (3) 

where MRR is volume removed per unit time (mm3/min), d is depth of cut (mm), f is feed rate (mm/min), V is 

cutting speed (m/min). 

2.3. Multi-response method 

There are two responses, one is surface roughness (SR) while other is material removal rate (MRR). MRR 

is larger, the better-quality characteristic but SR is smaller, the better-quality characteristic. Multi-response 

problems are converted into single response problem. 

Sum of weighted response (W) will be single response, 

W = W1 × R1 + W2 × R2 (4) 

W is called “multi response performance index (MRPI)”. Weights are determined in the following way. 

For example, for MRR, individual response is divided by total response (MRR). For SR, reverse normalization 

procedure is used. It can be noted that, 

WSR =
(

1
SR)

∑
1

SR

 and WMRR =
MMR

∑ MMR
 (5) 

(MRPI)𝑖 = W1 × Y11 + W2 × Y12 + ⋯ + W𝑗 × Y𝑖  (6) 

(MRPI)i = MRPI of the i-th trial, Wj = weight of the j-th response/dependant variable, Yij = observed data of 

i-th trial under j-th response. 
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3. Results and discussion 

Experimental factors, design and results are analyzed with MINITAB 17 software, shown in Table 2. 

Pareto chart is a basic quality tool to analyze data. Figure 1 shows the Pareto chart with standardized influence 

on outputs. Length of bars in this chart indicates the degree of each factor effect. Increase of A, B, C factors 

has statistically significant on MRPI because of exhibiting a 2.31 value. Standardized effect shows an unitless 

measure. 2.31 value is considered as a reference, if each factor is lower than this value, this factor assumes not 

effective. Pareto chart indicated that increases in basic factors used are effective. Further, A × C, A × B, B × 

C interaction factors have statistically significant influence. This might be due to directly related to the main 

control factors invloved in Equation (3) because it was linearly proportional to V × f × d. Therefore, 

contributions mostly come from the metal removal rates. Among the each factor, speed is bigger effect than 

the other due to weight factor. Cutting speeds are found to be considerable in the previous works[27–29], but V 

indicates the minimum effect[30] and mostly f is significantly effective for wiper ceramic tool in cutting 

steel[3,31,32]. 

Figure 2 exhibits the normal probability plot for MRPI of machining tested specimens. It exhibits 

cumulative distribution of standardized residuals around ±3. Residual is scattered randomly around line of 

experimental trials. On the other hand, there is not any trend offering relationship between residuals/MRPI. 

Table 2. Experimental factor, design and results of data. 

 Control parameters Outputs 

Trials V (m/min) f (mm/rev.) d (mm) Surface roughness, SR (µm) Material removal rate, MRR (mm3/min) 

1 144 0.1275 0.425 0.864 7803 

2 196 0.1275 0.425 0.845 10620.75 

3 144 0.1725 0.425 1.189 10557 

4 196 0.1725 0.425 1.206 14369.25 

5 144 0.1275 0.575 0.764 10557 

6 196 0.1275 0.575 0.789 14369.25 

7 144 0.1725 0.575 1.224 14283 

8 196 0.1725 0.575 1.262 19440.75 

9 123 0.15 0.5 0.965 9225 

10 225 0.15 0.5 1.112 16875 

11 170 0.108 0.5 0.624 9180 

12 170 0.198 0.5 1.273 16830 

13 170 0.15 0.361 0.889 9205.5 

14 170 0.15 0.661 0.854 16855.5 

15 170 0.15 0.5 0.859 12750 

16 170 0.15 0.5 0.872 12750 

17 170 0.15 0.5 0.864 12750 

18 170 0.15 0.5 0.862 12750 
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Figure 1. Pareto chart for its interactions/quadratic effects. 

 
Figure 2. Normal probability plot for MRPI when machining the mild steel specimens. 

3.1. Comparison of measured and theoretical results 

The experiment results obtained under the cutting tests are given in Table 2. This table indicated that 

experimental design, control parameters, their five levels used in the model and results of output such as SR 

and MRR. It can be noted that there are two responses, which are the surface roughness (SR) and the material 

removal rate (MRR). 

MRPIs calculated in terms of the weight approach for all trials are shown in Table 3. This data also 

reveals the normalization of data, estimation of MRPI, experimental and predicted values, and their percentage 

errors in cutting mild steels by the mixed ceramic tools. Percentage error (PE) is calculated from experimental 

data minus theoretical data, divided by theoretical data, finally multiplied by 100. In other words, PE = 

[(approximate value − exact value)/exact value] × 100. PE reaches to 5.94% in some conditions like 4, 7, 11 

trials. Whereas, mean error is estimated about 2.81%, which is lower than 5%. Therefore, it is considered an 

acceptable level. 

Figure 3 shows the experimental and prediction results using second order regression model from the 

present data. Since distributions of data are quite close each other, correlation coefficient is found quite high 

(99.06%). It is shown that there is quite less difference between the experimental and theoretical prediction 

values when machined with ceramic tools. As a result, this model may be used efficiently in predicting 

combinations of the metal cutting tests of any types of steels or other hard materials. Table 4 also indicates the 

level totals of MRPI. All three factors were indicated significant effect on MRPI. Among them, feed rate is 
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dominant, whereas, optimum level is at level 3 in all cutting parameters. Namely, A3, B3 and C3 are the 

optimized levels. 

Table 3. Normalization of data, estimation of MRP, experimental/predicted values, and errors in cutting mild steels. 

Normalization Multi-response performans index KY1615 cutting tool  

1/SR WSR MRPI = WMR × Y1 + WSR × Y2 MRPI MRPI Predicted MRPI PE, % 

1.1574074 0.059523 263.384287 0.051427 263.435714 260.55326 1.106280 

1.1834319 0.060861 487.9519082 0.051427 488.003336 472.82462 3.210219 

0.841042 0.043253 482.1117225 0.051427 482.16315 469.67445 2.659011 

0.8291873 0.042643 893.1714859 0.051427 893.222913 945.87413 5.566409 

1.3089005 0.067314 482.1117225 0.051427 482.163150 470.09012 2.568236 

1.2674271 0.065181 893.1714859 0.051427 893.222913 946.28980 5.607890 

0.8169934 0.042016 882.481319 0.051427 882.532746 938.28965 5.942398 

0.7923930 0.040751 1634.905592 0.051427 1634.9570 1678.4176 2.589382 

1.0362694 0.053293 368.1284633 0.051427 368.179891 370.90780 0.735469 

0.8992805 0.046248 1231.839742 0.051427 1231.8911 1171.7770 5.130169 

1.6025641 0.082416 364.5457259 0.051427 364.597153 370.52404 1.59959 

0.7855459 0.040398 1225.27869 0.051427 1225.33011 1162.0169 5.448554 

1.1248593 0.057849 366.5737928 0.051427 366.625220 373.046432 1.721290 

1.1709601 0.060220 1228.994468 0.051427 1229.04589 1165.2384 5.475913 

1.1641443 0.059869 703.2132058 0.051427 703.264633 705.72611 0.348786 

1.1467889 0.058976 703.2132058 0.051427 703.264633 705.726114 0.348786 

1.1574074 0.059523 703.2132058 0.051427 703.264633 705.72611 0.348786 

1.1600928 0.059661 703.2132058 0.051427 703.264633 705.72611 0.348786 

    
  

2.819776 

 
Figure 3. Experimental and predicted results of machining by KY1615 cutting tools for MRPI index. 
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Table 4. Level totals of MRPI. 

Parameters L1 L2 L3 L4 L5 

Cutting speed, A 368.1799 2110.2947 5998.6569 3909.4061 1231.8911 

Feed rate, B 368.1798 2126.825 6008.800 3892.876 1225.33 

Depth of cut, C 366.6252 2126.825 6003.0568 3892.876 1229.0458 

3.2. Regression model 

Regression model was used to study MRPI with cutting mild steels. 

Regression equation is given by, 

MRPI = 705.7 + 238.1 × A + 235.3 × B + 235.5 × C + 23.2 × A × A + 21.4 × B × B + 22.4 × C × C
+ 66.0 × A × B + 66.0 × A × C + 64.8 × B × C 

(7) 

where MRPI = multi response performance index, A = speed (m/min), B = feed rate (mm/rev.), C = depth of 

cut (mm). Coefficients of A, B and C are all positive. Higher coefficient will be higher influence to response, 

but no significant difference was obtained between factor C and factor B, respectively. MRPI is estimated 

through Equation (6) and given in Figure 3. Coefficient determination is found to be 99.06% while adjusted 

R2 is 97.99%. This shows the that there is a good correlation between input parameteres such as factor A, B, 

factor C and output of MRPI that also represent the association of SR and MRR based on the weight method. 

However, it reveals that MRR contribution is more than that of SR contribution. For SR, feed rate mostly is 

effective parameter among the other, which is followed by tool tip’s radius (see Equation (2))[3]. As for the case 

of MRR, cutting speed, feed rate and depth of cut are all effective because they all involves during the 

machining process (see Equation (3)). 

3.3. Analysis of variance (ANOVA) 

ANOVA is chosen to determine control factors affecting on MRPI, results are indicated in Table 5. This 

analysis is carried out at 95% confidence level. Probability (P) values were about 0.0, 0.0, 0.0 for A, B, C, 

respectively. This analysis is confirmed with Pareto results, as shown in Figure 1. Further, interaction factors 

of A × B, A × C and B × C significantly influenced the MRPI since the P-values were 0.008, 0.008, 0.009 

lower than 0.05 on the response. Therefore, these basic factors are significantly affected the coming out results. 

Table 5. ANOVA for MRPI when machined the steels by mixed ceramics. 

Source DF Adj SS Adj MS F-value P-value 

Model 9 2404.570 267.174 93.22 0 

Linear 3 2287.975 762.658 266.11 0 

A 1 774.228 774.228 270.14 0 

B 1 756.205 756.205 263.85 0 

C 1 757.542 757.542 264.32 0 

Square 3 13.376 4.459 1.56 0.274 

A × A 1 6808 6808 2.38 0.162 

B × B 1 5796 5796 2.02 0.193 

C × C 1 6359 6359 2.22 0.175 

2-way interaction 3 103.219 34.406 12 0.002 

A × B 1 34.829 34.829 12.15 0.008 

A × C 1 34.829 34.829 12.15 0.008 

B × C 1 33.561 33.561 11.71 0.009 

Error 8 22.928 2.861 - - 

Total 17 2427.498 - - - 
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4. Conclusions 

The prediction modelling of material removal rate/surface roughness was studied with RSM in machining 

mild steels through mixed ceramic tools. Multi regression equation and multi-response performance index 

(MRPI) was developed and determined the optimal levels. 

1) It is observed that all involved control factors indicated effective factors on MRPI, but speed generated 

more cutting energy than other factors. In addition to this, A × C, A × B, B × C interactions had also statistically 

significant influence on the combination of material removal rate with surface finish. 

2) Maximum/minimum MRPI produced were about 1634.957/263.435, which are corresponding to 

19440.75 mm3/min and 7803 mm3/min for 8th run and 1st run of the experiment. These results were obtained 

under cutting parameters of 196 m/min cutting speed, 0.1725 mm/rev. feed rate, 0.575 mm depth of cut, and 

of 144 m/min cutting speed, 0.1275 mm/rev. feed rate and 0.425 mm depth of cut, respectively. 

3) Optimal levels were found in terms of MRPI that were A3, B3, C3. It meant that the hardened mild 

steel tested at a cutting speed of 170 m/min, feed rate of 0.15 mm/rev. and depth of cut of 0.5 mm cutting 

conditions for multi-response characteristics index. 

4) It was concluded that the percentage errors estimated from the data obtained were about 2.81% for 

regression model and, correlation coefficient was around 99.06%. This is because the main three factors of A, 

B, C were found to be effective in addition to interactions effects like A × C, A × B, B × C on the response. It 

does not show any relation between SR and MRR since it represented the weightage approach, but MRR 

contribution was significantly large compared to SR output on the multi-response. 

5) This experimental and theoretical based of the study indicated that MRPI method was capable of quite 

good modelling for the evaluation of surface roughness/material removal rate based on the determining the 

weight method. 
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Abbreviations 

Al2O3 Aluminum oxide based ceramic cutting tool 

BB Box-Behnken method 

CBN Cubic boron nitride based cutting tool 

CC650 Conventional mixed ceramic cutting tool 

CC650WG Wiper mixed ceramic cutting tool 

CNC Turning machine controlled by numerically 
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CVD Chemical vapor deposition coating method 

d Depth of cut (mm) 

f Feed rate (mm/rev.) 

MQR Quadratic model 

Quadratic 2nd order regression model 

PE Percentage error (%) 

PVD Physical vapor deposition coating method 

R2 Coefficient of determination 

RSM Response surface methodology 

SR Average surface roughness (µm) 

V Cutting speed (m/min) 
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