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ABSTRACT 
The presence of pharmaceutically active compounds (PhACs) in drinking water sources is a serious global challenge. 

Although several approaches have been made to overcome the challenge, unfortunately, most wastewater treatment 
processes still lack the capacity to provide water completely free of PhACs. This review reports the use of nanocomposite 
membranes as a promising material for the efficient removal of PhACs from the water system. The study revealed that 
fouling and high energy consumption–the major associative limitations of conventional membranes, can be circumvented 
by incorporating metal oxides and carbonaceous nanoparticles into nanocomposite membranes. Interestingly, 
photocatalytic nanocomposite membranes exhibited the additional benefit of complete degradation of PhACs. Therefore, 
it is essential to focus future studies on understanding the details of the photocatalytic nanocomposite membrane process. 
Furthermore, conducting more studies on a large scale, cost evaluation, and toxicity profiling of nanocomposite 
membranes is vital. 
Keywords: nanocomposite membrane; water; PhACs; nanomaterials 

1. Introduction 
The continuous consumption of pharmaceutical products is the 

main contributor of pharmaceutically active compounds (PhACs) to 
the environment[1–4]. Although PhACs are found in small 
concentrations (ranging from ng L−1 to µg L−1) in the environment, they 
may bioaccumulate to become toxic[5]. Their metabolites may be of 
serious health and environmental concern[6,7]. Table 1 presents the 
chemical profile of some selected PhACs. 

Many of these PhACs have been detected in environmental water 
systems, effluents emerging from wastewater treatment plants (WWTP) 
and drinking water. The presence of PhACs could pose danger not only 
to public health but also aquatic system[16]. They are relatively stable 
and are not totally assimilated by the human and animal body system 
when used[17]. Therefore, they are not fully metabolized and are 
excreted from the body in body fluids and stools, from which PhACs 
get into the environment[18]. Other sources have been attributed to 
improper disposal of expired drugs and pharmaceutical wastes, run-off 
from veterinary and abattoirs, and domestic wastes[19–21]. Commonly 
used drugs like cotinine, caffeine, and acetaminophen have been 
reported in drinking water[22]. Studies have revealed that some of these 
PhACs may be linked to neurophysiological effects and mutagenic and 
carcinogenic consequences[23,24]. PhACs have been reported in drinking 
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Table 1. Chemical profile of some selected commonly used PhACs. 

Class PhAC apKa bm/z clog Kow References 

Antibiotics Levofloxacin 6.24, 8.74 362.143 −0.39 [8] 

 Sulfamethoxazole 5.7 254.059 0.89 [8–10] 

 Norfloxacin 6.34, 8.76 320.141 0.46 [8] 

 Ciprofloxacin 6.38 332.141 0.4 [8,10–13] 

 Erythromycin 8.8-8.9 734.5 3.06 [8,10–13] 

 Ofloxacin 5.97, 9.28 362.151 −0.39 [8] 

 Azithromycin 8.74 749.519 4.02 [8] 

Analgesic Ibuprofen 4.9 207.138 3.97 [8–11,13,14] 

 Naproxen 4.2 229.085 3.18 [8,10,11,13,14] 

 Codeine 10.6 415.379 1.19 [8] 

 Paracetamol 9.4 152.071 0.46 [8–11,13,14] 

 Diclofenac 4.2 296.024 0.70 [8–11,13,14] 

Stimulant Caffeine 10.4 194 −0.07 [8–11,15] 

 Paraxanthine 8.5 181.07 1.17 [8] 

Hormones Estriol 10.54 287.165 2.45 [8] 

 17-β Estradiol 10.46 271.170 4.01 [8–10,13] 

 Estrone 10.34 269.155 3.13 [8–10,13] 

Β-blockers Diltiazem 8.06 415.169 2.70 [8] 

 Atenolol 9.6 267.170 0.16 [8–10,13] 

water sources with potential risks[25–27]. The risk is higher in aquatic organisms than in humans because the 
concentrations reported in drinking water are trace amounts compared to those in environmental water 
systems[28–30]. Some of the previously reported toxicological impacts of some PhACs are shown in Table 2. It 
is crucial to prevent PhACs from entering environmental water systems, especially drinking water sources, 
because of their associated risks. 

Table 2. Toxicological impact of some selected PhACs. 

PhAC Effects References 

Atenolol Hinders the growth of human embryonic stem cells. 
Toxic to aquatic systems 

[31–33] 

Ketoprofen Toxic to aquatic system [33,34] 

Caffeine Promotes anxiety and panic disorders among humans. 
May also cause cancer 

[33,35] 

Diclofenac Causes cytological changes in the liver, kidneys, and 
gills of fishes. Reduces the hematocrit values of fishes. 

[13,33] 

Ibuprofen Hinders postembryonic development among 
amphibians. Damages reproductive system of aquatic 
organisms. Causes gastric ulceration, dyspepsia, bowel 
inflammation, mucosal damages, and cardiovascular 
dysfunction 

[13,33,36,37] 

Erythromycin Causes damages to liver metabolic processes of fishes [38] 

Metoprolol Causes cardiovascular and neural problems among 
humans. Highly toxic to aquatic organisms. 

[33,39] 

Ciprofloxacin May damage immune system of humans and aquatic 
organisms 

[33,40] 
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Table 2. (Continued). 
PhAC Effects References 

Paraxanthine Increases the diastolic blood pressure, free fatty acids, 
and plasma epinephrine levels. It stimulates the 
sympathetic nerves and hampers the sympathetic 
nervous system. 

[41] 

Sulfamethoxazole Promotes the spread of antibiotic-resistant 
microorganisms. 

[33,42] 

Naproxen Toxic to aquatic organisms [13,33] 

Codeine Dangerous to aquatic organisms may cause increase in 
plasma concentrations 

[43] 

Estriol, Estrone and 
Estradiol 

Manipulates the sexual and reproductive systems of fish 
and humans. Causes birth defects, abnormal sexual 
development, and cancer. Affects the nervous system 
and the immune system. 

[33,44,45] 

Paracetamol Leads to the formation of hepatotoxic metabolites and 
affects the liver. 

[13,33,40] 

Despite the attempts by WWTP to remove impurities in water systems, most adopted methods still cannot 
effectively remove PhACs from water. However, membrane processes such as microfiltration (MF), 
nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) have been used extensively for purification 
of polluted water systems. These processes are preferred in water purification due to ease of operation, high 
separation efficiency, and space efficiency[17,46]. Previous studies revealed the suitability of RO and NF 
membranes for removing PhACs in water systems[47,48]. Unfortunately, fouling and high energy consumption 
have been the major limitations of using membranes in water treatment[48,49]. Efforts have been made to 
circumvent this problem, one of which is the inclusion of nanomaterials into the polymeric structure of the 
membranes. Including metal oxide-based materials and carbon-based nanomaterials can help improve the 
polymeric matrix and surface performance of membranes, making them favourable for removing PhACs 
during water treatment. A surface performance like the ability to function as a photocatalyst may be enhanced 
with metal oxides like TiO2, ZnO, Fe2O3, MO2, SnO2, etc. Similar performance is also possible with the 
inclusion of carbon-based photocatalysts like graphitic carbon nitride (gC3N4). 

Carbon-based materials like graphene, activated carbon (AC), carbon nanotube (CNT) and other 
functionalized materials have been used to improve the adsorption capacity, permeability and selectivity 
exhibited by membranes[50,51]. Zeolite nanoparticles have shown the ability to improve membrane performance 
for removing PhACs[50] while TiO2 has demonstrated capacity towards metoprolol, sulfamethoxazole and 
triclosan removal[52]. A study also showed enhanced antifouling and photocatalytic tendencies towards 
diclofenac and ibuprofen[49]. 

Beyond any doubt, membrane technology has shown potentials for water treatment with the potential for 
removing PhACs in an aqueous solution. However, there is the limitation of fouling and high energy 
requirement, which is currently receiving attention with the development of methods to circumvent the 
challenge. One of the presently considered approaches is using nanocomposite membranes as an improved 
means of removing PhACs from the water system. Therefore, this study aims to understand and review the 
development of nanocomposite membranes that demonstrate good performance to remove pollutants 
particularly PhACs from water. 

2. Conventional water treatment methods for PhACs 
Methods involving wetlands treatment, biological treatment, adsorption, coagulation, flocculation, 

photocatalysis, oxidation, electrochemical, photolysis, and ozonation are conventionally used in water 
treatment[53]. Many of these methods need to be improved. For example, biological treatment cannot 
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completely biodegrade many of the PhACs such as carbamazepine, bezafibrate, and clofibric acid[17,29]. Most 
wastewater treatment plants adopt adsorption as a posttreatment step after biological treatment, and in some 
cases, an advanced approach may be required for complete water purification. The cost of adsorbents and 
energy consumption limit the use of adsorption. The adsorption process has effectively removed polar 
PhACs[54]; however, the efficiency is reduced in the presence of dissolved organic matters (DOMs) in a 
complex water matrix[17]. Ozonation is considered a secondary treatment[55]; unfortunately, ozonation of 
PhACs is challenged by the formation of toxic intermediates and high energy consumption. However, catalytic 
ozonation has been used as an efficient method to ensure an advanced oxidation process to achieve complete 
oxidation or conversion of any toxic intermediate to small molecules like CO2 and H2O[56,57]. Adding a catalyst 
to the ozonation process improves the degradation process by generating free radicals to facilitate the complete 
removal of organic substances. 

Constructed wetlands approaches have served as practical means of water purification for years. Aquatic 
plant-based materials are used as alternatives to wastewater treatment plants for water purification. The process 
is inexpensive, easy to set up, eco-friendly and easy to maintain[58]. The approach may involve biological and 
microbiological water treatments. Compared to other methods, the design and performance are highly varied 
based on simple models; unfortunately, most mechanistic models are limited. This approach has been used to 
treat wastewater contaminated with PhACs[59,60]. It is mainly used as a secondary treatment step and sometimes 
called a black box without sufficient capacity to completely remove PhACs in water systems[60,61]. With recent 
advancement in technology wetland approach now includes sorption, biological degradation, and 
photodegradation giving rise to efficiency that depends on the design and operational factors[58,62]. Previous 
designs have shown higher efficiency for removing clarithromycin, ketoprofen, sulfamethoxazole, 
trimethoprim, and naproxen than ibuprofen and amoxicillin[60]. 

Membrane technology is commonly used as an effective separation process in water purification. Based 
on the process driving force, the membrane can be classified into pressure-driven, concentration-driven, 
electrical potential gradient-driven, and temperature gradient-driven operations, as shown in Figure 1. 

 
Figure 1. Classification of membrane process operations. 

This review is focused on pressure-driven membrane operations. Separation is achieved by making use 
of a pressure-driven filtration process. The membranes used for the separation process may be made of organic 
or inorganic materials or combined of both. The organic membranes may be produced from cellulose acetate 
(CA), polyethylene (PE), polypropylene (PP), polyethersulfone (PES), polysulfone (PSF), poly(vinylidene 
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fluoride) (PVDF), polyamide (PA) and poly(vinyl alcohol) (PVA) while the inorganic membranes may be 
produced from silica, ceramics, metal oxides, zeolites, etc. The membrane process has shown high potential 
for removing PhACS from water systems[63]. The pressure-driven membranes are the most used in water 
treatment. The characteristics of the four most common types (MF, UF, NF, and RO) of pressure-driven 
membranes are shown in Table 3. 

Table 3. Some properties of pressure-driven membranes. 

Pressure-driven 
membrane type 

Molecular weight cut 
off (kilo Dalton) 

Pressure required 
(bar) 

Average permeability 
(L m−2 h bar) 

Retained diameters 
(µm) 

RO 0.2–2 15–75 5–10 10−4–10−3 

NF 2–20 5–20 10–20 10−3–10−2 

UF 20–150 1–5 150 10−3–1 

MF 100–500 <1 500 10−1–10 

RO is commonly used for water treatment, especially removing PhACs from the water system[64,65]. The 
different pressure-driven membrane processes are often combined in a treatment process to improve process 
efficiency. In most cases, MF, UF and NF are preferably used as pretreatment step before RO, which reduces 
fouling and help in maintaining constant flux[63]. The pretreatment approach is mainly referred to as multi-
barrier treatment. 

3. Membrane filtration for PhACs 
The membrane filtration process requires low or no chemicals, which makes it a favourable potential 

technique that may bridge the present gap in water treatment processes[66]. Although there are still challenges 
to the high cost of a membrane with respect to UF, high energy consumption, irreplaceability of membrane 
(like in the case of RO) and fouling[63,67,68], membrane filtration remains a formidable technique for the removal 
of PhACs in water systems. The different types of membranes used in other countries are presented in Table 4. 

Table 4. Pressure-driven membranes used for water treatment in different countries. 

Type Water source Country Reference 

Gravity driven UF Ground water South Africa [69] 

MF Black water Egypt [70] 

UF Reservoir China [71] 

UF Songhuajiang river China [72] 

NF Freshwater Thailand [73] 

UF Surface water and ground water Malaysia [74] 

NF and RO Pesticide contaminated 
surface water 

India [75] 

NF Ground water Sri Lanka [76] 

RO and NF Sea water Turkey [77] 

RO Brackish water Brazil [78] 

UF and MF Surface water Netherland [79] 

MBR Industry Germany [80] 

UF and RO Ground water Australia [81] 

NF = nanofiltration, UF = ultrafiltration, RO = reverse osmosis, MBR = membrane bioreactor, MF = microfiltration. 

NF and RO are the two most common membrane processes used globally for water treatment with respect 
to PhACs removal from water due to their small molecular weight cut-off (MWCO)[82]. Studies have shown 
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the use of membrane filtration to remove PhACs in water[83–85]. The large MWCO limits the use of UF and MF 
to remove PhACs[86]. Unfortunately, some authors argued that NF and RO membranes might not be so 
convincingly outstanding for removing PhACs from the solution. An example is the PES NF membrane’s 
inefficient performance in removing ibuprofen, carbamazepine, and diclofenac from drinking water[87]. 
Furthermore, another study revealed that the charge and molecular size of PhACs and membranes have a role 
in the efficiency of membranes during the removal process[87,88]. A previous study has shown that the 
performance of RO depends on the membrane used and the physicochemical properties of target PhACs[89,90]. 

Over time, process modification led to using a membrane bioreactor (MBR), a solid-liquid separation 
without a secondary clarifier. The process combines activated sludge treatment with UF or MF[91]. The 
membrane is usually integrated or connected externally to the reactor. The process is challenged with fouling 
due to biofilm deposited on the surface of the membrane during the treatment process[92]. MBR has brought 
tremendous improvement in removing PhACs in water; it remains a current method for water treatment and a 
method for the future that can be improved by a modification to enhance performance. MBR has shown high 
efficiency towards certain classes of PhACs[93,94]. This is because MBR combines the biodegradation process 
and the activated sludge process. The biodegradation process depends on factors which may not be directly 
related to the design or configuration of the reactor[91]. Most reactors are connected to RO or NF to boost 
performance[84,95]. The kind of membrane connected to the reactor plays a vital role in the overall performance 
of the reactor. Despite the success achieved so far, there is a need to improve the performance of the membrane 
separation system in the MBR system. Several improvement techniques have been developed; however, 
nanocomposite membranes show outstanding performance and improvement[96] that may be implemented 
along with MBR. Therefore, attention should be given to improving high energy consumption, fouling, 
selectivity, permeability, useability, and membrane modules. 

Nanotechnology has shown the capacity to circumvent the challenges identified with the membrane 
filtration process. The approach has superior properties such as a large surface area for adsorption, tunable size 
to control fouling, high thermal and chemical stability, and functional groups that may enhance interaction 
with PhACs for removal via electrostatic interaction, π-π stacking, van der Waals interaction or hydrophobic 
interaction[17,85,97]. Nanocomposite has been used as material for membrane modification to further improve 
membrane performance. The incorporated nanoparticles in the membrane may enhance permeability, fouling 
resistance, mechanical and thermal stability, and shelf life. 

3.1. Nanocomposite membranes for PhACs removal in water 
Nanoparticles are useful resources for the detection of PhACs in water[98]. Different studies have reported 

the inclusion of nanocomposite in the membrane during preparation to improve efficiency[96,99]. Many authors 
achieved this by increasing the amount of nanomaterial they include in the polymeric or inorganic structure of 
the membrane. Nanomaterials used in such cases include metal oxide nanoparticles (TiO2, Al2O3, SiO2, ZnO, 
SnO2, CuO, zeolite, etc.) and carbonaceous nanoparticles such as graphene oxide (GO), gC3N4, AC, boron 
nitride (BN), etc.). When metal oxides are used, they help reduce fouling, improve surface hydrophilicity, and 
permeability[100–102]. The inclusion of metal oxide further improves the thermal and electrical stability of the 
membrane as well as lowers the negative impact of heat and compaction on permeability[101–104]. Most of the 
metal oxide nanoparticles are photoactive and may be photocatalytic; therefore, their inclusion in the 
membrane structure introduces photoactivity to the membrane, which is an additional benefit of 
photodegradation of PhACs during water treatment. Including carbonaceous nanoparticles such as 
functionalized nanomaterials improve the membrane’s surface and internal structure. The surface area is 
increased, enhancing the membrane’s adsorptive capacity. Selectivity and specificity of the membrane towards 
target PhACs are further improved. 

Like metal oxide nanoparticles, very few carbonaceous nanoparticles are photoactive. Carbon-based 
nanoparticles like g-C3N4 are photocatalytic[6]. Effort has been made to develop photocatalytic membranes that 
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will ensure the complete elimination of PhACs in water systems; in this regard, TiO2-modified membranes 
have been reported[105]. Imprinting photocatalytic properties into the membrane is an exciting technique 
receiving global attention. TiO2 is a typical semiconductor metal oxide used, while g-C3N4 and metal-organic 
framework (MOF) are examples of carbon-based nanoparticles used as a photocatalyst to prepare 
nanocomposite membranes. When the nanocomposite membrane is exposed to light (hv), the composite metal 
oxide produces an electron/hole (e−/h+) pair that migrates to the surface of the membrane creating reactive 
oxygen species (ROS) such as hydroperoxyl radical (.OOH), hydroxyl radical (OH), and superoxide anion 
radical (O2

−) in the water system as shown in Figure 2. 

 
Figure 2. Mechanism of photocatalytic degradation of PhACs by (a) metal oxides and (b) functionalized carbon-based nanoparticles. 

The ROS promotes the degradation of the PhACs (Figure 2a). The e−/h+ is produced when e− is excited 
from the valence band (CB) to the conduction band (CB) to generate h+. Similarly, e− may be promoted from 
the highest occupied molecular orbital (HOMO) of the carbon-based materials (g-C3N4 or MOF) to its lowest 
unoccupied molecular orbital (LUMO) to produce hole (h+) as shown in Figure 2b, which is similar to the VB 
and CB of the metal oxides[106–108]. The advantages and disadvantages of using nanoparticles in preparing 
nanocomposite membranes are shown in Table 5. 

Table 5. Comparison of the advantages and disadvantages of some common nanoparticles for membrane modification. 

Material Advantages Disadvantages Reference 

Graphene High mechanical strength, selectivity, 
quick sorption kinetics and high 
capacity 

Expensive, potential 
environmental risks from to 
leaching 

[109,110] 

CNTs High mechanical strength, selectivity, 
sorption kinetics and capacity, high 
hydrophobicity and strong affinity to 
organic pollutants 

Hard to recover, potential 
environmental risks, high 
cost 

[111,112] 

Metal oxides High surface area, photocatalytic 
property, unique magnetic properties 
that facilitate their recovery, low 
toxicity 

Low sorption capacity [113] 
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Table 5. (Continued). 
Material Advantages Disadvantages Reference 

MoS2 High adsorption capacity and 
kinetics 

High cost, instability, 
potential environmental 
risks 

[114] 

Boron 
nitride 

High mechanical strength, high 
stability, good adsorption capacity 

High cost and toxicity [115,116] 

Different nanoparticles have been identified; however, the nanoparticle used is determined by the desired 
membrane properties. Similarly, the different membrane modification methods are highlighted in Table 6. 

Table 6. Techniques used in membrane modification. 

Material Modification method Reference 

Polymer blend modification method 

PVC/Polyvinyl formal (PVF) Different concentrations of PVF with PVC dissolved in DMAc [117] 

PAN-MPDSAH Acrylonitrile and MPDSAH randomly co-polymerized using AIBN as 
initiator to form PAN-MPDSAH 

[118] 

Cellulose acetate Casting solution prepared from different blends of NOCC/CA [119] 

PAN-DMAEMA based zwitterionic 
copolymer in PAN 

Reaction of DMAEMA radical with 1,3-propane sultone to form 
zwitterionic copolymer with PAN 

[120] 

 Sol-gel modification method  

PVDF TEOS and DI water were added DMF at an adjusted pH to yield SiO2 
which was sol doped into PVDF-DMAc solution 

[121] 

PES TET was added to DMAc with appropriate amount of HCl and DI 
water to yield TET sol-then added to PES-DMAc solution 

[122] 

PVA TEOS added to HCl and DI water to get SiO2 sol-then different 
concentrations of sol added to PVA/PEG aqueous solution 

[123] 

PSF TBT added to NMP with appropriate amount of HCl and DI water to 
yield TiO2 sol-then added to PSf/PVP-DMAc/NMP solution 

[124] 

 Surface modification method  

Polysulfone UV-initiated grafting polymerization with MPDSAH using 
benzophenone as photo- initiator 

[125] 

PES ABS/CS polymer blend casted over PES substrate [126] 

PP Grafting of ozone-treated PP membrane by HEMA [127] 

Cardo-polyetherketone UV-induced grafting with acrylic acid monomer [128] 

MPDSAH = ([3-(Methacryloylamino) propyl]-dimethyl (3-sulfopropyl) ammonium hydroxide), AIBN = azobis-isobutyro-nitrile, CA 
= Cellulose acetate, NOCC = N,O-carboxy methyl chitosan, PVDF = Polyvinylidene fluoride, TEOS = Tetraethoxysilane, DI = 
Deionized, DMAc = N,N’-dimethyl acetamide, TET = Tetraethyltitanate, PES = Polyethersulfone, PVA = Poly(vinyl alcohol), HCl = 
Hydrochloric acid, PEG = Polyethylene glycols, PSF = Polysulfone, TBT = Tetrabutyltitanate, NMP = N-methyl-2-pyrrolidone, PP = 
Polypropylene, HEMA = 2-hydroxyethyl methacrylate, PEK-C = Cardo-polyetherketone, ABS = Acrylonitrile butadiene styrene, CS 
= Chitosan, PVC = Polyvinyl chloride. 

The modification methods include polymer blend[129], sol-gel[130], and surface modification[131]. The 
previously reported modifications in the literature are summarized (Table 6). The type of desired membrane 
property determines the nanoparticle included in the membrane during modification and the modification 
process to use. Therefore, it becomes difficult to pinpoint the best modification process because the choice 
modification process depends on the desired membrane properties. 

3.2. Metal oxide-based nanocomposite membranes 
Metal oxide has played an essential role in the modification of membranes. Apart from the antifouling 

property, some metal oxides possess magnetic properties which positively impact the membrane, enhancing 
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its water flux, and rejection capacity[132,133]. Nanocomposite membranes have also been reported to show 
enhanced self-cleaning and low toxicity[134–137]. Apart from the recorded achievement with metal oxides in the 
membrane, their inclusion may cause uncontrolled aggregation (at a high amount of loading into the membrane) 
because of inorganic-organic incompatibility or inorganic-organic incompatible interactions[138]. Such 
incompatibility may negatively affect the surface area, permeability, and mechanical stability of the membrane, 
resulting in reduced effective pore size[139]. Some selected metal oxides and inclusion method in the membrane 
is shown in Table 7. It is essential to moderate the inclusion of metal oxide in the membrane in the right 
proportion to avoid agglomeration while attaining maximum water flux and performance[138,140]. It is 
paramount that the loaded metal oxide in the membrane should not leach out of the membrane during the water 
purification process. Leaching may cause serious environmental problems, which are undesirable. Currently, 
research is ongoing on understanding the inclusion process of metal oxide in the membrane and the 
development of a procedure that will not lead to the leaching of the metal oxide[141,142]. 

Table 7. Selected metal oxide nanoparticles and methods for membrane modification. 

Membrane Method Product formed Reference 

ZnO modified 

Polyethersulfone Phase inversion Polyethersulfone-ZnO [143] 

Poly(vinylidene fluoride) Vacuum distillation Poly(vinylidene fluoride)-ZnO [144] 

Poly(vinylidene fluoride) Phase inversion Poly(vinylidene fluoride)-ZnO [145] 

Polyvinylidene difluoride Non-solvent induced phase 
separation 

Polyvinylidene difluoride-ZnO [146] 

Polyethersulfone dry/wet phase inversion Polyethersulfone-ZnO [147] 

TiO2 modified 

Cellulose Covalent bonding Cellulose-TiO2 [148] 

Polyvinylidene fluoride Blending Polyvinylidene fluoride-TiO2 [149] 

Polyvinylidene fluoride adsorption and filtration Polyvinylidene fluoride-TiO2 [150] 

Graphene oxide Impregnation GO-TiO2 [151] 

Polyvinylidene fluoride Impregnation Polyvinylidene fluoride-TiO2 [151] 

Polyvinylidene fluoride Physical deposition Polyvinylidene fluoride-TiO2 [152] 

YSZ/silica Sol-gel YSZ /silica-TiO2 [153] 

CuO modified 

Polyethersulfone Dispersion Polyethersulfone-CuO [154] 

PSF Dispersion in phase inversion PSF-CuO [155] 

PES Dispersion in phase inversion PES-CuO [156] 

PES Phase inversion-Immersion 
precipitation 

PES-CuO [157] 

PA/PS Immobilization in PA layer PA-CuO [158] 

Thin-Film Composite Coating Tin-Film Composite-CuO [159] 

PES phase inversion PES-CuO [160] 

PVDF = poly(vinylidene fluoride), PA = polyamide, PES = polyethersulfone, PSF = polysulfone, YSZ/silica = yttria-stabilized 
zirconia /silica. 

3.2.1. TiO2 nanoparticle incorporated nanocomposite membrane. 
One of the advantages of incorporating TiO2 into the composite membrane is that it is an excellent and 

low-toxic material for photocatalysis. The impacts of TiO2 on the performance of nanocomposite membranes 
from some selected previous research studies are presented in Table 8. 
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Table 8. Impacts of TiO2 on the performance of nanocomposite membrane. 

Membrane material Fabrication method Performance Reference 

PVDF and sulfonated PES blend 
membrane 

Phase inversion Enhanced hydrophilicity and 
antifouling. Agglomeration @ ≥ 4 
wt.% loading 

[161] 

L-cysteine-surface in PES 
membrane 

Phase inversion Enhanced water flux, hydrophilicity 
and antifouling. Agglomeration @ 1 
wt.% loading 

[140] 

PSF-based PANI-coated PA 
nanocomposite hollow fiber 
membrane 

Coating Enhanced hydrophilicity and 
antifouling. Agglomeration@1 wt.% 

[162] 

PSF membrane Phase inversion Enhanced hydrophilicity, high surface 
area, self-cleaning efficiency, 
antifouling activity 

[163] 

PSF UF membrane with PANI-
coated PEG 

Phase inversion Enhanced porosity, permeability, 
hydrophilicity, water uptake and 
antifouling. Agglomeration @ 1.5 
wt.% loading 

[164] 

PSF UF membrane  Phase inversion Better porosity, hydrophilicity, and 
antifouling property. Aggregates @ 
2.0 wt.% 

[165] 

Microporous PES membrane Phase inversion Enhanced hydrophilicity, mean pore 
size and permeation property, flux, 
mechanical strength, thermal stability. 
Agglomeration @ 4-5 wt.% loading. 

[166] 

Electrospun nanofibers from a 
blend of PVP, and PVDF 

One-step electrostatic 
spinning 

Enhanced hydrophilicity, mechanical 
strength, chemical stability, and 
antifouling. 

[167] 

PANI: polyacrylonitrile; PSF: polysulfone; PEG: poly (ethylene) glycol; PVP: poly (1-vinylpyrrolidone); PVDF: polyvinylidene 
difluoride; UF: ultrafiltration; PA = Polyamide. 

The presence of TiO2 improved the antifouling property of PVDF and sulfonated PES blend membrane[161] 
and PSF-based polyacrylonitrile-coated PA nanocomposite hollow fibre membrane[162]. TiO2 enhanced 
hydrophilicity in all the membranes reported (Table 8). However, agglomeration occurred at a low loading 
weight. This was peculiar to PSF UF membrane with polyacrylonitrile-coated PEG[164], PSF-based 
polyacrylonitrile-coated PA nanocomposite hollow fibre membrane[162] and L-cysteine-surface in PES 
membrane[140] where aggregation set-in at 1 wt.%. Attempt to go beyond 1 wt.% led to leaching of the TiO2 
particles, unlike in the case of PVDF and sulfonated PES blend membrane[161] and microporous PES 
membrane[166], which could accommodate more of the nanoparticles. This indicates that it is essential to 
monitor the nanoparticle loading process to avoid aggregation, which limits the performance of the membrane. 
The PVDF UF membrane was recently modified with TiO2 to remove sulfadiazine from water[168]. The process 
exhibited a high removal capacity of 91.40%, attributed to the photocatalytic activity of the incorporated TiO2. 
Similarly, a study reported the inclusion of TiO2 in a poly(vinylidene fluoride-hexafluoropropylene) matrix to 
remove metronidazole[169]. TiO2 supported on poly (vinylidenefluoride-co-hexafluoropropylene) membrane 
has been prepared to remove ciprofloxacin in solution[170]. The preparation steps produced a photocatalytic 
membrane with 80%–90% porosity, a promising membrane for removing ciprofloxacin in an aqueous solution. 
Several studies have shown that the leaching of TiO2 from the membrane system varies. A study varied the 
doping of TiO2 in PVDF to form a hollow-fibre UF membrane via the sol-gel method[171]. At a loading of 1%, 
the UF membrane enhanced hydrophilicity, thermal stability, permeability, and mechanical strength. However, 
an attempt to go beyond 1% loading of TiO2 resulted in agglomeration. Interestingly, the loading of TiO2 in a 
UF membrane was up to 7%, while leaching set in at a loading of 10%[172]. Although the high loading of 
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nanoparticles into the membrane structure does not necessarily mean better performance, it is crucial to 
determine the threshold for effectiveness while leaching is not undermined. 

3.2.2. ZnO nanoparticle incorporated nanocomposite membranes 
The inclusion of ZnO into the membrane is known for its antimicrobial activity. ZnO is low-cost, 

environmentally friendly, and hydrophilic. Different methods have been used to include ZnO in membrane 
preparation. However, phase inversion is commonly used. Hybrid PVDF-P(L-DOPA)-ZnO membrane has 
been prepared by phase inversion to remove oxytetracycline in solution[173]. The process converted the 
hydrophobic PVDF membrane to hydrophilic, having pores mean size of 1.5 µm. The membrane exhibited 
high stability after 3 regeneration cycles. A facile synthesis involving incorporating ZnO in the PES membrane 
matrix was reported with enhanced water flux (152 L m−2 h−1) and antifouling capacity that degraded 
ciprofloxacin up to 95.1%[174]. Surface modification of the membrane with the incorporation of ZnO has shown 
more remarkable improvement. The surface modification method may involve physical or chemical surface 
coating[175,176], which introduces ZnO to the membrane surface allowing direct interaction with PhACs. PVDF–
ZnO composite membranes have been prepared by the blending method[145]; the inclusion of ZnO created 
smaller water contact angles and an improved sublayer structure, enhancing membrane performance. A recent 
study doped PSF and CA with 0.2 wt% ZnO to fabricate a membrane with super hydrophilic properties[177]. 
The composite membrane decreased the water contact angle from 72.86 to 13.17 ℃ and increased water flux 
from 20 to 460 L m−2 h−1. Indeed, ZnO remains a promising metal oxide that can be used to improve the 
capacity of filtration membranes as a sustainable means for removing PhACs from an aqueous solution. 

3.2.3. CuO, SiO2 and zeolite nanoparticle incorporated nanocomposite membranes 
SiO2 is often used in membrane modification because of its tremendous thermal, chemical, and structural 

stability and superb facile suspension in solution[178,179]. CuO and SiO2 have played essential roles in improving 
the permeability and antifouling property of membranes; for example, including SiO2 in PVDF improved 
hydrophilicity, selectivity, and thermal stability[180]. A study has revealed that the presence of SiO2 can help 
unify the pore size distribution of nanocomposite membranes[181]. A PSF/PVDF/SiO2 UF membrane was 
synthesized to remove amoxicillin in an aqueous solution[182]. On increasing the loading of SiO2 from 0 to 4 
wt%, the membrane performance increased from 66.52% to 89.81%, suggesting the vital role SiO2 plays in 
ensuring enhanced membrane performance. CuO@CuS/PVDF composite membrane was also reported to be 
able to remove tetracycline with a degradation capacity of 87.40%[183]. Poly(aniline-co-meta-
phenylenediamine) modified with Fe3O4/CuO was synthesized and used for removing ciprofloxacin from an 
aqueous solution[184]. According to Aniagor et al.[185], CuO demonstrates potential as a nanoparticle that can 
enhance the performance of membranes in water treatment. Zeolite-based nanocomposite membranes have 
been reported for the removal of PhACs in water. Zeolite may be referred to as a green ceramic membrane 
precursor[103,186]. They are the three-dimensional crystalline structure of aluminosilicates[187]. Several forms of 
zeolite have different properties; therefore, the zeolite to improve the membrane’s or composite membrane’s 
properties will depend on the desired membrane property. The well-defined structure, void, flow channels and 
negative charges in zeolite have contributed significantly to its use in the water purification process and, by 
extension, in improving the performance of nanocomposite membrane[188,189]. The silica-to-alumina (silica-
alumina) ratio in zeolite is critical in its application in water treatment. It plays a vital role in the zeolite’s 
chemical stability and cationic exchange. When the silica content is high, the zeolite becomes hydrophilic and 
is suitable for water treatment[187]. Different reaction mechanisms have been associated with using zeolite in 
water treatment, such as molecular sieving, adsorption, charge exclusion and ion exchange[190,191]. A ceramic 
MF membrane was reported to remove norfloxacin and ofloxacin from the aqueous solution[192]. The 
membrane recorded a capacity of 98.70% towards norfloxacin and 94,61% towards ofloxacin. A study 
provided an overview of nano-zeolite in water treatment, which shows its role in membrane activities[187]. 
Recently, a porous zeolite imidazolate framework-8 (ZIF-8) composite was reported to remove thymol in an 
aqueous solution with high adsorption capacity[193]. 
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3.3. Carbonaceous nanocomposite membranes for PhACs removal in water 
Carbon-based materials have been used extensively as nanomaterials to modify membranes, especially in 

preparing nanocomposite membranes. This is possible because carbon-based nanoparticles can imprint 
functional properties on membranes by tampering with the membrane’s surface and internal structural identity. 
Their inclusion forms a complex matrix of polymeric structure with increased surface area and uniform 
porosity. The membrane’s thermal and chemical stability, surface reactivity and antifouling property are 
improved[97,194,195]. They can be included as nanofillers to improve viscoelasticity and mechanical 
strength[196,197]. Unfortunately, carbonaceous nanomaterial dispersibility is poor, making them agglomerate. It 
is necessary to consider this when selecting nano-carbonaceous materials to modify membranes. The 
agglomeration can be circumvented by surface functionalization, which in most cases is viewed as a 
pretreatment step for the carbon-based nanoparticles before incorporation into membranes. 

3.3.1. CNT, GO, MOF-based nanocomposite membranes for PhACs removal 
CNT is an allotrope of carbon of a two-dimensional structure known for its outstanding surface adsorption 

properties, thermal stability, and mechanical strength[198]. It may be single (SWCNT) or multi-walled CNT 
(MWCNT). On the other hand, graphene is a one-dimensional carbon-based structure with a high surface area, 
excellent surface adsorptive properties, thermal stability, and mechanical strength. Graphene can be oxidized 
to form GO or reduced graphene oxide (rGO). The hydrophobicity and monoatomic thickness of graphene 
presents it as material for membrane separation[199]; however, it exhibits a restricted permeability due to the π-
π conjugation in its aromatic ring[111]. Fortunately, the restricted permeability may be circumvented by 
enlarging its interlayer distance through intercalation[200,201], which may include processes like oxidation, 
exfoliation, and reduction to produce GO and rGO. Unlike graphene, GO has functional groups rich in oxygen 
(hydroxyl, epoxide, and carboxylic). The presence of the oxygen-rich groups makes it a two-dimensional 
structure, unlike graphene. It is hydrophilic, easily dispersed in solvents, has good permeability, and enhanced 
surface properties[111,202]. Despite the improved permeability in GO, the thermal conductivity is poor, which 
may be partially improved by reducing GO to rGO[203]. 

Usually, CNT is hydrophobic; however, it can be pretreated via surface functionalization and used to 
prepare nanocomposite membranes. The inner diameter of CNT may be adjusted within the nano range to suit 
the required purpose or properties for enhanced membrane performance[204]. Including CNT in membranes has 
shown better rheological properties[205,206]. Unfortunately, the CNT may agglomerate if not appropriately 
functionalized, which is a limitation that must be carefully controlled[207]. A nanocomposite membrane with 
improved mechanical and water flux properties has been synthesized by grafting PA with MWCNTs[208], 
similarly high porosity, better permeability and the antifouling property were attained when PA was 
incorporated with hydroxyl-functionalized CNT[209]. A NF membrane with MWCNT interposed between GO 
has been reported to remove tetracycline hydrochloride from an aqueous solution[210]. The study revealed a 
99.23% removal of tetracycline hydrochloride by the membrane, exhibiting a high-water permeation of 16.12 
Lm− 2h−1 bar− 1. A study reported GO and AC membrane structure for removing tetracycline hydrochloride in 
solution[211]. The membrane exhibited an adsorption capacity of 98.90% towards removing tetracycline 
hydrochloride in solution. The performance of membranes obtained from the inclusion of carbon-based 
nanoparticles is described in Table 9. 

Table 9. Performance of selected carbon-based nanoparticles for membrane modification. 

Membrane material Fabrication method Performance Reference 

PDA/RGO/(HNTs)-CA Vacuum filtration High antifouling property, high oil 
rejection (99.85%) and permeate flux 
(∼60.3 Lm−2 h−1) 

[212] 
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Table 9. (Continued). 
Membrane material Fabrication method Performance Reference 

GO-HNTs Vacuum-assisted filtration High oil rejection (>99%), fouling 
resistance and permeate flux 
(716 Lm−2 h−1) 

[213] 

PEN/HNTs@GO-PDA Vacuum filtration and 
electrospinning technique 
and hot-pressing process 

Good thermally and chemically stable, 
high rejection (>99.0%) and permeate 
flux (1130.56 Lm−2 h−1) 

[214] 

RGO-coated wire mesh Drop-coating >98%, excellent recyclability and high 
flux (1752 Lm−2 h−1) 

[215] 

TiO2/GO/recycled cellulose 
triacetate 

Electrophoretic deposition 
method 

High antifouling and self-cleaning 
ability and oil rejection (>98%) 

[216] 

GO/g-C3N4@TiO2 Vacuum-assisted self-
assembly 

Excellent antifouling, permeate flux 
(4536 Lm−2 h−1 bar−1) and oil rejection 
(>99.9%) 

[217] 

F-rGO)-based coating Dip-coating High mechanical stability and 
recyclability and High flux 
(1395 Lm−2 h−1) 

[218] 

RGO-silver (Ag)-TiO2/CA Vacuum filtration Excellent oil rejection (∼100%), 
antifouling capacity and recyclability; 
high water flux (191 Lm−2 h−1) and 
stable oil rejection (∼99%) 

[219] 

PVDF/RGO@SiO2/PDA Surface deposition and 
vacuum filtration 

High FRR (87.2%), Flux 
(∼125 Lm−2 h−1) and oil rejection 
(∼99%) 

[220] 

F-rGO = Fluorine-grafted reduced graphene oxide, rGO = reduced graphene oxide, HNTs = halloysite nanotubes, CA = cellulose 
acetate, PVDF = Polyvinylidene fluoride, PEN = Poly(arylene ether nitrile), g-C3N4 = graphitic carbon nitride. 

The inclusion of carbon-based nanoparticles generally enhanced the antifouling property of the membrane. 
A microporous membrane was prepared by loading PSF with 0.5% CNT[221]. The approach increased the water 
flux from 268 to 342 L m−2h−1bar−1; the surface porosity and the salt rejection were improved significantly. A 
photocatalytic g-C3N4/MnFe2O4/graphene nanocomposite membrane was designed to remove metronidazole, 
amoxicillin, tetracycline, and ciprofloxacin from aqueous solution[222]. The performance of g-
C3N4/MnFe2O4/graphene is promising, with the highest performance for removing metronidazole (94.50%). 
To investigate the capacity of GO alone as material for water purification without inclusion in the membrane, 
GO nanoplatelets were examined for their capacity to remove carbamazepine from solution in a treatment 
process that revealed 99% carbamazepine removal[223]. It became evident that GO on its own, has the capacity 
to remove PhACs from solutions. However, its regeneration capacity for reuse may not be as outstanding as 
when incorporated into a nanocomposite membrane structure. 

Other studies have reported the inclusion of MOF in the membrane has the potential for performance 
enhancement to remove PhACs. Powdered or monolithic MOFs have large surface areas that can improve the 
performance of the membrane[224]. MOFs exhibit higher surface area than GO, CNT, and AC[225]. A study 
incorporated MOF into UF, which showed improved performance compared to using UF[226]. Nanostructured 
membrane of the type ZIF-8 incorporated PSF membrane and layer-by-layer PA/ZIF-8 nanostructured 
membrane to remove acetaminophen from the solution[227]. In the MOF-based composite membrane, the MOF 
may serve as a filler to strengthen the structure of the composite membrane[228]. The MOF-based composite 
membrane is easy to scale up, cheaper and stable, and mainly prepared by blending method[229]. MOF is 
compatible with a polymeric structure, making it suitable and compatible when incorporated into a composite 
membrane[230]. The blending method involves three stages: (1) the MOF is mixed with polymer/matrix 
structure in a suitable solvent to form the composite membrane solution; (2) the composite membrane solution 
is cast on a porous substrate which may be by coating or casting and (3) evaporation of mixture solvent. A 
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nanocomposite membrane of enhanced performance has been prepared via this means combining super-
hydrophobic alkyl-functionalized nano-MOF (RHO-(Zn(eim)2)) (MAF-6) and polydimethylsiloxane (PDMS) 
which was cast onto PVDF[231] similarly hydrophilic and hydrophobic nanoMOFs were incorporated into PES 
matrix to improve performance[232]. The performance of different nanocomposite membranes towards different 
classes of PhACs is shown in Table 10. The capacity varies; however, nanocomposite with zeolite 
demonstrates a high capacity for removing PhACs from an aqueous solution. The inclusion of β-cyclodextrin 
polymers in the composite structure showed a high performance of 99.90% towards propranolol and bisphenol 
A[233]. The presence of SiO2 in the nanocomposites also showed significant contributions in the case of 
acetaminophen[234], ibuprofen[235], and diclofenac[234]. 

Table 10. Removal of different class of PhACs from water system by nanocomposite membrane. 

Class PhAC Membrane 
process 

Polymer Nanomaterial Removal 
Performance (%) 

Reference 

Antibiotics Chloramphenicol NF PATF Zeolite >90 [50] 

 Sulfamethoxazole RO CATF Zeolite 82 [89] 

 Tetracycline UF PES HMCN 97 [236] 

 Erythromycin NF PATF Zeolite >90 [50] 

 Ciprofloxacin NF PATF Zeolite >90 [50] 

 Sulfadiazine UF PVDF TiO2 91.4 [237] 

Non-steroidal anti-
inflammatory 

Acetaminophen UF PI SiO2 99.9 [234] 

 Diclofenac UF PI SiO2 87 [234] 

 Ibuprofen RO PATF SiO2 99.8 [235] 

 Naproxen NF PATF SiO2 >85 [238] 

Hormones 17β-Estradiol UF PES HMCN 94 [236] 

 17β-Estradiol RO PATF HMCN 83 [89] 

 Bisphenol A UF PVDF β-CDP >99.9 [233] 

 Bisphenol A UF PVC MWCNT/Fe3O4 57.4 [239] 

Lipid regulator Clofibric acid NF PATF Zeolite >85 [238] 

 Clofibric acid NF PATF Zeolite >90 [50] 

 Gemfibrozil NF PATF Zeolite >90 [50] 

 Gemfibrozil RO PATF Zeolite 99.5 [235] 

Anti-hypertensives Atenolol RO PATF Zeolite 99.5 [235] 

 Diltiazem NF PATF Zeolite >90 [50] 

 Propranolol UF PVDF β-CDP 99.9 [233] 

 Primidone RO CATF β-CDP 85 [89] 

 Carbamazepine RO PATF Zeolite 91 [89] 

Antihistamine Nizatidine NF PATF Zeolite >90 [50] 

 Ranitidine NF PATF Zeolite 88 [50] 

PATF = polyamide-thin-film membrane, CATF = cellulose acetate-thin-film membrane, PES = polyethersulfone, PI = polyimide, 
PVDF = Polyvinylidene fluoride, PVC = polyvinyl chloride, HMCN = mesoporous hollow carbon nanospheres, β-CDP = β-
cyclodextrin polymers, MWCNT = multi-walled carbon nanotubes, TF = thin-film membrane. 

4. Trend and future prospects 
Membrane technology has gained ground in water treatment processes. The use of nanocomposite 

membranes for treating PhACs contaminated water systems is receiving attention. Many wastewater treatment 
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plants are undergoing improvement to be able to handle emerging contaminants like PhACs. Most studies on 
nanocomposites are focused on dyes and heavy metals. There are very few studies on nanocomposite 
membranes focusing on PhACs, although there are studies using nanocomposites for water treatment but not 
as membranes. This area needs to be improved, and there is an urgent need for more studies to be conducted 
to understand the process better. Apart from this, it is rare to find studies on a large-scale using nanocomposite 
membranes for PhACs removal from water. Therefore, apart from conducting more studies, the studies should 
be more comprehensive than laboratory evaluations; there is a need to investigate applications on a large scale 
for industrial applications. There is no study on the cost evaluation of nanocomposite membranes, even where 
studies did not consider membrane activities. Future studies need to consider cost evaluation to understand the 
economic viability of the process. 

Many studies pointed out fouling and high energy consumption as major limitations to using membranes 
in water treatment. Although most studies proffered solutions to fouling, such as including metal oxides and 
carbonaceous nanoparticles in nanocomposite membranes, most studies did not consider the high energy 
consumption issue, which was linked to pressure requirement and process time. It is essential to consider the 
challenge emanating from increased energy consumption during the process when designing a membrane 
process that is cheap, efficient and less energy-consuming. No study conducted a toxicity profiling of the 
membrane filters to confirm their level of safety. It is crucial to ascertain the safety of the nanocomposite 
matrix and what happens to them when they are completely spent in treatment cycle. Despite the success of 
using nanoparticles to improve membrane technology, studies have shown a limitation of incompatibility 
between organic-inorganic materials[240–242]. This limitation is a severe problem that requires urgent attention 
because it causes the leaching of nanoparticles from the surface or internal membrane structure. Such 
occurrence may lead to secondary pollution, and in areas where such materials are used, it may cause serious 
environmental hazards. Apart from leaching, incompatibility may cause high surface reactivity leading to 
agglomeration of the nanoparticles that may result in poor membrane performance[243,244]. It is expedient to 
develop a new method of incorporating nanoparticles in the membrane that will prevent the challenges faced 
by incompatibility. 

The use of photocatalytic nanocomposite membranes should be encouraged. This will allow the complete 
breakdown of PhACs avoiding the generation of toxic side products that may be of environmental concern. 
Furthermore, the development of visible light active photocatalytic nanocomposite membrane should be 
preferred and encouraged as this will reduce process cost since a UV light source will not be necessary, which 
may be an additional cost. On the other hand, visible light is readily available at no cost, which makes the use 
of visible light-active nanocomposite membranes cheap. None of the studies considered checking the treated 
water to check whether a toxic product may have been produced during the treatment process. It is essential 
that studies in the future take this into consideration. In addition, many studies reported did not evaluate 
membrane regeneration for reuse. It is crucial to establish the reusability capacity of membrane filters before 
economic viability can be ascertained. Therefore, pilot studies in the future should take this into consideration, 
which is vital. The high cost of synthesis of MOF remains one of the drawbacks to using MOF-based 
nanocomposite membranes[228]. Developing a cheap reaction route for synthesizing MOF is necessary to make 
it affordable. 

5. Conclusion 
The contamination of water systems by PhACs is a severe challenge. Therefore, this review considers the 

development of nanocomposite membranes to remove PhACs in the polluted water system. Although several 
water treatment methods have been developed, membrane technology remains outstanding due to its properties 
and operation efficiency. However, the success with membrane technology, fouling and energy consumption 
are major challenges identified, which could be circumvented by including metal oxide and carbonaceous 
nanoparticles in nanocomposite membranes. Without any doubt, the nanocomposite membrane is a promising 
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solution for effectively removing PhACs in an aqueous system; however, there is an urgent need for more 
studies to be conducted on a large scale, which should cover cost evaluation and toxicity profiling. 
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