REVIEW ARTICLE

Synthesis and properties of ordered mesoporous $\text{Ti}O_2$ and their composites

Wei Zhou, Honggang Fu^{*}, Kai Pan

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 15008, China. E-mail: fuhg@vip.sina.com

ABSTRACT

Ordered mesoporous TiO_2 and their composites have many potential applications in the fields of photocatalysis, solar-cells, and so on, due to their special microstructures. The synthesized methods of ordered mesoporous TiO_2 were classified systematically in this paper. The synthesized approaches, development history, classification and application of mesoporous TiO_2 and their composites are reviewed. Some important progress and research results are also summarized. Based on the present existing problems, the development trend is discussed.

Keywords: Mesoporous TiO2; Composite; Photocatalysis

ARTICLE INFO

Received: 12 May 2021 Accepted: 21 June 2021 Available online: 27 June 2021

COPYRIGHT

Copyright © 2021 Wei Zhou, *et al.* EnPress Publisher LLC. This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). https://creativecommons.org/licenses/bync/4.0/

1. Introduction

Since highly ordered mesoporous SiO₂ MCM-41 was synthesized for the first time by scientists of Mobil company in 1992, ordered mesoporous TiO₂ has been widely used in photocatalysis, solar cells and other fields because of its well-developed and ordered pore structure, large specific surface area, high porosity and narrow pore size distribution. It has become one of the research hotspots at home and $abroad^{[1-4]}$. Mesoporous TiO₂ has experienced the process from disorder to order, from small pore sizes to large pore sizes, and from low thermal stability to high thermal stability, achieving great progress and showing high photocatalytic activity^[4-6]. However, the separation efficiency of photogenerated carriers of pure mesoporous TiO₂ is still low and can only absorb ultraviolet light and has low utilization of light. Thus, further application is greatly limited^[5–8]. Constructing mesoporous composites has become an effective way to solve these problems, which can not only improve the separation efficiency of photogenerated carriers, but also can expand the light response range to the visible light region and improve the utilization of sunlight^[9-11]. Because this new type of composite materials has the interaction at the pore heterogeneous material interface, it has the characteristics that nanoparticles and bulk materials do not have. It greatly expands the application of mesoporous TiO_2 in optical and electrical fields^[10-12]. This paper reviews the new progress in the synthesis and classification of ordered mesoporous TiO₂ and its composites in recent years.

2. Synthesis of ordered mesopore TiO₂

2.1 Ordered mesopore TiO₂ being synthesized by the soft-template method

Ordered mesoporous TiO₂ is usually synthesized by template methods. This method can design the template according to the size and structure of the synthetic material in advance. The size, morphology and structure of synthetic materials can also be regulated based on the spatial confinement of template and the regulation of template. Template methods can be divided into the soft-template method and the hard-template method according to the characteristics of templates and the difference of the domain limiting ability. The soft-template method usually takes surfactants as structural molding agents (templates). They are organic molecules or super molecules with "soft" structure including ionic surfactants (quaternary ammonium salts, alkyl phosphates, etc.) and non-ionic surfactants (amine molecules with different chain lengths, block copolymers, etc.). Using sol-gel, emulsification and other chemical processes, interaction between surfactant and inorganic precursor, the mesoscopic structure is assembled through the interaction of organic-inorganic interface. After removing the template, mesoporous materials with different structures are obtained^[13–15]. Among various surfactant templates, block copolymers have attracted much attention because they can form a variety of morphologies by themselves. Ordered mesoporous materials with various morphologies can be obtained by using block copolymer as templates. This is also one of the advantages of using the soft-template method^[16]. Therefore, the self-assembly of soft matter is an important means of forming a highly ordered mesoscopic structure. Self-assembly allows the material to be designed and controllable during synthesis and it has become the cornerstone of synthetic ordered mesoscopic structures^[14–16].

At present, orderly mesoscopic TiO_2 materials of different structures have been prepared by using the soft-template method. Wu *et al.* used amphiphilic triblock polymer HO(CH₂CH₂O)₂₀(CH₂CH(CH₃) $O)_{70}(CH_2CH_2O)_{20}H(EO_{20}\mbox{-}PO_{70}\mbox{-}EO_{20},\ P^{123})$ as soft templates to prepare highly ordered three-dimensional hexagonal mesoporous TiO₂ films^[17]. Crepaldi et al. used block copolymer as soft templates to prepare two-dimensional hexagonal and three-dimensional cubic highly ordered mesoporous TiO₂ films and discussed the formation mechanism in detail^[18]. Shibata et al. used the cationic surfactant cetyltrimethylammonium bromide (C¹⁶TAB) as the soft template and TiOSO₄ as an inorganic precursor to prepare hexagonal ordered mesoporous TiO₂ particles with crystalline pore walls successfully, and the ordered mesoporous structure can be stabilized to 450 °C^[19]. Professor Zhao Dongyuan and professor Huang Chunhui took P¹²³ as the soft template and ethanol as the solvent to successfully prepare ordered mesoporous TiO_2 films with the pore size of 7.4 nm^[20]. Stucky et al. used block polymer as the soft template to obtain mesoporous TiO₂ materials with large pore sizes^[21]. Professor Fu Xianzhi prepared ordered mesoporous TiO₂ films with the pore size of 3.5 nm by using P¹²³ as the soft template^[22]. However, ordered mesoporous TiO₂ with small pore sizes has large gas resistance and pore confinement effect, so it is unfavorable to the entry of functional heterogeneous components. Therefore ordered mesoporous TiO₂ with a large pore size has attracted much attention. Smarsly et al. prepared large pore ordered mesoporous TiO₂ films with a pore size of 10 nm by using a new PHB-PEO block polymer as a template^[23]. By using tetrabutyl titanate as the inorganic precursor, block polymer P¹²³ as a structural guide, using the swelling effect of n-butanol release in situ (Figure 1), the research group successfully prepared anatase-type mesoporous TiO₂ film material with an aperture of 14 nm, which showing excellent photocatalytic performance. Thus, it lays a foundation for the further application of mesoporous TiO₂

However, it was found in the exploration of photocatalytic process using mesoporous TiO_2 , improving the crystallinity and stability of mesoporous TiO_2 are two key factors. If these two problems are not solved, they will essentially limit their application. The crystallinity of TiO_2 will directly affect its properties. Usually high crystallization facilitates

Figure 1. Typical SEM and TEM images of ordered large-pore size mesoporous TiO₂.

the separation of photocarriers and then can improve their photocatalytic properties^[25]. It is widely known that mesoporous TiO₂ has poor stability. Raising the calcination temperature is necessary to improve the crystallinity. This will be accompanied by the growth and aggregation of TiO₂ grains and the transformation of crystalline phase, leading to the collapse of the mesoporous structure. Therefore, how to improve the crystallinity of mesoporous TiO₂ and maintain its perfect mesoporous structure has become an urgent problem to be solved. People have adopted a variety of means and methods to try to solve these two bottleneck factors. Professor Peng Tianyou used the composite cooperation between SO_4^{2-} and titanium precursors (such as $[TiO(H_2O)_5]^{2+}$ to protect the mesoporous structure under strong acidic conditions. The mesoporous TiO_2 with a pore diameter of about 6 nm can be stabilized to 600 °C^[26]. Professor Zhao Dongyuan obtained ordered mesoporous TiO₂ with a pore size of about 5 nm by sulfuric acid carbonization of surfactant. It can be stabilized to 650 $^{\circ}C^{[27]}$. Based on large pore ordered mesoporous TiO₂, we took organic amine protective molecules to protect the liquid crystal mesophase structure of the primary particles of mesoporous TiO₂, thus effectively inhibiting the aggregation and growth of grains, the collapse of mesoporous network and the transformation

Figure 2. TEM image of the ordered mesoporous TiO_2 after being calcined at700 °C.

from anatase to rutile, and successfully preparing highly stable ordered mesoporous TiO_2 with high crystallinity and large pore diameter of 10 nm (**Figure 2**). The photocatalytic activity of mesoporous TiO₂ was significantly improved. The ordered mesoporous structure of anatase phase can be stabilized to 700 °C (**Figure 2**)^[28]. This large pore ordered mesoporous TiO₂ with high thermal stability can withstand high temperature heat treatment and keep the mesoporous framework unchanged. Therefore, it provides an excellent host for the construction of host guest composites.

2.2 Ordered mesopore TiO₂ being synthesized by the hard-template method

The hard-template method refers to the relatively "hard" structure of the template used, generally referring to solid materials, such as high molecular polymers with different spatial structures, anodic alumina films, mesoporous SiO₂, mesoporous carbon, etc. The interaction between them and inorganic species constituting mesoporous skeleton is weak. The template is mainly used as the filler of mesoscopic space. After removing the hard template, the corresponding occupied mesoporous structure is generated^[29–31]. Compared with soft templates, hard templates have high stability and good spatial

confinement, which can strictly control the size and structure of nano materials. But the hard formwork structure is relatively simple. Therefore, the structure of mesoporous materials prepared with hard templates usually changes less^[32]. Ordered mesoporous TiO₂ materials with different morphologies were prepared by using various hard template materials with different mesoporous structures. Zhou et al. used SBA-15 as the hard template, titanium nitrate and titanium chloride as inorganic precursors to successfully prepare highly ordered mesoporous rutile and anatase TiO₂ materials. The lithium ion insertion performance of rutile mesoporous TiO₂ is higher than that of anatase^[33]. Professor Zhao Dongyuan took SBA-15 and KIT-6 as hard templates to prepare rutile single crystal mesoporous TiO₂^[34]. Zhang et al. prepared highly ordered mesoporous TiO₂ materials with KIT-6 as the hard template. It shows high hydrogen production efficiency by photolysis of water^[35]. Bruce *et al.* prepared 3D ordered mesoporous TiO₂ with KIT-6 as the hard template and studied the insertion properties of lithium^[36]. Wang et al. used anodic aluminum oxide (AAO) as the hard template and the triblock polymer P^{123} as the soft template, tetraisopropyl titanate as the titanium precursor to form the liquid crystal dielectric phase, removal of organic template by roasting and removal of AAO template by NaOH dissolution method in the pores of AAO. Thus, TiO₂ nanotubes with an ordered mesoporous structure on the side wall were obtained^[37]. This unique structure of TiO₂ nanotubes has a high specific surface area (400 m^2/g). It is found that its efficiency is significantly improved when it is applied to lithium ion batteries.

3. Synthesis of the ordered mesoscopic TiO₂ composites

Although the photocatalytic activity of mesoporous TiO_2 is significantly improved, conventional TiO_2 nanoparticles still separate less efficiently and only absorbing UV light, which greatly reduces the utilization of sunlight. Therefore, how to further improve the separation efficiency of interpore TiO_2 photocarriers and expand the light response range has become an urgent problem.

3.1 Synthesis of the semiconductor oxide/mesoporous TiO₂ composites

Various semiconductor oxides are compounded with mesoporous TiO₂ to improve their thermal stability. It can also further improve the separation efficiency of photogenerated carriers so as to improve its photocatalytic activity. Gnatyuk *et al.* took P^{123} as the soft-template to prepare ordered mesoporous TiO₂/ ZrO_2 composites by the sol-gel method. The stability of mesoporous TiO₂ was significantly improved^[38]. Mesoporous TiO₂/ZrO₂ composites with double pore diameter distribution were prepared by in-situ synthesis (Figure 3). It shows good thermal stability and excellent photocatalytic activity^[39]. In addition, bifunctional mesoporous TiO₂/TiO₂ was successfully prepared by nano casting α -Fe₂O₃ composite material. The composite fully reflects the high adsorption performance of α -Fe₂O₃ and high photocatalytic efficiency of mesoporous TiO₂. Effective adsorption of highly toxic As (III) and simultaneous photocatalytic oxidation convert it into low toxic As (V)^[40]. Professor Fu Xianzhi prepared macroporous mesoporous TiO₂/ZrO₂ nanocomposites with hierarchical structure and showed excellent photocatalytic activity^[41]. Professor Yu Jimei takes F¹²⁷ as the soft-template to prepare ordered mesoporous CeO₂/TiO₂ composites with high thermal stability by evaporation induced self-assembly technique. Photocatalytic degradation of methylene blue proves that it has excellent visible light photocatalytic activity^[42]. Jung et al. prepared mesoporous V₂O₅/TiO₂ composite materials by spray pyrolysis method (spray pyrolysis). Photocatalytic degradation 1,2-dichlorophenol was found to have excellent photocatalytic properties^[43]. Liu et al. prepared mesoporous VO_x/TiO₂ composite materials. It can efficiently and selectively oxidize methanol to dimethoxymethane^[44]. Stodolny et al. prepared mesoporous Ta₂O₅/TiO₂ composites. It shows high photolysis efficiency^[45]. Mesoporous Fe₂O₃/TiO₂ fibers were prepared by Zhan et al. It shows high photocatalytic activity^[46]. Cao et al. prepared macroporous mesoporous hierarchical TiO₂ supported CuO nano catalyst by template free method. Its catalytic performance for low temperature CO oxidation was systematically studied. It is found that CuO has the best catalytic performance when the loading amount is 8 wt%^[47]. It is worth mentioning that SiO₂ has received special attention because of its high stability. It was compounded with mesoporous TiO₂ to construct various composite structures. Thus, the thermal stability and photocatalytic activity of mesoporous TiO₂ were significantly improved. Cojocariu *et al.* prepared ordered mesoporous TiO₂/SiO₂ xerogels by non hydrolytic sol-gel method. The mild oxidation of hydroxyl

containing organic compounds was studied^[48]. Yao *et al.* prepared ordered mesoporous $\text{TiO}_2/\text{SiO}_2$ xerogels with hierarchical pore structure^[49]. Sahu *et al.* prepared ordered mesoporous $\text{TiO}_2/\text{SBA-15}$ composites. The effect of calcination temperature on the mesoporous structure was systematically studied^[50]. He *et al.* prepared mesoporous $\text{TiO}_2/\text{SiO}_2$ composites with large specific surface area. It shows excellent photocatalytic activity^[51].

Figure 3. AFM images of bi-modal mesoporous TiO₂/ZrO₂ composite.

3.2 Synthesis of metal nanoparticles/mesopore TiO₂ composites

There are many synthetic methods of metal nanoparticles/mesoporous TiO₂ composites. But to sum up, it can be roughly divided into two types of methods. That is, one-step and two-step methods. The so-called one-step method refers to the addition of precious metal precursors while forming ordered mesoporous TiO₂; the precious metal is reduced while the organic template is removed by heat treatment. Thus, noble metal/mesoporous TiO₂ composites were synthesized in situ. Cha et al. used amphoteric block copolymer PS-b-PEO (poly (styrene-block-ethylene oxide)) as a template, ordered mesoporous Ag/TiO₂ composite films were prepared by spin coating method. It shows excellent photocatalytic performance^[52]. Professor Li Hexing and professor Lu Yunfeng effectively coated Au nanoparticles in core-shell mesoporous TiO₂ microspheres by in-situ synthesis. It shows excellent photocatalytic activity and stability^[53]. Zhao *et al.* synthesized Au clusters doped mesoporous TiO₂ films in one step.

Its performance has been significantly improved^[54]. Professor Yu Jiaguo prepared mesoporous Au/TiO₂ composite microspheres by hydrothermal method. Its photocatalytic activity was significantly enhanced^[55]. Ismail et al. synthesized Pt/TiO₂ mesoporous composites by the one-step method. The photocatalytic oxidation of methanol showed excellent photocatalytic activity^[56]. The so-called two-step method refers to the first synthesis of ordered mesoporous TiO₂, then take it as the host material, noble metals were compounded into mesoporous TiO₂ channels by deposition and wet impregnation. Thus, noble metal/ mesoporous TiO₂ composite materials are formed. Wu et al. used TiCl₄ as inorganic precursor, F¹²⁷ as a soft-template to prepare ordered mesoporous TiO₂ films with striped pores by evaporation induced self-assembly method, then Pt nanoparticles were loaded with the synthesized ordered mesoporous TiO₂ film as the host material. Application to direct methanol fuel cells (DMFCs) was found to have good catalytic properties^[57]. Shi et al. used urea as precipitant to prepare highly dispersed ordered Au/ mesoporous TiO₂ composites with ultra-high gold

content by the deposition-precipitation method^[58]. May *et al.* prepared nanocomposites of precious metals Au and Pt evenly distributed in ordered mesoporous TiO_2 channels by the phase-transfer method. The change of porosity was systematically studied by ellipsometric porosimetry^[59]. Various metal nanoparticles/mesoporous TiO_2 composites were prepared by different methods and the performance has also been significantly improved. However, the nature of the interaction between metal nanoparticles and mesoporous TiO_2 pore wall needs to be further studied and discussed.

3.3 Synthesis of mesoporous TiO₂ multivariate composites

Mesoporous TiO₂ multicomponent composites have also attracted people's attention in recent years. It can give full play to the characteristics of each component and also use the interface coupling between them to produce new excellent properties. Thus, the properties of mesoporous TiO₂ can be greatly improved. Professor Zhao Dongyuan used soluble phenolic resin as polymer precursor, F^{127} as a soft-template, to prepare ordered bifunctional mesoporous TiO₂/SiO₂/polymer nanocomposite^[60]. Professor Li Yadong prepared CdSe quantum dot sensitized Au/TiO2 mesoporous composite films and its photoelectrochemical properties have been significantly enhanced^[61]. Idakiev et al. prepared Au/CeO₂/TiO₂ macroporous mesoporous multicomponent composite materials and shows high catalytic activity in low-temperature water-gas shift reaction^[62]. Yu et al. prepared MnO_x CeO₂/TiO₂ mesoporous composites by the sol-gel method. It was found that the catalytic oxidation of toluene at low temperature had a significant effect^[63]. Narkhede et al. prepared Pt/TiO₂/ MCM-48 multi-component mesoporous composites and it has high catalytic activity for CO oxidation^[64]. Although various mesoporous TiO₂ multicomponent composite materials with improved performance have been obtained, there are few studies on the mechanism of performance improvement. In addition, the interaction between components in mesoporous TiO₂ multicomponent composites still need to be further studied in order to provide a theoretical basis for the construction of high-performance mesoporous TiO₂ multicomponent composite materials.

4. Prospect

Ordered nanocrystalline mesoporous TiO₂ and its composites have become one of the research hotspots at home and abroad because of their unique optical and electrical properties. Great progress has been made and shows great development potential and unique application prospects. For all that, due to the short research time in this direction, many problems still need to be deeply studied and discussed. For example, the preparation process of ordered mesoporous TiO₂ needs to be further expanded and simplified. The structural evaluation and heterostructure construction of mesoporous TiO₂ composites, the kinetics of photogenerated carrier separation, and the nature of the interaction between the inhibitory components in the mesoporous TiO₂ channels and the pore wall need to be further studied. In addition, the application of ordered mesoporous TiO₂ and its composites should also be paid attention to. Photocatalysis, as a deep oxidation method, can achieve fully mineralization of organic pollutants in wastewater, but the current photocatalytic process is not mature to meet the practical requirements. So the practical research of ordered mesoporous TiO₂ and its composites should attract more attention.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

This work was the key project of National Natural Science Foundation of China (21031001), the project of National Natural Science Foundation of China (20971040) and the major project of Scientific and Technological Innovation Engineering in Colleges and Universities (708029).

References

^{1.} Kresge CT, Leonowicz ME, Roth WJ, et al. Or-

dered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992; 359(6397): 710–712.

- Zhou W, Fu H, Pan K, *et al.* Preparation of mesoporous TiO₂/CdS thin film photoelectrode through electrodeposition. Chemical Journal of Chinese Universities 2010; 31(1): 112–116.
- Zhou W, Fu H, Pan K, *et al.* Preparation of mesoporous TiO₂/single wall carbon nanotubes thin film through electrophoretic deposition. Chemical Journal of Chinese Universities 2009; 30(10): 2036–2039.
- Zhao J, Wan P, Xiang J, *et al.* Synthesis of highly ordered macro-mesoporous anatase TiO₂ film with high photocatalytic activity. Microporous and Mesoporous Materials 2011; 138(1-3): 200–206.
- Kim YJ, Lee YH, Lee MH, *et al.* Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO₂ thin film. Langmuir 2008; 24(22): 13225–13230.
- Lee J, Orilall1 MC, Warren SC, *et al.* Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Materials 2008; 7(3): 222–228.
- 7. Patra AK, Das SK, Bhaumik A. Self-assembled mesoporous TiO_2 spherical nanoparticles by a new templating pathway and its enhanced photoconductivity in the presence of an organic dye. Journal of Materials Chemistry 2011; 21(11): 3925–3930.
- Kao L, Hsu T, Cheng K. Novel synthesis of high-surface-area ordered mesoporous TiO₂ with anatase framework for photocatalytic application. Journal of Colloid and Interface Science 2010; 341(2): 359–365.
- Gnatyuk Y, Smirnova AN, Kordubanb O, *et al.* Effect of zirconium incorporation on the stabilization of TiO₂ mesoporous structure. Surface and Interface Analysis 2010; 42(6-7): 1276–1280.
- Chen X, Wang X, Fu X. Hierarchical macro/mesoporous TiO₂/SiO₂ and TiO₂/ZrO₂ nanocomposites for environmental photocatalysis. Energy Environmental Science 2009; 2: 872–877.
- Piris J, Ferguson AJ, Blackburn JL, *et al.* Efficient photoinduced charge injection from chemical bath deposited CdS into mesoporous TiO₂ probed with time-resolved microwave conductivity. The Journal of Physical Chemistry C 2008; 112(20): 7742–7749.

- Chen H, Li W, Liu H, *et al.* Performance enhancement of CdS-sensitized TiO₂ mesoporous electrode with two different sizes of CdS nanoparticles. Microporous and Mesoporous Materials 2011; 138(1-3): 235–238.
- Ciriminna R, Sciortino M, Alonzo G, *et al.* From molecules to systems: Sol-gel microencapsulation in silica-based materials. Chemical Reviews 2011; 111(2): 765–789.
- Song L, Feng D, Fredin JN, *et al.* Challenges in fabrication of mesoporous carbon films with ordered cylindrical pores via phenolic oligomer self-assembly with triblock copolymers. ACS Nano 2010; 4(1): 189–198.
- 15. Gierszal PK, Jaroniec M. Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. Journal of the American Chemical Society 2006; 128(31): 10026–10027.
- Forster S, Antonietti M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Advanced Materials 1998; 10(3): 195–217.
- Wu C, Ohsuna T, Kuwabara M, *et al.* Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation. Journal of the American Chemical Society 2006; 128(14): 4544–4545.
- Crepaldi EL, Soler-Illia GJAA, Grosso D, *et al.* Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO₂. Journal of the American Chemical Society 2003; 125(32): 9770–9786.
- Shibata H, Ogura T, Mukai T, *et al.* Direct synthesis of mesoporous titania particles having a crystalline wall. Journal of the American Chemical Society 2005; 127(47): 16396–16397.
- Hou K, Tian B, Li F, *et al.* Highly crystallized mesoporous TiO₂ films and their applications in dye sensitized solar cells. Journal of Materials Chemistry 2005; 15(24): 2414–2420.
- Yang P, Zhao D, Margolese DI, *et al.* Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998; 396(6707): 152–155.
- 22. Yu J, Wang X, Fu X. Pore-wall chemistry and pho-

tocatalytic activity of mesoporous titania molecular sieve films. Chemistry of Materials 2004; 16(8): 1523–1530.

- Smarsly B, Grosso D, Brezesinski T, *et al.* Highly crystalline cubic mesoporousTiO₂ with 10-nm pore diameter made with a new block copolymer template. Chemistry of Materials 2004; 16(15): 2948–2952.
- Liu K, Fu H, Shi K, *et al.* Preparation of large-pore mesoporous nanocrystalline TiO₂ thin films with tailored pore diameters. Journal of Physical Chemistry B 2005; 109(40): 18719–18722.
- Tian G, Fu H, Jing L, *et al.* Preparation and characterization of stable biphase TiO₂ photocatalyst with high crystallinity large surface area and enhanced photoactivity. Journal of Physical Chemistry C 2008; 112(8): 3083–3089.
- Peng T, Zhao D, Dai K, *et al.* Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. Journal of Physical Chemistry B 2005; 109(11): 4947–4952.
- Zhang R, Tu B, Zhao D. Synthesis of highly stable and crystalline mesoporous anatase by using a simple surfactant sulfuric acid carbonization method. Chemistry-A European Journal 2010; 16(33): 9977–9981.
- Zhou W, Sun F, Pan K, *et al.* Well-ordered largepore mesoporous anatase TiO₂ with remarkably high thermal stability and improved crystallinity: Preparation characterization and photocatalytic performance. Advanced Functional Materials 2011; 21(10): 1922– 1930.
- Wu Z, Li Q, Feng D, *et al.* Ordered mesoporous crystallineγ-Al₂O₃ with variable architecture and porosity from a single hard template. Journal of the American Chemical Society 2010; 132(34): 12042–12050.
- Yan X, Gottardo L, Bernard S, *et al.* Ordered mesoporous silicoboron carbonitride materials via preceramic polymer nanocasting. Chemistry of Materials 2008; 20(20): 6325–6334.
- Zhu H, Liu Z, Wang Y, *et al.* Nanosized CaCO₃ as hard template for creation of intracrystal pores within silicalite-1crystal. Chemistry of Materials 2008; 20(3): 1134–1139.
- Chen Z, Zheng B, Li X, *et al.* Research progress of nano materials prepared by template method. Chemical Industry and Engineering Progress 2010; 29(1):

94–99.

- Yue W, Randorn C, Attidekou PS, *et al.* Syntheses, Li insertion, and photoactivity of mesoporous crystalline TiO₂. Advanced Functional Materials 2009; 19(17): 2826–2833.
- Yue W, Xu X, Irvine JTS, *et al.* Mesoporous monocrystalline TiO₂ and its solid-state electrochemical properties. Chemistry of Materials 2009; 21(12): 2540–2546.
- Zhang Z, Zuo F, Feng P. Hard template synthesis of crystalline mesoporous anatase TiO₂ for photocatalytic hydrogen evolution. Journal of Materials Chemistry 2010; 20(11): 2206–2212.
- Ren Y, Hardwick LJ, Bruce PG. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angewandte Chemie International Edition 2010; 49(14): 2570–2574.
- Wang K, Wei M, Morris MA, *et al.* Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Advanced Materials 2007; 19(19): 3016–3020.
- Gnatyuk Y, Smirnova AN, Kordubanb O, *et al.* Effect of zirconium incorporation on the stabilization of TiO₂ mesoporous structure. Surface and Interface Analysis 2010; 42(6-7): 1276–1280.
- Zhou W, Liu K, Fu H, *et al.* Multi-modal mesoporous TiO₂-ZrO₂ composites with high photocatalytic activity and hydrophilicity. Nanotechnology 2008; 19(3): 5610.
- 40. Zhou W, Fu H, Pan K, *et al.* Mesoporous TiO₂/ α-Fe₂O₃: Bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. Journal of Physical Chemistry C 2008; 112(49): 19584– 19589.
- Chen X, Wang X, Fu X. Hierarchical macro/mesoporous TiO₂/SiO₂ and TiO₂/ZrO₂ nanocomposites for environmental photocatalysis. Energy Environmental Science 2009; 2: 872–877.
- 42. Li G, Zhang D, Yu J. Thermally stable ordered mesoporous CeO₂/TiO₂ visible-light photocatalysts. Physical Chemistry Chemical Physics 2009; 11(19): 3775–3782.
- Jung KY, Jung YR, Jeon JK, *et al.* Preparation of mesoporous V₂O₅/TiO₂ via spray pyrolysis and its

application to the catalytic conversion of 1,2-dichloro-benzene. Journal of Industrial and Engineering Chemistry 2011; 17(1): 144–148.

- Liu J, Sun Q, Fu Y, *et al.* Preparation and characterization of mesoporous VO_x-TiO₂ complex oxides for the selective oxidation of methanol to dimethoxymethane. Journal of Colloid and Interface Science 2009; 335(2): 216–221.
- Stodolny M, Laniecki M. Synthesis and characterization of mesoporous Ta₂O₅-TiO₂ photocatalysts for water splitting. Catalysis Today 2009; 142(3-4): 314–319.
- Zhan S, Yang J, Liu Y, *et al.* Mesoporous Fe₂O₃doped TiO₂ nanostructured fibers with higher photo-catalytic activity. Journal of Colloid and Interface Science 2011; 355(2): 328–333.
- Cao J, Shao G, Ma TY, *et al.* Hierarchical meso-macroporous titania-supported CuO nanocatalysts: Preparation characterization and catalytic CO oxidation. Journal of Materials Science 2009; 44(24): 6717– 6726.
- Cojocariu AM, Mutin PH, Dumitriu E, *et al.* Mild oxidation of bulky organic compounds with hydrogen peroxide over mesoporous TiO₂-SiO₂ xerogels prepared by non-hydrolytic sol-gel. Applied Catalysis B: Environmental 2011; 97(3-4): 407–413.
- Yao N, Cao S, Yeung KL. Mesoporous TiO₂-SiO₂ aerogels with hierarchal pore structures. Microporous and Mesoporous Materials 2009; 117: 570–579.
- Sahu DR, Hong LY, Wang SC, *et al.* Synthesis analysis and characterization of ordered mesoporous TiO₂/SBA-15 matrix: Effect of calcination temperature. Microporous and Mesoporous Materials 2009; 117(3): 640–649.
- 51. He C, Tian B, Zhang J. Thermally stable SiO₂-doped mesoporous anatase TiO₂ with large surface area and excellent photocatalytic activity. Journal of Colloid and Interface Science 2010; 344(2): 382–389.
- 52. Cha MA, Shin C, Kannaiyan D, *et al.* A versatile approach to the fabrication of TiO₂ nanostructures with reverse morphology and mesoporous Ag/TiO₂ thin films via cooperative PS-b-PEO self-assembly and a sol-gel process. Journal of Materials Chemistry 2009; 19(39): 7245–7250.
- 53. Bian Z, Zhu J, Cao F, et al. In situ encapsulation

of Au nanoparticles in mesoporous core-shell TiO_2 microspheres with enhanced activity and durability. Chemical Communications 2009; 120(32): 3789–3791.

- Zhao J, Sallard S, Smarsly BM, *et al.* Photocatalytic performances of mesoporous TiO₂ films doped with gold clusters. Journal of Materials Chemistry 2010; 20(14): 2831–2839.
- 55. Yu J, Yue L, Liu S, *et al.* Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO₂ nanocomposite microspheres. Journal of Colloid and Interface Science 2009; 334(1): 58–64.
- 56. Ismail AA, Bahnemann DW. One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced photocatalytic activity for methanol oxidation. Green Chemistry 2011; 13: 428–435.
- Wu S, He J, Zhou J, *et al.* Fabrication of unique stripe-shaped mesoporous TiO₂ films and their performance as a novel photo-assisted catalyst support for DMFCs. Journal of Materials Chemistry 2011; 21(9): 2852–2854.
- Cui F, Hua Z, Wei C, *et al.* Highly dispersed Au nanoparticles incorporated mesoporous TiO₂ thin films with ultrahigh Au content. Journal of Materials Chemistry 2009; 19(31): 7632–7637.
- May RA, Patel MN, Johnston KP, *et al.* Flow-based multiadsorbate ellipsometric porosimetry for the characterization of mesoporous Pt-TiO₂ and Au-TiO₂ Nanocomposites. Langmuir 2009; 25(8): 4498–4509.
- Chu H, Yu C, Wan Y, *et al.* Synthesis of ordered mesoporous bifunctional TiO₂-SiO₂-polymer nanocomposites. Journal of Materials Chemistry 2009; 19(45): 8610–8618.
- Liu L, Wang G, Li Y, *et al.* CdSe quantum dot-sensitized Au/TiO₂ hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research 2011; 4(3): 249–258.
- Idakiev VT, Abakova TT, Enchev K, *et al.* Gold nano particles supported on ceria-modified mesoporous-macroporous binary metal oxides as highly active catalysts for low-temperature water-gas shift reaction. Journal of Materials Science 2009; 44(24): 6637–6643.
- 63. Yu D, Liu Y, Wu Z. Low-temperature catalytic oxi-

dation of toluene over mesoporous $MnOx-CeO_2/TiO_2$ prepared by sol-gel method. Catalysis Communications 2010; 11(8): 788–791.

64. Narkhede VV, Toni AD, Narkhede VS, et al. Pt

nanoparticles inside the mesopores of TiO₂-MCM-48: Synthesis characterization and catalytic activity for CO oxidation. Journal of Materials Science 2009; 44(24): 6701–6709.