Potentials of interleukin-27 (IL-27) as an immunotherapeutic cytokine in cancer therapy

Wei Boon Yap, Shaktypreya Nadarajah, Nadiah Shidik, Noorjahan Banu Mohammed Alitheen

Article ID: 121
Vol 3, Issue 2, 2019

VIEWS - 822 (Abstract) 649 (PDF)

Abstract


Cancer immunotherapy using cytokines has been sought as an alternative therapeutic approach for treating cancers. Besides remarkable immunoregulatory properties, interleukin (IL)-27 has recently been shown to possess promising anticancer functions; hence, its potential roles in cancer immunotherapy. Although proven to be effective against cancer cell growth and angiogenesis, given its dual immune-regulating functions (pro-inflammatory and anti-inflammatory), the use of IL-27 as a cancer immunotherapeutic cytokine could possibly be a two-edged sword without meticulous and thorough research. This mini-review mainly discusses the functions and future prospects of IL-27 as an effective anticancer cytokine. Hopefully, it imparts useful insights into the potential applications of IL-27 in cancer immunotherapy

Keywords


interleukins; IL-27; cytokines; immunotherapy; cancers

Full Text:

PDF


References


1. Bekaii-Saab TS, Roda JM, Guenterberg KD, et al. A phase I trial of paclitaxel and trastuzumab in combination with interleukin-12 in patients with HER2/neu-expressing malignancies. Mol Cancer Ther 2009; 8(11): 2983–2991. doi: 10.1158/1535-7163.MCT-09-0820.

2. Tugues S, Burkhard SH, Ohs I, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ 2015; 22: 237–246. doi: 10.1038/cdd.2014.134.

3. Zhang JM, An JX. Cytokines, inflammation and pain. Int Anesthesiol Clin 2007; 45(2): 27–37. doi: 10.1097/AIA.0b013e318034194e.

4. Sorensen EW, Gerber SA, Frelinger JG, et al. IL-12 suppresses vascular endothelial growth factor receptor 3 expression on tumor vessels by two distinct IFN-γ-dependent mechanisms. J Immunol 2010; 184(4): 1858–1866. doi: 10.4049/jimmunol.0903210.

5. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers 2011; 3: 3856–3893. doi: 10.3390/cancers3043856.

6. Shi X, Liu J, Xiang Z, et al. Gene expression analysis in interleukin-12-induced suppression of mouse mammary carcinoma. Int J Cancer 2004; 110(4): 570–578. doi: 10.1002/ijc.20145.

7. Gollob JA, Mier J, Veenstra K, et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: Ability to maintain IFN-γ induction is associated with clinical response. Clinic Cancer Res 2000; 6: 1678–1692.

8. Yoshimoto T, Chiba Y, Furusawa JI, et al. Potential clinical application of interleukin-27 as an antitumor agent. Cancer Sci 2015; 106(9): 1103–1110. doi: 10.1111/cas.12731.

9. Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 2002; 16(6):779–790.

10. Li MS, Liu ZZ, Liu JQ, et al. The Yin and Yang aspects of IL-27 in induction of cancer-specific T cell responses and immunotherapy. Immunotherapy 2015; 7(2): 191–200. doi: 10.2217/imt.14.95.

11. Hisada M, Kamiya S, Fujita K, et al. Potent antitumor activity of interleukin-27. Cancer Res 2004; 64: 1152–1156. doi: 10.1158/0008-5472.CAN-03-2084.

12. Canale S, Cocco C, Frasson C, et al. Interleukin-27 inhibits pediatric B-acute lymphoblastic leukemia cell spreading in a preclinical model. Leukemia 2011; 25(12): 1815–1824. doi: 10.1038/leu.2011.158.

13. Shimizu M, Shimamura M, Owaki T, et al. Antiangiogenic and antitumor activities of IL-27. J Immunol 2006; 176(12): 7317–7324. doi: 10.4049/jimmunol.176.12.7317.

14. Ho MY, Leu SJ, Sun GH, et al. IL-27 directly restrains lung tumorigenicity by suppressing cyclooxygenase-2-mediated activities. J Immunol 2009; 183(10): 6217–6226. doi: 10.4049/jimmunol.0901272.

15. Airoldi I, Tupone MG, Esposito S, et al. Interleukin-27 re-educates intratumoral myeloid cells and down-regulates stemness genes in non-small cell lung cancer. Oncotarget 2015; 6(6): 3694–3708. doi: 10.18632/oncotarget.2797.

16. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44(5): 479–496. doi: 10.3109/10715761003667554.

17. Ruiz-Ruiz C, Munõz-Pinedo C, López-Rivas A. Interferon-γ treatment elevates caspase-8 expression and sensitizes human breast tumor cells to a death receptor-induced mitochondria-operated apoptotic program. Cancer Res 2000; 60(20): 5673–5680.




DOI: https://doi.org/10.24294/ti.v3.i2.121

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Wei Boon Yap, Shaktypreya Nadarajah, Nadiah Shidik, Noorjahan Banu Mohammed Alitheen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.